
Web-Based Mobile Robot Simulator

Dan Stormont

Utah State University
9590 Old Main Hill

Logan UT 84322-9590
stormont @hass.usu.edu

Many roboticists rely on simulation during the early phases
of developing navigation algorithms for their autonomous
mobile robots. While many commercial robots now come
with robust development environments that include visual
simulators, these tools aren’t available to robotics
researchers who are working with a custom-built robot or
who have not yet determined which commercial robot will
satisfy their requirements. Even researchers using one of
the commercial development environments will have
difficulty sharing their simulation results with colleagues
or others who do not have access to the commercial
development tools. Believing that the ability to share
simulation results visually with the greatest number of
people would be an important capability to have led to the
development of the web-based simulation approach
described in this paper.

First Generation

The "first generation" of this web-based simulation began
with a text file full of waypoints. The text file was being
generated by a probability grid-based navigation scheme
being investigated for implementation on the mobile robot
LOBOtomous at the University of New Mexico. Realizing
that this cryptic output file would be incomprehensible to
most viewers motivated the initial experimentation with a
web-based simulation.

The most important consideration in this initial
experiment was making the simulation results accessible to
the largest possible audience. This motivated the decision
to use the World Wide Web to distribute the visual results
and the search for a format that would be platform (and
web browser) independent. A number of different
visualization tools were evaluated, including Chrome, Live
3D, QuickTime VR, Real-Time Authoring for Virtual
Environments (RAVE), and the Virtual Reality Modeling
Language (VRML). Of these, only VRML was an open
standard that was supported on a large number of platforms
with a number of freely distributed VRML browsers and
plug-ins. Also, with the release of VRML 2.0, a number of
the shortcomings in VRML that had prevented it from

Copyright © 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

being used for anything more than static visualization of
three dimensional objects were addressed. It was now
possible to have an animated object move through a virtual
environment, while providing the user with a nearly
limitless number of viewpoints. Additional flexibility was
provided by the ability to run active elements (like Java
applets) from the VRML browser.

Having selected the tool to be used, the next step was to
build a VRML model of the robot to be simulated, in this
case, the robot LOBOtomous. LOBOtomous is a custom
built robot with two driving wheels and two castors
centered around a central pivot point. The wider base
contains the motors and drive circuitry, while the narrower
cylindrical body contains the PC-104 control computer, the
ultrasonic sensors and their circuitry, in addition to any
circuitry added to increase LOBOtomous’ capabilities.
LOBOtomous is shown in Figure 1.

Figure 1. LOBOtomous vacuuming at AAAI 97.

34

From: AAAI Technical Report WS-99-15. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

The VRML model was built to have minimal detail while
still being recognizable as LOBOtomous. A screen shot of
the LOBOtomous model is shown in Figure 2.

lab was hand coded in VRML using the text output of a
simulated run of the robot through the lab. Changes in the
algorithm, environment, or even start and goal positions
requires recoding the animation. This lack of flexibility
motivated the next generation of the VRML simulation.

Next Generation

The lack of flexibility in the first version of the VRML
simulation influenced the design of the several iterations in
the next generation of the simulator. I wanted the next
iteration to be more detailed and more flexible than the
first. This section will describe the steps in designing this
next generation of the VRML Mobile Robot Simulator.

The first step in creating a simulation is to build (or,
once a sufficiently large library has been built up, select)
model of the robot whose motion will be simulated. For
this example, I will illustrate coding a small robot called
Little Blue (a take-off on the name of the Utah State
mascot, Big Blue). Little Blue is a four wheeled robot built
from a remote-control Red Fox toy ear. Little Blue has two
motors for differential steering and has enough room for a
BASIC Stamp or PIC controller and some small sensors
for obstacle avoidance and goal location. Figure 4 shows a
Red Fox car prior to being modified.

Figure 2. VRML model of the robot LOBOtomous

Figure 3 shows LOBOtomous in a simulated lab
environment. The lab environment is a very simplistic
version of the robotics lab at UNM, since the furniture is
not detailed (the lab benches and other obstacles are
nothing more than solid blocks in the model), but the
model does allow the visualization of the robot’s motion
through this environment from starting point to goal.

Figure 3. VRML model of lab.

The drawback to the first implementation is that it is not
very flexible. The animation of the robot’s path through the

Figure 4. Red Fox remote-control toy car.

In this example, the VRML model is of a Little Blue
robot configured for the Trinity College Fire Fighting
Home Robot Contest. For those not familiar with this
contest, it is an annual contest held at Trinity College in
Hartford, Connecticut. The purpose of the contest is to
have a robot navigate a maze that is meant to simulate a
house, locate, and then put out a fire in the house. The fire
is represented by a candle approximately six inches in
height. The contest rewards robots that use sensors instead
of just dead-reckoning by awarding bonus points for
various active navigation schemes, like map building. The
emphasis is on speed in locating the fire and the ability to
put it out. (More information about this annual contest can

35

be found at http://www.trincoll.edu/events/robot/.) Thus,
robot that can succeed in this contest needs sensors for
determining its position in the maze, a sensor for locating
the fire, and some mechanism for extinguishing the flame.
This is why the Little Blue robot depicted in the VRML
model has infrared emitter/detector pairs on the front for
obstacle avoidance (not shown) and a phototransistor for
detecting a flame. A tube on top of the robot directs a spray
of compressed air at the flame to put it out. The VRML
model of this version of Little Blue is shown in Figure 5.

the number of light fixtures passed) can be created in
VRML.

Figure 5. VRML model of Little Blue fire fighting robot.

With the VRML model of Little Blue created, a VRML
world for it to navigate through needs to be created.
(VRML environments are usually referred to as worlds,
even the standard file extension for VRML is .wrl for
world.) Obviously, since the Little Blue model is designed
for the Trinity College Fire Fighting Home Robot Contest,
the world created for it should be a version of a maze used
for the contest. Figure 6 shows an overhead view of the
maze created for Little Blue to operate in. Note that the
maze is not designed exactly to the dimensions of any
particular contest layout, rather it is representative of a
typical maze. While a properly proportioned maze could
easily be created in VRML, I felt it better for this example
to stick with a representative rather than an accurate maze.

There are a couple of important features of the maze that
should be noted. The most obvious thing is that the maze
doesn’t have a roof, since it is possible to see inside the
maze. This is how the real maze is to allow access to the
robots, but a real house would have a roof. VRML allows
the creation of a roof and can limit access to the interior to
only those entrances that would allow entry in the real
world, such as open doors or open windows. Thus, VRML
could be used to simulate a typical interior environment
such as a home or an office environment, including any
reference points or features that would normally be found
on a ceiling, such as light fixtures and air conditioning
vents. A realistic simulation of an office environment for a
robot that uses visual clues on the ceiling (e.g., counting

Figure 6. Overhead view of a Trinity contest maze.

Some other features of the maze that should be apparent
are the start position (the red S in a circle that Little Blue is
sitting on) and the goal, which in this case is the lighted
candle in the room in the upper right hand corner. Figures
7 and 8 show different views of the start and goal
positions.

Figure 7. At the start position, looking down the hall.

36

Figure 8. Little Blue at the goal position.

Figures 7 and 8 illustrate one of the nicer capabilities of
VRML: the ability to define camera positions in the
VRML world. The overhead, start, and goal views are all
established by creating viewpoints. There are also
viewpoints (not shown here) looking in to each of the
rooms in the maze. The viewpoints can be selected by
clicking on the desired viewpoint in the VRML browser,
making it possible to quickly change viewpoints while the
animation is running. The strength of this ability is that it
allows the creator of the VRML world to create viewpoints
that emphasize locations or areas of interest for the viewer.

Having discussed the capabilities of VRML, let’s look at
some VRML script. Figure 9 shows the VRML script for
the candle in the maze. Starting at the top, the comment
#VRML 2.0 utf8 is a mandatory line that tells the VRML
browser which version of VRML and which character set
to use (utf8 is the Universal Character Set Transform
Format-8, of which the ASCII character set is a subset).
After that you will see the transform for drawing the white
cylinder that makes up the base of the candle, the
transform for drawing the yellow sphere that is the base of
the flame, followed by the transform for the orange cone
that is the top of the flame. The reason these are all
transforms is that the default in VRML is to draw an object
at the center (0.0 0.0 0.0) of the coordinate system. In order
to stack the geometric figures to make a candle and to
ensure the candle is sitting on the floor, it is necessary to
translate the shapes in the coordinate system to get them in
the right location in the VRML world. Determining the
correct translation to use is one of the most difficult aspects
of working with VRML. I could also have grouped the
elements of the candle together, which would allow
moving the candle as an entity instead of translating each
element separately. If multiple candles were needed in a
VRML world, this would be the approach to take, as
duplicate candles could be created and placed in the world.

#VRML V2.0 utf8
Draw the goal (a candle)

Transform {
translation 12.5 -5.0 -30.0
children [

Shape {

appearance Appearance {

material Material {)

}
geometry Cylinder {

radius 1.0
height 2.0

}
}

]
}

Transform {
translation 12.5 -3.5

children [
Shape {

}
]

}

-30.0

appearance DEF Yellow

Appearance (

material Material {
diffuseColor 1.0 1.0 0.0

}
}
geometry Sphere {

radius 0.5

}

Transform {
translation 12.5 -2.65 -30.0

children [
Shape {

appearance DEF Orange
Appearance {

material Material {
diffuseColor 1.0 0.5 0.0

}

]
geometry Cone {

bottomRadius 0.5
height 1.5

}
}

]
}

Figure 9. VRML script for the candle.

37

Finally, having built a VRML model of a robot and a
VRML world for it to operate in, the last step is to animate
the motion of the robot in the maze. IN VRML, an
animation is started by clicking on the object that is being
animated. The object will continue to move (in the case of
an infinite animation, like a rotating sign) or it will reach
stopping point. If an animation has a stopping point,
clicking on the object again will send it back to the start
and execute the animation again. While the ideal solution
would be to run the navigation in real time, for this
iteration of the robot simulator I had not solved the
problem of running a Java applet from within the VRML
environment. However, the animation was more
sophisticated than the first generation simulation. In the
UNM lab simulation, LOBOtomous never rotated when
making a turn - it just changed positions. This caused the
somewhat humorous behavior of the LOBOtomous model
sliding sideways for some segments of its path. For the
Trinity maze, rotations have been included in the motion of
Little Blue so it will turn to enter a room. The rotation is
still not perfect - Little Blue pivots around its geometric
center even though this would be impossible for a robot
utilizing Ackerman steering, like Little Blue. This
inaccuracy in the displayed motion is one of the areas that
needs improvement in future iterations of the robot
simulator.

Figure 10. Little Blue moving down the hall.

VRML Strengths and Weaknesses
VRML’s flexibility can be a tremendous asset in

creating a truly flexible robot simulation environment. One
example is in creating the walls of the VRML world. One
way to do this is to create each wall and each obstacle as a
cube. This was the approach taken for the UNM lab
environment described in the first generation section. The
problem with this approach is that it is time consuming to
create and not easy to modify. A better alternative from a
flexibility standpoint is using the VRML IndexedFaceSet,
which will draw faces from one coordinate to another. This
allows a world to be described by a list of coordinates,
which could be imported from another source. This
capability of VRML lends itself to creating a menu of floor
layouts or generation of layouts by another program (like
Java applet).

Another VRML capability that adds to its flexibility is
animation, although there are some difficulties working
with VRML animations that must be overcome. Animation
in VRML uses the concept of a clock that determines when
an interpolator will fire. There are three types of
interpolators: position, orientation, and scale. The position
and orientation interpolators will be the ones most
frequently used for robotics applications. Figure 10
illustrates the use of the position interpolator as Little Blue
moves from one point to another in the hallway. Figure 11
illustrates the use of the orientation interpolator as Little
Blue turns to enter a room.

Figure 11. Little Blue turns to enter a room.

The biggest problem is that the position and orientation
interpolators are separate in VRML, so the changes in the
interpolators must be synchronized in order for the desired
motions to occur in the right order. Essentially, this means
each entry in one interpolator must have a corresponding
entry in the other interpolator, even if there is no change in
the value of the other interpolator. This isn’t really as big a
problem as it sounds, since many robotics libraries use
separate position and orientation commands, so the VRML
mechanism is actually very similar. The animation
interpolators appear to offer promise for on-line execution

38

of navigation algorithms using Java applets and the VRML
Script node, which allows for execution of external
programs from within the VRML world.

The script node in VRML is the capability with the
greatest promise for creating a general purpose web-based
mobile robot simulator, but it is also the capability that has
proven to be the most difficult to get working. The biggest
problem is trying to get the applet output into the format
required by VRML. Another problem is the issue of
control - should the Java applet be embedded in the
VRML file as a script node or should the Java applet be
run outside of the VRML world and display the VRML
world when appropriate? I haven’t determined the answer
to this question yet, but the answer is key to creating the
type of robot simulator I envision.

What Next?

There are a number of capabilities of VRML that I have
not yet exploited in building web-based mobile robot
simulations. I intend to continue extending the capabilities
of these simulation tools as a part of my research into robot
swarms for planetary exploration at Utah State University.
This mobile robot simulator will play a key role in the
simulation phase of my current research

Specifically, some of the potential enhancements being
worked on now will provide the user of the simulation with
the following capabilities:
¯ Use the mouse to select the start and goal locations;
¯ Navigate through a more realistic environment, with

obstacles that are recognizable (not just geometric
shapes) and possibly varying sensor effects based on the
obstacle shape and material;

¯ Select the navigation algorithm to be used from a list of
Java applets;

¯ Select the type of robot simulated, with the appropriate
motion model for the drive configuration; and

¯ Select or create the environment to be navigated through
while on-line.

As enhancements become available, they will be posted on
the Utah State University web server at http://
www.usu.edu/~afrotc/cadre/HTML/stormont/vrml.html.
Any of the simulations may be downloaded, used, and
modified freely. I would also strongly recommend the
VRML 2.0 Sourcebook by Ames, Nadeau, and Moreland
as a good reference book when working with VRML. This
book was published by John Wiley and Sons in 1997.

39

