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Abstract

In this paper we report our research on building
Yarrow - an intelligent web meta-search engine. The
predominant feature of Yarrow is that in contrast to
the lack of adaptive learning features in existing meta-
search engines, Yarrow is equipped with a practically
efficient on-line learning algorithm so that it is capa-
ble of helping the user to search for the desired doc-
uments with as little feedback as possible. Currently,
Yarrow can query eight of the most popular search
engines and is able to perform document parsing and
indexing, and learning in real-time on client side. Its
architecture and performance are also discussed.

1. Introduction
As the world wide web evolves and grows so rapidly,
web search, an interface between the human users and
the vast information gold mine of the web, is becom-
ing a necessary part of people’s daily life. Designing
and implementing practically effective web search tools
is a challenging task. It calls for innovative meth-
ods and strategies from many fields including machine
learning. One promising direction is the building of
intelligent meta-search engines on top of the existing
general-purpose search engines that have been proved
in practice to be very effective and useful in help-
ing the users to search for their desired information.
People behind those existing popular search engines
may not like meta-search process because of their own
commercial interests. However, meta-search process is
an unavoidable trend, because it represents a higher
level in the information food chain. There are some
interesting discussions in (Selberg & Etzioni 1995;
1997) about the impact of meta-search engines on
general-purpose search engines.

There have been a number of popular and success-
ful meta-search engines such as Dogpile [2], Inference
Find [4], and MetaCrawler [10]. The common proper-
ties of those meta-search engines are as follows. Each
[h] of the meta-search engines has a single unified in-

terface for the user to enter her query. When the user
starts a search process by entering a query, it sends the
query to one or to a collection of the general-purpose
search engines in parallel to retrieve the top matched
relevant documents. Some of the meta~search engines
(for example, MetaCrawler [10]) collate, filter, and sort
the retrieved documents into a single list. Some (for
example, Inference Find [4]) cluster the retrieved doc-
uments from the general-purpose search engines and
have customizable features that allow the user to cus-
tomize a list of parameters to enhance the filtering and
ranking performance. But as far as the authors un-
derstand, none of those existing meta-search engines
support adaptive learning from the user’s feedback.

Meta-search engines may be classified into two cat-
egories: shallow meta-seareh engines and deep meta-
search engines. A shallow meta-search engine sim-
ply echoes the search result of one or several general-
purpose search engines. There may be some collat-
ing, filtering, or sorting processes, but such efforts are
very limited. A deep meta~search engine will use the
search results of the general-purpose search engines
as its starting search space, from which it will adap-
tively learn from the user’s feedback to boost and en-
hance the search performance and the relevance ac-
curacy of the general-purpose search engines. It may
use clustering, filtering, and other methods to help
its adaptive learning process. From the engineering
point of view, a meta~search engine is usually light-
weighted and does not require a large database, nor
a large amount of memory. It should and is able to
emphasize the intelligent processing of the search re-
sults returned by general-purpose search engines. Re-
cent research on web communities (Kleinberg 1999;
Gibson, Kleinberg, & Raghavan 1998; Chakrabarti
et al. 1998) has used a short list of hits returned
by a search engine as a starting set for further ex-
pansion. There have been great efforts on apply-
ing machine learning on web search related applica-
tions, for example, scientific article locating and user
profiling (BoUacker, Lawrence, & Giles 1998; 1999;
Lawrence, Bollacker, & Giles 1999), and focused crawl-
ing (Rennie & McCallum 1999).
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Yarrow is our first step toward building an intel-
ligent deep meta-search engine. Currently, Yarrow
can query eight of the most popular general-purpose
search engines and is able to perform document pars-
ing and indexing, and learning in real-time on client
side. The predominant feature of Yarrow is that in
contrast to the lack of adaptive learning features in
existing meta-search engines, Yarrow is equipped with
an on-line learning algorithm TW2 so that it is capa-
ble of helping the user to search for the desired doc-
uments with as little feedback as possible. We de-
signed in (Chen 2000b) the learning algorithm TW2,
a tailored version of Winnow2 (Littlestone 1988) 
the case of web search. When used to learn a dis-
junction of at most k relevant attributes, TW2 has
surprisingly small mistake bounds that are indepen-
dent of the dimensionality of the indexing attributes.
TW2 has been successfully used as part of the learning
components in our other projects (Chen et al. 2000b;
2000a).

2. Web Search vs. On-line Learning
As we have investigated in (Chen 2000b; Chen, Meng,
& Fowler 1999; Chen et al. 2000b), intelligent web
search can be modeled as an adaptive learning pro-
cess such as on-line learning (Angluin 1987; Littlestone
1988), where the search engine acts as a learner and the
user as a teacher. The user sends a query to the en-
gine, and the engine uses the query to search the index
database and returns a list of urls that are ranked ac-
cording to a ranking function. Then the user provides
the engine relevance feedback, and the engine uses the
feedback to improve its next search and returns a re-
fined list of urls. The learning (or search) process ends
when the engine finds the desired documents for the
user. Conceptually a query entered by the user can
be understood as the logical expression of the collec-
tion of the documents wanted by the user. A list of
urls returned by the engine can be interpreted as an
approximation to the collection of the desired docu-
ments.

One must realize that in the case of web search the
user in general has no patience to try more than a cou-
ple of dozens of interactions for a search process, nor
to wait for a dozen of minutes for the engine to return
the search results. One must also realize that the di-
mensionality of the web document indexing attributes
is extremely high (usually, a huge vocabulary of key-
words is used as indexing attributes). In such reality
of web search, few well-established machine learning
algorithms are applicable to web search.

The Rocchio’s similarity-based relevance feedback,
the most popular query formation method in in-
formation retrieval (J.J. Rocchio 1971; Salton 1989;
Baeza-Yates & Riberiro-Neto 1999), is in essence an
adaptive learning process from examples. We proved
in (Chen & Zhu 2000) that for any of the four typ-
ical similarity measurements (inner product, cosine

coefficient, dice coefficient, and Jaccard coefficient)
(Salton 1989), the learning algorithm from relevance
feedback has a linear lower bound in the dimensional-
ity of Boolean vector space. In the discretized vector
space {0,..., M - 1}n, the lower bound of the rele-
vance feeback algorithm for any of the above four sim-
ilarity measurements is f~(Mn) (Chen 2000a). Our
lower bounds hold for arbitrary zero-one initial query
vectors, and for arbitrary threshold and updating coef-
ficients used at each step of the learning process. Our
lower bounds imply that in contrast to various suc-
cessful applications, at least in theory the Rocchio’s
similarity-based relevance feedback algorithm is not a
good choice for web search.

We use the vector space model (Salton, Wong, 
Yang 1975; Salton 1989; Baeza-Yates & Riberiro-Neto
1999) to represent documents. We introduce TW2, 
tailored version of Winnow2, to exploit the particular
nature of web search. In contrast to the fact that Win-
now2 sets all initial weights to 1, TW2 sets all initial
weights to 0 and has a different promotion process ac-
cordingly. The rationale behind setting all the initial
weights to 0 is not as simple as it looks. The moti-
vation is to focus attention on the propagation of the
influence of the relevant documents, and use irrelevant
documents to adjust the focused search space. More-
over, this approach is realistic because existing effective
document ranking mechanisms can be coupled with the
learning process as discussed in next section.

Algorithm TW2 (The tailored Winnow2). TW2
maintains non-negative real-valued weights wl , . . . , wn
for attributes attl,..., attn, respectively. It also main-
tains a real threshold O. Initially, all weights have
value O. Let a > 1 be the promotion and demo-
tion factor. TW2 classifies documents whose vectors
x = (xl, Xn) satisfy > 0 as"’" ’ Ei=I Wi’Ti relevant,
and all others as irrelevant. If the user provides a doc-
ument that contradicts to the classification of TW2,
then we say that TW2 makes a mistake. Let Wi,b and
w~,a denote the weight wi before the current update and
after, respectively. When the user responds with a doc-
ument which contradicts to the current classification,
TW2 updates the weights in the following two ways:

¯ Promotion: For a document judged by the user
as relevant with vector x = (xx,...,xn), for i 
1,..., n, set

Wi,a ~-- IWi,b, if Xi = O,
~, if Xi = 1 and Wi,b = O,
OtWi,b, if Xi = 1 and Wi,b ~ O.

¯ Demotion: For a document judged by the user as
irrelevant with vector x = (Xl,...,xn), for i =

Wilb
1, . . . , n, set wi,a = a "

Let A denote the total number of distinct indexing
attributes of all the relevant documents that are judged
by the user during the learning process. Four mistake
bounds are obtained for TW2 and their formal proofs

13



User

1
Ranker

:[( Interface
1

i °i,pl,,or

f 1
UAVMetaSe~c"e_.~ ... I Yl-IMetaSearche~J

¢

Figure 1: Architecture of WebSail

can be found in (Chen 2000b; Chen et al. 2000b). For
example, to learn a collection of documents represented
by a disjunction of at most k relevant attributes over
the n-dimensional boolean space, TW2 makes at most

cz2A
+ (a + 1)klna 0 - a mistakes.

3. The Yarrow

3.1. The Architecture of Yarrow and How
It Works

Yarrow is a multi-threaded program coded in C++. Its
architecture is shown in Figure 1. It runs on an Ultra 1
Sun Workstation and does not require a large database
or a large amount of memory. For each search pro-
cess it creates a thread and destroys the thread when
the search process ends. Because of its light-weighted
size it can be easily converted or ported to run in
different environments or platforms. The QueryCon-
structor, MetaSearchers, DocumentParser, and Docu-
mentIndexer are designed in such a way that they can
be scaled to meta-search other popular general-purpose
search engines, and can be expanded with new features
added to it.

The predominant feature of Yarrow, compared with
existing meta-search engines, is the fact that it learns
from the user’s feedback in real-time on the client side.
The learning algorithm TW2 used in Yarrow has a
proved surprisingly small mistake bound (Chen 2000b;
Chen et al. 2000b). Yarrow may be well used as 
plug-in component for web browsers on the client side.

Yarrow has an interface as shown in Figure 2. Us-
ing this interface, the user can enter her query, specify
the number of urls she wants to be returned, and se-
lect one of the eight popular general-purpose search
engines to perform the initial search. Having entered
her query information, she then clicks the search but-
ton to start Yarrow. Once started, Yarrow invokes its
Query/Feedback Parser to parse the query information
or the feedback information out from the interface.
Then, the Dispatcher of Yarrow decides whether the
current task is an initial search process or a learning

process. If it is an initial search process, then the Dis-
patcher calls the QueryConstructor to formulate the
query to fit the specific format of the target search en-
gine, and send the formulated query and the number
of urls wanted to the related MetaSearcher to get a
list of the most relevant documents from the general-
purpose search engine. After this, Yarrow calls its Doc-
umentParser and DocumentIndexer to parse the re-
ceived documents, to collate them and to index them
with at most 64 indexing attributes. The set of the
indexing attributes are automatically extracted from
the retrieved documents. The attribute-vector repre-
sentations for all the received documents are also con-
structed at this point. Yarrow finally presents the top
R and the bottom R of the collated list of the retrieved
documents to the user for her to judge the relevance
of the documents. Usually, Yarrow sets R to 10. The
format of presenting the top R and the bottom R doc-
uments is shown in Figure 3. In this case, each doc-
ument url is proceeded by two radio buttons for the
user to indicate whether the document is relevant or
not1. The urls are clickable for viewing the actual doc-
uments so that the user can make her judgment more
accurately. After the user clicks a few radio buttons
for selection of relevant and irrelevant documents, she
can click the FeedBack button to submit the feedback
to Yarrow, or click the ShowAll button to view all the
document urls, or enter a new query to start a new
search process.

If the current task is a learning process from the
user’s relevance feedback, The Dispatcher sends the
relevance feedback information to the learning algo-

1The search process shown in Figures 3 and 4 was per-
formed on March 1, 2000. The query word is "UTPA"
and the desired web documents are those related to "the
University of Texas - Pan American". The selected general-
purpose search engine is Northern Light. After 2 interac-
tions and 5 relevant and irrelevant documents judged by
the user as feedback, all the UTPA related web documents
among the initial 50 matched documents were moved to the
top 10 positions.



Figure 2: Interface of Yarrow

rithm TW2. "TW2 uses the relevant and irrelevant
documents judged by the user as positive and nega-
tive examples to promote and demote the weight vec-
tor, respectively. TW2 also does individual document
promotion or demotion for those judged documents.
Once TW2 finishes its updating process, Yarrow then
calls its Ranker to re-rank all the documents and later
presents the top R and the bottom R to the user for
the next step of learning.

3.2. Document Ranking and Equivalence
Query Simulation
Since in reality the user cannot be modeled as a teacher
as on-line learning does (Angluin 1987; Littlestone
1988), the learning algorithm TW2 must be used with
help of document ranking and equivalence query sim-
ulation.

Let w = (wl,... ,Wn) be the weight vector of TW2.
Let g be a ranking function independent of TW2. We
define the ranking function f for TW2 as follows: For
any web document d with vector Xd = (Xl,... ,xn),

f(d) = "/d[g(d) +/~d] + ~ WiXi.
i=l

g remains constant for each document d during the
learning process of TW2. Various strategies can be
used to define g, for example, PageRank (Brin & Page
1998). The two additional tuning parameters are used
to do individual document promotions or demotions
of the documents that have been judged by the user
as feedback during the learning process of TW2. The
motivation for individual document promotions or de-
motions is that when the status of a document is clear
as judged by the user, it should be placed closer to the
top than the rank supported by the weighted sum of
TW2 if it is relevant, or placed closer to the bottom
otherwise. Initially, let/~d --> 0 and ’Td = 1. ’~d and/~d
can be updated in the similar fashion as wi is updated
by TW2.

Yarrow uses the ranking function ] to rank the doc-
uments classified by TW2 and returns the top R rel-

evant documents and the bottom R irrelevant to the
user. The top R and the bottom R documents together
represent an approximation to the hypothesis made by
TW2. The user can examine these two short lists. If
she feels satisfactory with the result then she can say
"yes" to end the search process. If she finds that some
documents in the lists are misclassified, then she can
indicate those to TW2 as relevance feedback. Because
normally the user is only interested in the top 10 to 50
ranked documents, R can be tuned between 10 and 50.
An alternative way for selecting, the bottom R docu-
ments is to randomly select R documents among those
classified as irrelevant by the learning algorithm.

3.3. The Performance

The actual performance of Yarrow is very impressive
and promising. We have made Yarrow public. Inter-
ested readers can access it via the url given at the end
of the paper and can check its performance by them-
selves. Currently, we have been conducting formal per-
formance evaluations and will report the statistics in
the full version of this paper soon. What we can say at
this point is that for each search process, very satisfac-
tory result can be achieved with about 5 interactions
and about 17 documents judged as relevance feedback.
For document indexing, in average a collection of about
700 attributes are automatically extracted and each re-
trieved document is indexed with at most 64 attributes
from the collection.

4. Yarrow and the Popular Meta-search

Engines

We now compare Yarrow with the following three of
the most popular and successful meta-search engines,
Dogpile [2], Inference Find [4], and MetaCrawler [10]2.

Dogpile [2]. It queries the following general-
purpose search engines or services: About.corn, Al-
taVista, Deja News, Direct Hit, Dogpile Open Direc-

2We collected the features of the three meta-search en-
gines on February 29, 2000.
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Figure 3: Initial Query Result for "UTPA"

tory, Dogpile Web Catalog, Google, GoTo.com, In-
foseek, Infoseek News Wires, Looksmart, Lycos, Real
Names, Thurderstone, Yahoo!, and Yahoo News Head-
lines. It performs parallel queries to those search ser-
vices, but also allows the user to customize her search
to one specific engine. It does not sort, collate, nor
cluster the lists of hits returned by each search service.
It has no adaptive learning features from the user’s
feedback.

Inference Find [4]. It queries the following general-
purpose search services: AltaVista, Excite, Infoseek,
Lycos, WebCrawler, and Yahoo!. It performs parallel
queries to those search services, but does not allow the
user to customize her search. It sorts and clusters the
lists of hits returned by the search services. It has no
adaptive learning features from the user’s feedback.

MetaCrawler [10]. It queries the following general-
purpose search services: About.corn, AltaVista, Ex-
cite, Infoseek, Looksmart, Lycos, Thunderstone, We-
bCrawler, and Yahoo! It performs parallel queries to
those search services, and also allow the user to cus-
tomize her search to one specific engine. It collates
and sorts the lists of hits returned by the search ser-
vices. It normalizes the confidence scores used by each
of the service, sums the scores and rank them from 1
to 1000. It has no adaptive learning features from the
user’s feedback.

Yarrow [14]. It queries the following general-
purpose search services: AltaVista, Excite, GoTo, Hot-
Bot, Infoseek, Lycos, Northern Light, and Yahoo!. It
does not support parallel queries at this point, but al-
lows the user to specify her favorite search service. Its
most important feature is its real-time adaptive learn-
ing ability from the user’s feedback.

5. Concluding Remarks
The authors believe that deep meta-search should be
the ultimate goal of meta-search, that is, a meta-search
engine or service should use the retrieved lists of hits
from one or a collection of general-purpose search en-
gines or services as its starting search space, from

which it should adaptively learns from the user’s feed-
back to boost and enhance the search performance and
accuracy of the general-purpose search services. From
the engineering point of view, deep meta-search is pos-
sible, because a meta-search engine is usually light-
weighted and does not require a large database nor a
large amount of memory. As the first step to achieve
our goal of deep meta-search, we implemented Yarrow
during the winter break of the 1999-2000 academic
year. Yarrow is powered by an efficient learning algo-
rithm and is also equipped with functions of document
parsing and indexing. It adaptively learns from the
user’s feedback to search for the desired documents.
Yarrow is still in its initial stage and needs to be im-
proved and enhanced in many aspects. For example,
we need to improve its thread management. The cur-
rent version is easy to crash when too many threads
competing for the limited memory resources.

URL References:

[1] AltaVista: www.altavista.com.
[2] Dogpile: www.dogpile.com.
[3] Excite: www.excite.com.
[4] Inference Find: www.infind.com.
[5] Infoseek: www.infoseek.com.
[6] Google: www.google.com.
[7] GoTo: www.goto.com.
[8] HotBot: www.hotbot.com.
[9] Lycos: www.lycos.com.
[10]MetaCrawler: www.metacrawler.com.
[11]Northern Light: www.northernlight.com.
[12] WebSail:
www.cs.panam.edu/chen/WebSearch/WebSall.html.
[13] Yahoo!: www.yahoo.com.
[14] Yarrow:
www.cs.panam.edu/chen/WebSearch/Yarrow.html.
[15] Features:
www.cs.panam.edu/chen/WebSearch/Features.html.
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Figure 4: Refined Result for "UTPA" after 2 Interactions and 5 Examples
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