
Collaborative Re-Ranking of Search Results

Boris Chidlovskii, Natalie S. Glance and M. Antonietta Grasso

Xerox Research Centre Europe
6 chemin de Maupertuis
38240 Meylan, France

{chidlovskii | glance | grasso}@xrce.xerox.com

Abstract
In this paper we present a system architecture for coupling
user and community profiling to the information search
process. The search process and the ranking of relevant
documents are accomplished within the context of a
particular user or community point of view. The user and
community profiles are built by analyzing document
collections put together by the users and by the communities
to which the users belong. Such profiles are used for ranking
the documents retrieved during the search process. In
addition, if the search results are (implicitly or explicitly)
considered as relevant to the user or community, the
user/community profiles can be tuned by re-weighting the
profile terms.
Both recommender systems and meta-search engines can be
enhanced using this kind of collaborative environment for
ranking the search results and re-weighting the user and
community profiles.

Introduction

In information retrieval, one principal problem is how to
rank the results returned by a search engine or a
combination of search engines. For individual search
engines, there are many techniques for ranking results,
ranging from counting the frequency of appearance of
terms in the search query to calculating vector similarities
between the term vector and the document vectors.
In a networked environment like the World-Wide Web,
meta-search engines access different and often
heterogeneous search engines and face the additional
difficulty of combining the ranking information returned by
engines. As many search engines hide the mechanism used
for the document ranking, the problem of merging the
results becomes even more difficult [1]. In addition, these
kinds of approaches suffer from ignoring or knowing
nothing about the user conducting the search, nor the
context of the search.
Relevance feedback is one approach that elicits information
about the user and his/her search context [2]. Based on
user feedback, relevance feedback techniques re-rank the
search results by re-calculating the relative importance of
keywords in the query. While powerful from a technical

AAAI-2000 Workshop on AI for Web Search

point of view, relevance feedback approaches suffer from
user interface issues: the relevance information required is
difficult to successfully elicit from users during the search
process.
In this paper, we propose to couple user and community
profiling with the search process. Instead of being an
isolated event, the search process is accomplished within
the context of a particular user, community or point of
view. The user and community profiles are built by
analyzing document collections put together by the users
and the communities to which the users belong. These
document collections can take any (or a combination) of
several forms: e.g., recommender system document
collections, document management system document
collections, personal bookmarks and/or file system
document collections.
In the next section, we describe an architecture and system
in support of community-based relevance feedback, the
interfaces to already existing components that are required,
and the details of the novel components, namely the search
pre- and post-processor, and the user and community
profilers. This system is currently under implementation.

System and Architecture

The basic elements of an architecture in support of
community-based relevance feedback are:
• one or many document collections with associated user,

community/group, and possibly rating attributes;
• one or many search engines or meta-search engines;
• a user profiler;
• a community profiler;
• a community manager;

• a search pre-processor for establishing the context of the
search; and

• a search post-processor for ranking the combined set of
returned results.

In addition, there may be wrappers that allow the profilers
to extract document content (or document reference, such
as URL), user, community and rating information from the
document collections as well as wrappers that allow the
search pre-processor to submit queries to (meta-)search
engines and the search post-processor to extract the results.

From: AAAI Technical Report WS-00-01. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Document collection
The document collection(s) can be
of several types: documents
residing in document management
systems, file systems, or
referenced by recommender
systems. In all of these cases, the
document collections provide an
implicit way of associating
content with users and potentially
with communities of users. The
most useful document collections
in the context of this approach are
those provided by community
recommender systems [3,4] which
attach user ids, community
categorizations, and user ratings to
documents. This allows the most
sophisticated forms of the user
and community profiling
techniques described below.
Ideally, a community-based
relevance feedback system based on
the architecture described would
include a recommender system as one of its document
collections, if not as the principal one. However, it is still
possible to build the system without one, although the
notion of community is admittedly likely to become fairly
weak.
The document collection may possibly provide an API
allowing the profilers to query for all documents submitted
and/or reviewed by a user (possibly associated with a
community). If such an API is not provided, then a
wrapper is required that is able to extract the information.
Using this kind of meta-data, the profilers can construct and
incrementally update user and community profiles from the
set of documents relevant to a user and in the context of the
community. In the case of standard document collections
(file systems, document management systems), we assume
that any document filed by a user is relevant. In the case of
a recommender system, we assume that any document
submitted or reviewed by a user with an average or higher
rating is relevant.
(Relevance and quality are differentiated in a community
recommender system. Relevance is a measure of pertinence
for the community; quality is a measure of value to the
community. Within the context of collaborative re-ranking,
we convolve these two properties of documents. Well-
rated documents do not receive a good rating generally
unless they are at least relevant – thus we assume they are
relevant and the higher the rating, the stronger the
relevance. Poorly-rated documents, on the other hand, may
be either judged as irrelevant to the community or of poor

quality and as such are poor candidates for accurately
providing negative relevance feedback.)

Search engine(s)
The search engine may or may not provide an API for
submitting a search and retrieving results. If there is no
API, a wrapper will need to built. The problem of query
translation across multiple, heterogenous search engines
and databases and the extraction of the search results is
well-understood [5].
Note that the search engines do not necessarily cover the
documents in the system’s document collections!
(Although serendipitous overlap is always possible.)

Search pre-processor
The search pre-processor is required to obtain the context
of the user’s search: the user’s identity, the community or
set of communities appropriate to the search, and possibly
the point of view the user wishes to adopt for the search
(another user -- for example, a domain expert).
The context can be retrieved either explicitly, by asking the
user to identify him/herself and select the appropriate
community or communities and/or point of view.
Alternatively, it could be deduced automatically by
matching the query with the query memory associated with
a community (if selected) or the collection of people using
the system.

Community Community
profiler

User profiler

Search pre-processor

Search post-processor

Community
Document collection

User

Search engines
community
manager

Meta-search engine

query

ranked
docu
ments

Figure 1 An architecture for community-based relevance feedback.

User profiler
The user profiler constructs a term-weight vector for each
user, extracted from the set of documents submitted and/or
reviewed into each of the document collections to which
the user participates. One difficulty is matching a user
across several document collections. Currently, the only
feasible way to do this is to ask the user to provide his/her
identifier (and potentially password!) for each of these
document collections. If the user withholds some of this
information, then his/her profile will be less complete (but
not necessarily worse – perhaps some document collections
will be judged by the user as more suitable for providing an
accurate profile). This problem disappears if we consider
only one document collection in the system – for example,
the one provided by the community recommender system.
The term-weight vector is calculated in a standard way,

although various linguistic-based enhancements are

possible and suggested below. For the user u, the vector

contains the set of terms { it } with their weights u
iw . If the

term-weight vector is at least in part calculated from

documents that have been evaluated (implicitly or

explicitly rated) in some way by the user, then the ratings

given to the documents can be used to bias the term-weight

vector.
The user profiler could also calculate the profile of the user
in the context of a community or a specific domain or
domains. In this case, the user profiler would take into
account only those documents submitted or reviewed by a
user and classified (either by the user or automatically) into
the domain. An added difficulty in this case is matching
communities/domains across document collections. Again,
if the document collection is a recommender system, the
difficulty disappears.
The user profiler provides an API that returns a term-
weight vector in response to a user identification and
(optionally) a community/domain identifier.

Community profiler
The community profiler constructs a term-weight vector for
each community, extracted from the set of documents
classified into a community within each of the document
collections.
The term-weight vector for the community is determined in
a way analogous to that employed for users. The

community vector contains the set of terms { it } with

weights C
iw . The weight of each term is calculated from

the weights u
iw of the community members (users). As

contributions of the members are often much different, the
community profile can be biased to weigh more heavily the
contribution of “experts” in the community. Experts are
those community members whose recommendations are
mostly frequently followed by the whole community.

Formally, each member u in the community is assigned
with weight α u ; experts have the highest weights α u and

α uu∑ = 1 over the community. (These weights must be

re-normalized whenever someone enters or leaves the
community.) Then, the weight of term ti in the

community profile is evaluated as u
iu u

C
i ww ∑= α ,

where wi
u is the weight of ti in the profile of user u.

Beyond the community and personal profile, the user can
request for the profile of the community expert(s), which

contains weight exp
iw for each profile term it .

The community profiler provides an API method that
returns a term-weight vector in response to a community
identifier.

Community manager
One principal difficulty is matching community definitions
across document collections and maintaining a coherent list
of communities and users participating in those
communities. If a community recommender system exists
as a component of the collaborative re-ranking system, then
its list of communities will most likely be adopted for the
community relevance feedback system as a whole.
Potentially, the administrator of the system could be
responsible for matching groups or collections in other
document collections with the community list. The task of
constructing such a list from scratch would fall to the
administrator in the absence of such a list. It is also
possible to devise automatic ways to do the matching,
although this would reduce the accuracy of the community
profiles.
It is possible that the way in which the community list is
constructed and matched across collections will result in a
community profile that is entirely determined from the data
in the community recommender system, if such exists, or
from another document collection with a notion of
community.
Note that the system can still function in the absence of
community profiles. It is still interesting to take into
account the user’s context, even in the absence of
community, although it will be harder to deal with new
users.

Search post-processor
The search post-processor takes as input the list of search
results returned by the search engines. It has two ways to
evaluate the relative rank of documents. One is by
matching the document or its pointer (e.g., URL) to one
already existing in one of the document collections. For
example, if the document has been rated by a community
recommender system connected to the system within the
appropriate community context, then this rating is given a
high weight in determining the relative rank of the result.

The second way to evaluate the relative rank of documents
is by using the profile term-weight vectors as a source of
relevance feedback. Depending on the context (user,
community or expert), the appropriate profile is requested.
Then, for each document, the content of the documents is
retrieved, a term frequency vector is extracted, and the
standard relevance feedback technique is employed to
calculate the rank of the document. For each document d
in the response to query q, the document rating is evaluated
as follows (the adapted cosine function):

relevanceq d, =
d

t tq
prof

ttd

W

www∑ ×× ,,
,

where tdw , is the weight of term t in the response

document d, prof
tw is the weight of term t in the chosen

profile (user’s u
tw , community’s C

tw or expert’s exp
tw),

tqw , is the weight of the term t in the query q, and dW is

the vector length “projected” on the chosen profile and

evaluated as ∑=
t td

prof
td wwW 2

,)(. Note that

weights tdw , are evaluated from the responses only. As

responses contain often a brief description of original

documents, the weight tdw , may be quite different from

the term weights used by search engines storing the full
documents. Also, the relevance rating is biased by the

profile, through the terms prof
tw .

Re-weighting user profiles
If the user gives a positive feedback to the search result or
documents retrieved over the search process, the search
results can be included into the document collection like
any other recommendation. Moreover, the search result
can be used to modify the user profile by re-weighting term
weights. In such a case, the query terms and/or most
frequent terms in the response form the set Rel of relevant
terms. Using this set, we adopt the standard Rocchio
formula for the relevance feedback. The main difference
between our approach and standard relevance feedback is
that we do not take into account non-relevant terms as we
do not have a reliable way to extract this kind of
information from both document collections and search
results. As result of re-weighting, the relevant terms from
Rel have their weights increased in the user profile.
Finally, the change of user profiles, accumulated over time,
will trigger the update of the community profile and the
weights of community experts.

Discussion

Our proposed system for collaborative re-ranking of search
results provides two major advances on top of current
meta-search engines:
• the ability to rank results returned across search engines;
• the ability to take into account the user’s search context

through use of user, community or expert user profiles.
However, there are drawbacks to the approach we propose.
Namely, the time needed for result re-ranking may be
critical parameter. The search post-processor requires
textual content in order to evaluate the comparative
relevance of the returned items in the context of a given
user or community profile. This means downloading either
an abstract (if available) or the entire document. The entire
process could become very lengthy especially if the number
of documents returned by the query is large. A first step of
pre-filtering will be necessary in order to prune the list to a
manageable number. However, while the time cost is high,
it should be remembered that the time cost to the user of
evaluating the returned documents him/herself is even
higher, so in many cases users may be willing to turn
collaborative ranking on, return to other work at hand, and
await an alert indicating the collaborative ranking process
has terminated. As a further user incentive to use the
collaborative ranking feature, the items downloaded in the
process can be cached locally, so that subsequent browsing
by the user will be much less time-consuming.
Alternatively, “short” profiles can be used for evaluating
immediate yet approximate ratings.
Another issue is that document content comes in many
formats. In order to operate across as many formats as
possible, the search post-processor will need to be able to
connect to other modules that transform different content
formats into ASCII (when possible).
Finally, some documents will fall outside the system’s
ability to rank: the UI will need to distinguish these from
those that are ranked in a way salient to the user.

Related work

In the situation of explosive growth of the Web data,
gathering information on the Web becomes a more difficult
problem. The personalization of the users’ Web practice is
one of the key approaches to facilitate this task. It includes
two groups of methods, activity-based and content-based
ones.
The activity-based methods personalize a user's web
experience by joining personal activities with global
information to effectively tailor what the user does. Web
Browser Intelligence [6] personalizes the user practice done
by organizing agents on a user's workstation to observe user
actions and proactively offer assistance; it can annotate and
record pages viewed for later access.

Similarly, the information about user preferences can be
collected through cookies files in the Web [7]; these
preferences are reused later to rank information delivered
to the user.
Alternatively, search for Web documents can be
personalized also by observing the iterative process of
query preparation [8]. When a person has to formulate a
query in the context of such a large document collections as
the Web, this usually is an iterative process. By using
certain induction methods, [8] measures how the starting
query and the final result are related and, if it is justified,
can link them each to other.
The alternative to activity-based approaches are content-
based and collaborative methods used for personalized
information filtering and document recommendations.
These approaches are in part validated by the study
reported in [9] which found that using profiles
automatically created from documents ranked by the user
as relevant actually outperformed profiles hand-crafted by
users. Recommender systems, such as Fab and GroupLens,
act between users and information resources; they maintain
profiles of all users and operate in large document spaces.
GroupLens [10] applies the collaborative filtering to
NetNews, to help people find articles they will like in the
news stream. News reader clients display predicted scores
and make it easy for users to rate articles; ratings are
gathered and disseminated to predict scores based on the
heuristic that people who agreed in the past will probably
agree again. Fab [11] combines both content-based and
collaborative filtering systems. It maintains user profiles
based on content analysis and compares these profiles to
determine similar users for collaborative recommendation.
This approach is closest to what we propose in this paper,
with the principal difference being that our field of
application is search as opposed to WWW page discovery.

References

1. Gravano, L., Chang, C.-C.~K., Garcia-Molina, H. and
Paepcke, A.. STARTS : Stanford Proposal for Internet
Meta-Searching. In Proceedings ACM SIGMOD’97,
pp. 207-218, 1997.

2. Salton, G. and Buckley, Ch. Improving Retrieval
Performance by Relevance Feedback. In Readings in
Information Retrieval. Eds. K.S.Jones, P. Willett, San
Francisco: Morgan Kaufmann Publishers, 355-364,
1997.

3. Glance, N., Arregui, D. and Dardenne, M. Knowledge
Pump: Supporting the Flow and Use of Knowledge. In
Information Technology for Knowledge Management.
Eds. U. Borghoff and R. Pareschi, New York:
Springer-Verlag, 35-45, 1998.

4. Glance, N., Arregui, D. and Dardenne, M. Making
Recommender Systems Work for Organizations. In
Proceedings of PAAM’99 , London, UK, April 1999.

5. Chidlovskii, B., Borghoff, U. and Chevalier, P.-Y.
Boolean Query Translation for Brokerage on the Web,

In Proceedings EUROMEDIA'98 Conference,
Leicester, UK, January 1998.

6. Barrett, R., Maglio, P. & Kellem, D. How to Personalize
the Web, In Proceedings ACM CHI’97, 75-82, 1997.

7. Meng, X. and Chen, Z. Improve Web search accuracy
using personalized profiles.
URL:http://www.cs.panam.edu/~meng/unixhome/Rese
arch/DataMine/Writing/spects99.ps, 1999.

8. Chalmers M., Rodden, K. and Brodbeck, D. The order
of things: activity-centred information access,
Computer Networks and ISDN Systems, 30, 359-367,
1998.

9. Foltz, P.W. and Dumais, S.T. Personalized Information
Delivery: An Analysis of Information Filtering
Methods. Communications of the ACM, 35(12): 51-60,
1992.

10. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P.,
and Riedl, J. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews, Internal Research
Report, MIT Center for Coordination Science, March
1994. URL:http://www-sloan.mit.edu/ccs/1994wp.html

11. Balabanovic, M. and Shoham, Y. Fab: Combining
Content-Based and Collaborative Recommendation.
Communications of the ACM, 40(3): 66-72, 1997.

