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Abstract
This paper describes a new software agent, the community
search assistant, which recommends related searches to
users of search engines. The community search assistant
enables communities of users to search in a collaborative
fashion. All queries submitted by the community are stored
in the form of a graph.  Links are made between queries that
are found to be related.  Users can peruse the network of
related queries in an ordered way: following a path from a
first cousin, to a second cousin to a third cousin, etc. to a set
of search results.  The first key idea behind the use of query
graphs is that the determination of relatedness depends on
the documents returned by the queries, not on the actual
terms in the queries themselves. The second key idea is that
the construction of the query graph transforms single user
usage of information networks (e.g. search) into
collaborative usage:  all users can tap into the knowledge
base of queries submitted by others.

Introduction   

There are three main problems for users of Internet search
engines: (1) properly specifying their information need in
the form of a query; (2) finding items relevant to their
information need, as expressed by the query; and (3)
judging the quality of relevant items returned by the search
engine.
There has been a great deal of progress in the domain of
information retrieval towards addressing the latter two
problems. Internet search engines do a fairly good job at
discovering items relevant to a query, using primarily
statistical techniques to match WWW pages to queries.
More recent work has taken advantage of collaborative user
behavior, user ratings and/or document hyperlinks to
deduce the quality of a WWW page deemed relevant to a
given user’s query (e.g., Delgaldo, Ishii and Ura 1998;
Glance, Arregui, Dardenne 1999; Kleinberg 1998; Page
1997) .
The next step is to address users’ fundamental problem:
how to help them specify their information need accurately
and in such a way that the search engine can best answer
their need. A recent analysis of online searches in a library
setting has found that almost 50% of all failed searches are
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caused by semantic errors (Nordlie 1999).  The semantic
errors occurred either because the user failed to use the
appropriate terminology or because the user failed to
choose terms at the appropriate level of specificity for
his/her information need.
However, in an on-line environment, there is a high
probability that some person has formulated a good query
representation for any given information need in the recent
past. Traces of the search engine Excite1 reveal that 20-30%
of the queries are submitted more than once (Markatos
1999), not taking into account syntactic variants of the
same query (e.g., upper/lower case, misspellings, word
permutations).  This suggests that the collective knowledge
of online users, embodied as a set of search queries, can be
tapped to help individual users articulate their information
needs using the appropriate terminology.
As a concrete example, suppose that a user named Joanna
is searching for the WWW page of a conference on mobile
computing whose name she does not recall. She is a novice
in the area, and does not know whom to ask for help. She
types in mobile computing conference in her preferred
search engine and gets hundreds of responses.  Nothing in
the top 10 or even top 50 rings a bell, and she does not
know how to modify her query. Generalizing her search to
mobile computing does not help and neither do any of the
related searches suggested, for example, by AltaVista2

(such as wireless internet mobile computing and philips
mobile computing).
Someone else searching for the conference’s web site
might well remember its name (HUC’99, the International
Symposium on Handheld and Ubiquitous Computing).
Joanna is unlikely to find it using her query, since the
desired result is actually a symposium, not a conference
and the keywords are handheld computing not mobile
computing. But how can Joanna take advantage of the fact
that someone else has entered the query appropriate to her
information need, given that the terms in the queries have
zero overlap (mobile computing vs. HUC 1999)?
Although the two queries have no terms in common, a
relationship between the two can be induced from the
documents returned to them. For example, a criterion for
relatedness could be that of the top ten documents returned
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for each query, the two lists have at least one document in
common. It turns out that there is a path between these two
particular queries that consists of a sequence of related
queries. In the first section below, we will describe how to
construct a graph of all queries submitted to a search engine
within a given period of time. The first key idea is that the
determination of relatedness depends on the documents
returned by the queries, not on the actual terms in the
queries themselves.
The second key idea is that the construction of the query
graph transforms single user usage of the WWW (e.g.
search) into collaborative usage:  all users can tap into the
knowledge base of queries submitted by others. The
community search assistant provides the interface between
the query graph and the community of search users.  On the
one hand, the search assistant allows the user to peruse the
network of related queries in an ordered way: following a
path from a first cousin, to a second cousin to a third
cousin, etc. to a set of results.  On the other hand, the
search assistant records each new search query and updates
the query graph incrementally after each new search.
Going back to the Joanna’s information need: if she were to
use the community search assistant, she might find that
handheld computing conference is a first cousin to mobile
computing, among numerous others. (The exact related
queries returned will depend on what other users have
actually submitted.) Using Google1 as the reference search
engine, these two queries both return “Mobile and Context-
Aware Computing at UKC” in their top ten WWW pages,
and thus are connected to each other in the graph (as of July
1999).
If the term handheld rings a bell, Joanna might well follow
the graph in this direction. Next, she might be presented
with handheld computing as a first cousin to handheld
computing conference (thus, a second cousin to her original
query) because both queries have in common the WWW
page “Press Release - BidCom Brings Handheld
Computing to The Building Industry.” The Web page
Joanna is looking for is returned in the top ten documents
for this query. Alternatively, she might more rapidly find it
by perusing the next set of related queries (now third order
cousins to her original query), if some other user has been
kind enough to make the query HUC 1999.
The rest of the paper is organized as follows.  First, we
present the approach for constructing the query graph.
Next, we describe the community search assistant and
provide details of its implementation. Then, we present
results obtained from analyzing two different query graphs,
both constructed using the same initial set of queries, but
using two different search engines.  These results indicate
that the query graph properties are highly dependent on the
search engine used and also highlight the different
characteristics of the two search engines employed.
Finally, the paper closes with a section on related work and
a discussion of the broader utility of the community search
assistant.
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Query Graphs: Construction

Building an initial query graph requires access to a set of
queries made to a search engine or a set of search engines
over a period of time. The set of queries might come from a
user base as broad as that of the WWW or instead might be
limited to the user base within a company Intranet. In
principle, the advantage of broader user base is an
increased probability of overlap in information needs, for
any given information need. The advantage of a more
restricted user base is potentially tighter focus and less
noise.   For the purpose of demonstrating the community
assistant, we used a set of 55,000 unique queries obtained
over a 12 hour period of August 5, 1999 using MetaSpy2.
MetaSpy provides a real-time list of all queries to
MetaCrawler3, filtered to remove queries including sexual
terms.  We kept queries that had between 2 and 9 terms,
truncated to the first 100 characters.
Given the set of queries, we next constructed the initial
query graph with each node being a query. Two nodes are
connected whenever the queries were calculated to be
related. One measure of relatedness, for example, is the
number of items in common in the top N that are returned
by a reference search engine. (Note that the reference
search engine used to measure relatedness need not be the
same search engine as the one from which the set of user
queries was obtained.)
In building the query graph from the set of queries, we
defined two queries to be related whenever the two queries
returned at least one URL in common in the top 10.  We
also kept track of the number of URLs in common for any
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Start with a (possibly) filtered set of queries Q (e.g.
obtained using Metaspy).

(A) For each unique query q in Q, build & save list of
returned documents:

• Submit q to search engine
• Retrieve top N responses, save in list L(q)

(e.g. as URLs)
• Save q, L(q), date in database

(B) For each query q in Q, find & save list R(q) of
related queries:

• Find all queries q′  in Q such that the
intersection, I(q, q′), of L′(q′) and L(q) is
not empty

• For all such queries q′, add { q′, |I(q, q′)| }
to R(q)

• Save q, R(q), date in database

Figure 1 Query graph construction algorithm



two related queries.   Fig. 1 outlines the algorithm used for
building the graph.  The implementation was done using
shell scripts and gawk, with a MySQL1 database serving as
the backend for saving the query graph data. We built two
versions of the query graph, one using Google to determine
relatedness and one using AltaVista.  In a later section
analyzing our results, we will describe the differences in
the two query graphs obtained.
Here are some examples of related searches found in a set
of queries submitted to MetaCrawler:
• “Statue of Liberty” and “Ellis Island”
• “Quantum physics” and “copenhagen

interpretation”
• “to kill a mockingbird” and “harper lee”
• “frog eye salad” and “Columbian recipes”
• “martin Luther King” and “March on Washington,

1963”
• “Pyrenean Shepherd” and “Berger des Pyrenees”
• “tourism in Spain” and “Santa Marta”
Alternatively, a different measure for determining
relatedness can be used when constructing the query graph.
For example, two queries can be defined as related when at
least one pair of URLs overlaps (instead of matching
exactly), where the overlap exceeds some threshold.    A
second possibility is to match queries using other meta-
attributes of responses, such as title, summary, retrieved
content of document, summary of content of document, etc.
In addition, the relative rank of matching items could be
taken into account when determining the strength of
relatedness between two queries.

Community-Assisted Search

The community search assistant is an agent that maintains
the query graph and can be associated with any kind of
search engine that uses free text entry.  The agent works in
parallel with the search engine itself and returns a list of
related searches as HTML code, which the search engine
can include in addition to its traditional results list.
A screenshot illustrating how the community search
assistant works in conjunction with the AltaVista (AV)
search engine is shown in Figure 2 (for the purpose of
demonstrating the technology, we extracted the basic
search functionality of AV from its portal site).  From the
user’s perspective, the search engine returns a list of related
queries in addition to the list of items matching his/her
query.  The related queries are clickable links, causing the
new query to be submitted in turn to the community search
assistant.
In the background, when a user enters a query, two HTTP
requests are sent in parallel: one to the host search engine
(in this case, AV) and one to the reference search engine
(in this case, Google).  Both search engines return a list of
items matching the query.  The list of items returned by AV
is presented to the user; the list of items returned by the
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reference search engine is used to calculate the list of
related queries and to incrementally update the query graph
after each new user query.
Figure 3 shows the algorithm for processing a user query:
(1) incrementally updating the query graph; and (2)
presenting results to the user.
There are alternative ways to maintain the query graph.
For example, the update process might be invoked only for
new queries in order to speed up response time.  In this
case, the links for the query graph could be periodically
recalculated off-line, to prevent staleness and to best reflect
the current content on the network and its current usage (in
the form of queries). In practice, on-the-fly calculation of
the set of related queries for a given query is a cheap

Figure 2  Screenshot of the search assistant

Figure 3  Processing a user query

Submit q to reference search engine
• Retrieve top N responses and save as list L(q)
• Find all queries q′ saved in database such that

I(q, q′) is not empty
• For all queries q′, add { q′, |I(q, q′)| } to R(q)
• Save q, R(q), date in database

Presenting results to user:
• (Optional) Filter out queries that contain

certain keywords
• Return all or first M q′  to the user as related

searches, ordered by some heuristic (e.g.,
alphabetical, strength of relatedness)

• If user selects q′  in set of related searches,
repeat



calculation, on the order of 1 second for a query graph of
size 50,000 queries.  The calculation is less than linear in
time, thanks to the use of indices in the database.
The related searches presented to the user are ordered by
degree of relatedness (number of items in common),
highest relatedness first. Only the top 12 most related items
are presented.  After clicking on a related search, the user is
then presented with a set of relevant documents for the
related search, as well as a second set of related searches
(two hops away from the original query in the graph). In
this way, by clicking on a sequence of related searches, the
user can follow a path through the query graph. Currently,
the user can backtrack by using the “Back” button of the
browser or by clicking on the previous query, necessarily in
the related query list by symmetry.
The user interface to the search engine could be augmented
to provide a more convivial graphical user interface to the
query network, using, for example, a tree representation,
with the original query at its root. The tree representation
can be presented using a conventional tree viewer, or using
a more  sophisticated visualization such as the hyperbolic
browser1 (Lamping and Rao 1996). Alternatively, the user
interface could implement a graph viewer.

Query Graphs: Analysis

We constructed two query graphs from the same initial set
of queries, once using Google as the reference search
engine, once using AltaVista (AV).  The two resulting
query graphs had very different characteristics, as
summarized in Table 1.  First of all, the percentage of
queries having at least one neighbor (related query) was
much larger using Google: 66% vs. 38%. In addition, the
Google-generated graph had 3000 times as many links,
which translates into about 85 neighbors per query node
(ignoring isolates), on average, vs. 2.8 neighbors per query
node for the AV graph.

Table 1  Query graph comparison: Google vs. AltaVista

Reference search
engine

Google AltaVista

# queries 47,276 54,354
# queries in graph 31,314 (66%) 20,868 (38%)
# isolated queries 15,962 (34%) 33,486 (62%)
# links 1,075,617,393 320,880

# neighbors/query
(average)

85 related
queries per node

2.8 related queries
per node

# neighbors/query
(median)

4 related queries
per node

1 related query per
node

max # neighbors 2,187 65
cluster coefficient 0.72 0.58
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The median number of neighbors per node was 4 per node
for the Google graph and 1 per node for AV graph. The
clustering coefficient of the Google graph is also higher,
0.72 vs. 0.58.  The clustering coefficient indicates to what
extent nodes connected to a common node are also
connected to each other.  A perfectly clustered graph has a
clustering coefficient of 1.
Figures 4 and 5 show the probability density for the number
of neighbors per node for the Google graph and AV graph,
respectively.  Both distributions display long tails: a log-log
plot of the Google distribution is linear, while the log-log
plot for the AV distribution itself has a tail.  As indicated in
Fig. 4, there exist query nodes with over 1000 neighbors in
the Google query graph (up to 2187), while the AV graph
has nodes with only 60 or so (up to 65).
At first sight, the qualitative disparity between the two
query graphs is surprising.  However, we hypothesize that
the difference in methodologies employed by the two
search engine accounts for the disparity.
Google employs an algorithm that calculates the
importance of a page as a function of the web of hyperlinks
between pages.  Google uses a circular algorithm to

Figure 4  Probability density of # neighbors per query for
the Google query graph

Figure 5  Probability density of # neighbors per query for
the AltaVista query graph



calculate importance: a page has high importance if many
pages with high importance point to it (Page 1997).  Thus,
for any given query, hub sites (many out-links) and
authoritative sites (many in-links) matching the query will
be ranked higher. For its part, AltaVista indexes web pages
and uses an inverted index to retrieve URLs that match.
Pages that match more of the keywords more often are
ranked higher.  As a result, Google is more likely than AV
to return the same URLs to semantically related queries;
Google’s results are dependent not only on the keywords in
the query, but on the “importance” of the returned URLs.
AV, on the other hand, is very good at distinguishing
between closely related queries and returns results quite
specific to each.
Generalizing from these results, we hypothesize that any
search engine that takes into account the popularity or
importance of a site/page will likely yield a rich and
densely linked query graph.
 Also of interest is to understand why the Google graph
contains such large clusters.  Sifting through the queries
that have hundreds or more neighbors, we find that many of
these clusters contain queries with many everyday words
and no distinguishing key words.  For example, many of
the queries are song titles (e.g., “that thing you do”; “just
the two of us”).   Such queries return many of the most
densely linked-to URLs (e.g., Microsoft, Netscape, Yahoo)
which presumably also happen to contain the words in the
query.
One would assume that the community search assistant
would perform badly for these kinds of queries when using
Google as the reference search engine.  In fact, it works
much better than one would expect. The community search
assistant uses a simple heuristic to rank related queries: it
orders related queries by the count of URLs in common.
This technique works surprisingly well in finding queries
that are semantically related.  For example, about half of
the top 12 related queries for the two song title queries
above are also song titles.  In contrast, only one of the first
50 alphabetically ordered related searches is a song title.
The filtering mechanism works even though the additional
URLs in common typically have nothing to do with music.
Interestingly enough, the AV graph also contains spurious
clusters, in which the relations between queries appear to
be meaningless.  As is well-known, webmasters will at
times add invisible text to their pages containing long lists
of keywords. As a result, search engines that operate using
inverted indices retrieve these pages more frequently.  The
AV query graph contains large clusters all pointing to a
page apparently completely unrelated to the queries
themselves, except through this invisible component.  The
listing of such pages appears to be ephemeral: a
reconstruction of the query graph a week later did not
contain the same spurious clusters because AV no longer
returned the URL for those queries in the cluster.  Either
AV has mechanisms to recognize such ploys or the pages
themselves have short lifecycles.  Either way, new spurious
clusters appeared to replace the old ones that had
disappeared.

Note that in explaining the disparity in the two graphs, we
must also differentiate between findings that are likely to
hold as the number of queries used to construct the graph
increases and findings that will not hold.  We have not done
tests with larger sets, but results based on subsets of the
queries shed light on the stability of these results.
For example, the percentage of isolates is certainly
dependent on the number of queries used to construct the
graph.  Working from a subset, we find a much greater
percentage of isolates.  Likewise, the density of links
remains much greater for Google subgraphs than for AV
subgraphs.

Related Work

Recent work in the information retrieval community has
addressed collaborative search.  One approach has been to
use similar past queries to automatically expand new
queries, a kind of second order relevance feedback (i.e.,
documents that correspond well to similar queries provide
feedback on the original query as well) (Fitzpatrick and
Dent 1997; Brauen 71; Raghavan and Sever 1995).  The
measure of similarity between queries is a function of the
overlap in documents returned by the queries.  In all cases,
the documents are analyzed linguistically to produce term-
frequency vectors, which are then combined with query
term-frequency vectors to improve the search process. 
These augmentation procedures are very costly and
generally increase the cost of a search greatly.  As a result,
these methods are viewed critically by on-line search
systems (Fitzpatrick and Dent 1997).
In a similar vein, (Nichols, Twidale and Paice 1997)
propose to complement search results with data items from
other users’ search sessions that are similar to the session in
progress.  (Glance et. al. 1999) propose that search results
be re-ranked against a community profile, which is itself
incrementally constructed on the basis of relevance
feedback provided by its members over time.
Other research work has focused on collaborative
judgments on the quality of WWW pages.  For example,
Jon Kleinberg has used a graph theoretic approach to
identify authorative pages vs. hub pages (Kleinberg 1997). 
Similarly, Lada Adamic has discovered that the WWW is a
small world and suggests using the properties of small
world graphs to identify high quality WWW pages as well
as hub pages (Adamic 1999).  Both approaches mine the
web of hyperlinks, as does Google’s PageRank algorithm.
Recommender systems have also emerged as a way to
allow communities of people to collaboratively evaluate the
quality of WWW pages and other documents (Delgaldo,
Ishii and Ura 1998; Glance, Arregui and Dardenne 1999).
Search engines are beginning to incorporate simple
techniques for collaborative search.  DirectHit1 has built a
popularity engine, which operates using a very simple
voting mechanism.  Search engines that employ this
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popularity engine simply track the queries input by users
and the links that the users follow.  Users vote with their
mice: in the future, the same query will yield results whose
ordering takes into account previous users’ actions.  Thus
entering a query into a search engine that employs
DirectHit’s popularity engines will return the most popular
results for that query.  DirectHit also has a related search
technology that works by either broadening or narrowing
the user’s query (using a subset or superset, respectively, of
the user’s query terms).
SearchEngineWatch describes the related search features of
several major search engines (Sullivan 2000). For example,
AltaVista’s related search feature works by narrowing the
user’s query, using query expansion on the original query.
For the example query mobile computing, AltaVista
recommends related searches such as wireless internet
mobile computing and philips mobile computing.  Excite
suggests key words to add to the original query.  The key
words are terms appearing commonly in documents
returned to the original query.
AskJeeves1 is a search engine that allows users to enter
queries in the form of natural language questions.  In the
process of answering user queries, the search engine
matches user questions to one or more template questions. 
However, the technology used to do the matching appears
to be a mixture of linguistic techniques, e.g., parsing.  Also
of interest is that AskJeeves also allows people to “peek” at
other people's queries.

Discussion

In this paper, we have introduced the collaborative search
assistant, a software agent that collects queries from users,
incrementally constructs a query graph and interactively
recommends related queries.  The two main contributions
are: (1) the search assistant enables a form of collaborative
search by allowing users to tap into the collective history of
search queries; and (2) using a simple but effective
heuristic to identify related searches, the assistant can
recommend related queries that tend to be contextually
similar without performing costly linguistic analysis.
A secondary result presented in the paper reveals that the
effectiveness of the search assistant depends strongly on the
reference search engine used to construct the query graph.
In particular, our experiments show that the query graph
constructed using Google is orders of magnitudes more
densely linked than the one constructed using AltaVista.
The collaborative search assistant can be used to augment
any kind of search engine.  It is perhaps particularly useful
as an enhancement to a knowledge portal, providing a kind
of community search and community query memory.  In
addition, its use is not limited only to search over
networked documents, but can also augment, for example,
question-answer services.  In this case, the overlap in the
content of respective answers can be used to identify
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related questions.  Thus, this assistant can also be used to
augment “hot-line”/CRM (Customer Relationship Manage-
ment) applications on the WWW.
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