
The Hybrid Planning-Scheduling System in CIRCA-II

Ella M. Atkins
Department of Aerospace Engineering

University of Maryland
College Park, MD 20742

atkins@ eng.umd.edu

ABSTRACT

Autonomous operation in a dynamic
environment requires accurate and timely
response. A real-time control plan specifies
actions plus a resource schedule to guarantee
real-time constraints will be met during plan
execution. The Cooperative Intelligent Real-
time Control Architecture (CIRCA-II)
employs an integrated planning-scheduling
system to create and execute real-time control
plans. In this paper, we describe CIRCA-II
and its application to real-time domains.

Introduction

Autonomous behavior in complex real-world
systems requires accurate and timely reactions to
environmental events. These reactions must
prevent all catastrophic failures such as loss-of-
life and should ultimately achieve mission goals
such as arriving at a destination on time. Timely
and accurate responses for a complex domain may
require a significant amount of computational
resources, regardless of whether such responses
are pre-programmed or dynamically selected as
the agent acts within its environment. As
processor speed and algorithm efficiency increase,
it is tempting to presume that resource limitations
are not an issue because they can always be
combated with a bigger, faster system. However,
the exponentially-complex search-based planning
and scheduling algorithms typically utilized to
impart "intelligence" to a complex autonomous
system can quickly consume all such resources, as
can the storage and retrieval-time requirements for
reactions in strictly plan-execution systems.
Additionally, hardware upgrades are not easily
performed in unfriendly, resource-limiting
environments (e.g., space, underwater),

In this paper, we present our definition of a
real-time control plan and argue that such plans
are required to satisfy hard real-time execution
requirements in time-constrained environments.
The Cooperative Intelligent Real-time Control

Architecture (CIRCA) (Musliner, Durfee, and
Shin 1995) and, more recently, CIRCA-II (Atkins
1999) explicitly combine distinct planning and
scheduling algorithms into a single system in
order to produce hard real-time control plans that
achieve mission goals while providing absolute
safety guarantees in time constrained
environments. The state-space planner specifies a
set of actions required to guarantee safety and
achieve goals, then the distance-constrained real-
time scheduler places the safety-preserving action
subset in a cyclic schedule based on their worst-
case execution properties and planner-specified
separation constraints (e.g., deadlines). In this
paper, we overview the CIRCA-II architecture and
describe its combination of planning and
scheduling algorithms into a single system capable
of creating and executing real-time control plans.

Real-time Control Plans

Depending on research focus, the term plan
may refer to either a sequence of actions or else a
policy that applies to a group of world states. Due
to our veritable obsession with hard real-time plan
execution, our plans must include more than
constructs for matching actions to states. Figure 1
illustrates two of the most popular interpretations
of a plan. Figure la shows a STRIPS plan (Fikes
and Nilsson, 1987), a sequential action format
produced by many popular state-space and plan-
space systems. This specification is appropriate
when actions must be strictly executed in a
predefined sequence. The STRIPS plan structure
does not rely on active sensing during plan
execution, implying there can be no uncertainty
about when or in what order actions should
execute. Figure lb illustrates a policy
representation such as that generated by a
traditional Markov Decision Process (MDP)
(Boutilier, Dean, and Hanks, 1999). In this
model, there is uncertainty regarding the exact
progression of states that will be encountered, so
the set of current state features must be sensed and

From: AAAI Technical Report WS-00-02. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

a) STRIPS Plan. b) MDP Policy.

Figure 1: Traditional Plan Types.

Action n

a) "Minimized-Precondition" Policy.

~gqoltoqoqq,,qtt,t,q**oq,t,t,,tlt,oqq**otqqtQ0toooqoqto,t o**olott***q,,t***q,to,**

’ ’,...TAPI~ guaranteed% % "°%%°’%%°°

TAP6(,.’Test6./, ~ ".... °ga~¯ ,,.Le~lo-~, ..w/ i i

best-effort
TA--~

..,.......
¯ t

Cyclic TAP! TA_~TI~AP3 TAft2 TAPI TAP2 TAP4

Schedule:lI I--~1 I 16 I I I ! I I I I "[0 1 2 3 4 5 7 8 9 10 11 12 13 14 115 116

b) Hard-real-time Control Plan,

Figure 2: Evolution of the Real-time Control Plan.

matched to the correct action to execute next. As
a result, reaction times to environmental events
are a function of the total time required to identify
the current state, find the appropriate action, then
execute that action.

Because the progression of world states may
not be known during the advance planning stage, a
plan execution system may require state feature
sensing to select appropriate actions during plan
execution. However, dynamic and dangerous
environments also require that the complete sense-
act loop execute in hard real-time for failure-
avoidance purposes. To define our notion of real-
time control plan, consider an MDP policy as the

initial representation. Now, to increase efficiency
for matching the current world state to an action,
consider a new format in which the policy is post-
processed so that a set of general "preconditions",
not fully-instantiated states, is used to uniquely
match each reachable state to a policy action.
This "minimized precondition" policy
representation is shown in Figure 2a.

In a policy where the exact sequence of states
cannot be predicted, the "minimized-
preconditions" for executing each action must be
checked periodically, with each action executing
whenever its preconditions match. Otherwise, the
action may never execute in a state where it has

8

been planned. This plan structure suggests a loop
over the precondition-action pairs to identify and
execute the proper action for each state. A cycle
through the plan-loop will not execute
instantaneously, so each action’s preconditions
must be tested with sufficient frequency to
guarantee avoiding any failures that might occur
should action execution delay too long.

If all actions are required for failure-
avoidance and all actions have the same real-time
executiori deadlines for failure-avoidance, then the
best we could do is to cycle through the plan-loop
as-is. However, typically, only certain actions are
required for failure-avoidance while others are
used only for goal-achievement. We attach to
each action the worst-case timing requirements for
guaranteed failure-avoidance, and classify all
actions with specified worst-case timings as
"guaranteed" while all others are "best-effort", as
illustrated in Figure 2b. Now, if all guaranteed
actions have the same worst-case timing
requirements, we can execute the "plan-loop" over
all guaranteed actions, inserting best-effort actions
into slack time intervals when available.
However, in general, the guaranteed actions may
have a very diverse set of real-time requirements.
Thus, instead of looping over each action in the
guaranteed set, we may maximize our ability to
guarantee that all execute in time by explicitly
scheduling these actions in accordance with their
resource requirements and real-time deadlines.

Figure 2b includes a cyclic schedule that
specifies the "plan-loop" for the set of guaranteed
actions for this plan. We define a task as the
combination of the minimized-precondition
feature tests for the action as well as the action
itself. For guaranteed performance, this schedule
must be built assuming worst-case task resource
consumption, and must verify that all real-time
constraints for the associated action will be met
during execution. In CIRCA-II, we define a real-
time control plan as the Figure 2b combination of
a minimized-precondition task set and cyclic task
schedule that guarantees real-time failure-
avoidance during plan execution.

CIRCA-II Architecture

The Cooperative Intelligent Real-time Control
Architecture (CIRCA) (Musliner et al, 1995)
distinctly separates planning, scheduling, and
plan-execution processes such that plans are
developed, scheduled, then executed in hard real-
time when required for safety guarantees. Using
this approach, only the plan execution part of the
system must execute in strict accordance with

deadlines, thereby allowing the planner and
scheduler to reason about real-time rather than in
real-time. To build real-time plans, CIRCA’s
planner employs a time-dependent state transition
model and a representation for system "failure"
such that plans contain two classes actions:
"guaranteed" with hard deadlines for failure
avoidance, and "soft real-time" with best-effort
execution for goal achievement.

The original CIRCA architecture has evolved
into a second-generation system (CIRCA-II)
(Atkins 1999), illustrated in Figure 3. CIRCA-II
incorporates a probabilistic planning algorithm
along with a plan cache to facilitate hard real-time
response when a single real-time control plan is
incapable of guaranteeing safety in both probable
and unlikely situations. At the highest level, the
architecture is divided into a Planning Subsystem
and a Plan-Execution Subsystem. We have
partitioned CIRCA-II tasks such that the Planning
Subsystem includes all processes for which we
cannot easily define reasonable worst-case
execution properties. At best, CIRCA-II will be
able to complete Planning Subsystem operations
in coincidental real-time. Thus, we relegate the
majority of planning and scheduling operations to
occur offline before the system ever enters its
"dangerous" environment. Conversely, safety-
critical tasks in the Plan-Execution Subsystem
require hard real-time execution. This module
includes a Plan Executor that is responsible for
executing each single control plan in accordance
with real-time constraints, along with a Plan
Dispatcher that manages a Plan Cache used for
real-time response to unplanned-for situations
(Atkins et. al., 1997).

A primary objective of maintaining separate
planning and scheduling algorithms is to utilize
existing scheduling algorithms with minimal
modification. In particular, the planner should be
told whether or not the current plan is schedulable,
and if it isn’t, which task is judged to be the most
costly "bottleneck". If the plan is found
schedulable by the resource allocation analyzer
then its entire value is redeemed. However, if the
plan is unschedulable, the interface module points
out a "costly" task to use as a target to remove
during subsequent planner backtracking.

We require a common format for plan
transmission between planner and scheduler
modules. For each planned task Ti ~ Ttotat, where
Ztota l contains all tasks in the plan, the planner
outputs the triplet (gt, Pi, Vt) to the scheduler, gt is
the "guarantee flag" that indicates whether task Ti
is guaranteed (gi = 1) or best-effort (gt = 0). PI is
the maximum period of Ti required to guarantee

/ Planner / lnitialstate(s).subgoal(s),

/ Knowledge// I state transitions
/ Base /

J

i "/--~ r--’--i~ start/kill I ,~ ! plans ! ~ !

[Real-time
"q process

. : ~ I.... [Plan Dispatcher ~" ¯ , State-space ,
: i rtan~xecutor ~ state ~1 I : ~." I D1 r I :

I PlanCache l" i i ~ |
:Plan-Execution [(Database) : : I " " I
!,Sub fystem~ ~ : i I Resource I i

/ / : ~l Scheduler :
/ Scheduler //Resource usage, i

"1 ’ i
/ Database I real-time constraints’.
/ / ~e~.,,.,,!.,,~..s.~.:y.:t:~

Figure 3: CIRCA-II Architecture.

safety when gt =1, and Vt is the "priority" value of
task T~. The scheduler attempts to fit all tasks
within a real-time cyclic schedule, then it returns a
success/failur.e, status along with task resource
utilization values. If the scheduler succeeds, the
plan is downloaded to the cache. Otherwise, a
"bottleneck" task is defined based on the weighted
combination of task priority and utilizations, and
the planner backtracks to find a schedulable plan
as described in (Atkins et. al, 1999).

CIRCA-II Applications

Maintaining close ties with an application domain
ensures that a system has practical use and, in
parallel, addresses key automation issues within
that specific application. CIRCA was originally
demonstrated with an office robot and a simulated
robot assembly task (Musliner, Durfee, and Shin
1995). More recently, CIRCA-II has been tasked
with developing and updating mission flight plans
for simulated Uninhabited Aerial Vehicle (UAV)

and Uninhabited Combat Aerial Vehicle (UCAV)
missions (Atldns 1999). To-date, tasks have
involved a fixed set of flight maneuvers and
simple weapons control operations, and CIRCA-II
performance has been analyzed by assessing its
ability to succeed in this hard real-time

environment. Although CIRCA-II has succeeded
in the development and execution of real-time
control plans for fully-automated flight, we are
still seeking alternate planning techniques that
might permit more expressive numerical
representations to facilitate the interface with the
complex, nonlinear flight dynamics inherently
present for any UAV. We look forward to
learning about the latest developments in

constraint-based planning and its combination
with other algorithms during this workshop.

References

E. M. Atkins, "Plan Generation and Real-time
Execution with Application to Safe, Autonomous
Flight," Ph.D. Dissertation, University of
Michigan, 1999.

E. M. Atkins, T. F. Abdelzaher, K. G. Shin, and E.
H. Durfee, "Planning and Resource Allocation for
Hard Real-time, Fault-Tolerant Plan Execution,"
in: Proceedings of the Third International
Conference on Autonomous Agents, Seattle,

Washington (1999) 244-251.

E. M. Atkins, E. H. Durfee, and K. G. Shin,
Detecting and Reacting to Unplanned-for World
States, in: Proceedings of the Fourteenth
National Conference on Artificial Intelligence,
Providence, Rhode Island, (1997) 571-576.

C. Boutilier, T. Dean, and S. Hanks, "Decision-
Theoretic Planning: Structural Assumptions and
Computational Leverage," Journal of Artificial
Intelligence Research (JAIR), 11(1999) 1-94.

R. E. Fikes and N. J. Nilsson, "STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving," Artificial Intelligence 2(3-
4)(1971) 189-208.

D. J. Musliner, E. H. Durfee, and K. G. Shin;
"World Modeling for the Dynamic Construction
of Real-Time Control Plans," Artificial
Intelligence, 74(1) (1995) 83-127.

10

