
On the Path from Classical Planning to
Arithmetic Constraint Satisfaction

Eric Jacopin*
CREC Saint-Cyr

]~coles de Co~tquidan
56381 GUER Cedex

France
ejacopin@acm.org

Jacques Penon
Laboratoire de Theories G4om4triques

Universit~ de Paris 7
2 Place Jussieu

75005 Paris Cedex 05
France

Abstract

We discuss a method to automatically transform a clas-
sical planning problem into an arithmetic constraint
satisfaction problem (aCSP).
This transformation specifies the variables of the aCSP,
their ranges and the binary arithmetic constraints over
these variables. A bounds consistency solver is then
called to build ranges consistent with the arithmetic
constraints.
The transformation presented in this paper only pro-
duces totally ordered plans and propositional classical
planning.

Introduction
When searching for a solution plan, Partial Order Plan-
ning (POP) places a constraint between two opera-
tors only, to implement the so-called least commit-
ment approach to precondition establishment and de-
clobbering (CHAPMAN 1987). It is of course possible
to introduce several constraint satisfaction problems in
this approach: constraining the possible values of op-
erator variables (codesignation constraints (CHAPMAN
1987)), constraining the choice of establishers (multi-
contributors (KAMBHAMPATI 1992)), and the building
of the partial order itself. All these CSPs have vari-
ables whose domain is made of symbolic values; that
is, the constraints are not arithmetic constraints whose
variables have numerical domains.

We here present an arithmetic model of classical plan-
ning. This model is automatically built from the clas-
sical planning problem data: the initial state, the final
state and the operators of the classical planning prob-
lem. The construction is not precondition-based but is
establisher/clobberer based which can be seen as a gen-
eralization of the so-called causal-link (MCALLESTER
ROSENBLITT 1991).

The paper is organized as follows. We begin with the
minimal problem the procedure has to solve to show
any interest. We then present what are the variables

*Thanks to Philippe Morignot for his comments on pre-
vious drafts of this paper, to Alexander Nareyek for his help
and to Fred Garcia and Pierre Regnier for enlightening dis-
cussions.

of the problem and their ranges. We then show how to
generate arithmetic constraints from classical planning
operators and discuss how to choose the relevant oper-
ators for the solving of the classical planning problem.
Finally we give the planning procedure.

The reader is assumed to be familiar with both
classical partial order planning, e.g., (KAMBHAMPATI,
KNOBLOCK, ~ YANG 1995) and constraint satisfaction
techniques, e.g., (MARRIOTT ~ STUCKEY 1998).

An Arithmetic Model
The variables A classical planning problem can be
modelled as an arithmetic binary CSP using the formu-
las from (i) the initial state, (ii) the final state and
the operators.

As an illustration for the rest of the paper, let us
solve the following bottom-up problem:

t =min. ~ t = Max.

tower tower

(Table)

Figure 1: The simplest blocks world problem to be
solved with bounds consistency focusing on formulas:
one formula is true in the initial state and true in the
final state, but false somewhere in-between. The prob-
lem is to transform the initial tower into the final tower.

The solution is shown as a plan in Figure 2, using the
operators given in (CHAPMAN 1987). Henceforth
refer to this problem as the bottom-up problem.

Although a 3 blocks problem, the bottom-up problem
is more complex than the classical sussman anomaly be-
cause there exists a formula, namely on (E, D), which
true in the initial state,.then false and then true again
when building the final tower from the initial tower.
To represent the evolution of the truth of on(E,D),
need 2 ranges: 1 from the initial state to the state im-
mediately after where block E is on the Table while D

18

From: AAAI Technical Report WS-00-02. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

~AA~ ~

operator

+clear(E)

+on(E,D)

+on(D,C)

+on(C,Table)

+clear(Table)

NewTower (E, D NewTower (D, C

~on(E.D) I-°n(ErD)~ (on(D.C)-On(D[C)

ōn.. .bl°II~
lear(E) +clear(D) |< |clear(D) I +°n(D’Table)~

¯ ÷cl..r,E) J ~ l+cl’ar’D)
J

/

~ tOn(E,D,Table) PutOn(C,E,Table) Final

::~:~le)~ clear(C) -°n(C, Table)! ~l ear(C)

~ on(E,Table) +on(E,D) I~ ~n(e,Table) +on(C,E) ~-~
+cle.rCc) I qon(E,D)clear(E)clear(E) +clear(E)

I

+clear(Table~ +clear(Table)J

Figure 2: A solution plan, totally ordered partial plan in the space of partial plans; an operator is a round-corner
rectangle divided in 3 parts: (i)’the left part contains the preconditions, (ii) the upper right part contains
deleted formulas and (iii) the lower right part contains the added formulas. An arrow between operators indicates
precedence between operators. The leftmost operator is the initial operator stating the initial state of the problem
while the rightmost operator is the final operator stating the final state.

still is atop C, plus 1 from the state where E is on D
and C is on the Table, to the final state. Figure 3 illus-
trate the evolution of the truth of on(E,D) and M1 the
other formulas involved in the solving of the bottom-up
problem.

We now face the following choice: either (i) abstract-
ing one formula into one variable with multiple ranges-
of-truth or else (ii) abstracting one formula into multi-
ple activation-to-truth (of this very formula) with one
range.

We pick the second choice.

The activation from false to true is obviously related
to the membership of a formula to the add list of an op-
erator and the deactivation from true to false is related
to the membership to the delete list. To use classical
planning terminology (CHAPMAN 1987), an establisher
activates a formula while a clobberer deactivates a for-
mula.

The propagation of the activation until the deacti-
vation of the formula corresponds to the range of the
truth of the formula. If we make graphically explicit the
propagation of not only the truth but also the falseness
of a formula in the plan of Figure 2, we obtain some-
thing close to the plan fo Figure 4. The first important
difference between the two plans of the two figures is the
addition of a set of virtual preconditions, which contains
to-be-activated formulas and to-be-deactivated formu-
las although these formulas are not preconditions of the
corresponding operator in Figure 2. The second impor-
tant difference is the addition of formulas, activated by

an operator, to the precondition set of this operator.
Consequently, anything added or deleted, i.e., activated
or deactivated, is a precondition, either virtual or veal
(i.e., indeed a precondition of the corresponding plan-
ning operator).

Note that we cannot say that an added formula comes
from a virtuM precondition, because it can be the case
that a previous operator already activated this formula:
it is for instance the case of clear (Table) in Figure

We call activation link, the tuple made of the for-
mula, the establisher and the clobberer, noted a(~) for
short. Such aa activation link corresponds to an in-
teger range as illustrated by Figure 4 : for instance,
a(clear(Table),Io,Fo) corresponds to the integer
range [0, 4]. There are two activation links for the for-
mula on(E,D): oq(on(E,D),Io,NewTower(E,D))
a2(on(E, D), PutOn(E,D,Table), Fo) which Correspond
to the integer range [0, 0] and [3, 4], respectively.

What the plan construction process needs to com-
pute is when a formula is first activated and then deac-
tivated. Variables of the aCSP are the min(a(~o))
max(~(~o)) of the integer ranges of all the activation
links of all the formulas involved in a plan.

The ranges The differences from Figure 3 and Fig-
ure 4 show the transformation of the time values. In
Figure 3, the integer time values stamp the situations.
The inclusion of the preconditions of an operator into
the set of formulas describing a situation give the pre-
conditions the same time value than the situation. The

19

the successive situation, get the successive integer time
value.

Stamping the initial situation with 0 is trivial. But
POP adds operators to a current plan until the solu-
tion is found. That is, when POP starts to build a
solution, it does not know how many operators shall be
necessary to build the solution plan. This does not fit
in the aCSP framework where maximum and minimum
values are used to compute new values satisfying the
constraints of the problem¯ One must then find a way
to compute this very first maximum value. As illus-
trated in Figure 4, the maximum value is the number
of operator of a totally ordered plan.

Consequently, we only have one choice: the con-
straints must derive from the operators chosen for some
reason¯ When the choice of operators is over, the max-
imum value is know (the number of operator) and the
solving of the constraints can begin. That’s how works
the planning procedure we present below, but there still
are 2 things to discuss: (i) what constraints can
derived from planning operators? That’s what we dis-
cuss next; and (ii) how can we choose operators without
building the plan? That’s what we discuss when pre-
senting the planning procedure¯

The arithmetic binary constraints Henceforth,
M stands for the maximum integer time value, i8 and
f~ for the initial and final state, respectively, and Io and
Fo for the initial and final operator, respectively¯

Recall that the variables are the minima and the max-
ima of the activation links. Minima are when the for-
mulas are activated, i.e., established and maxima are
when the formulas are deactivated, i.e., clobbered¯ So
we specify constraints between formulas of the add list,
delete list and the preconditions.

We give below the specifications of the constraints
in plain english; the reader should refer to Table 1 for
their axiomatic counterpart.

Let’s begin with the easiest part, the constraints from
the initial state and final state:
Initial (1) The initial operator activates all the for-

mulas of the initial state,

Initial (2) All the formulas that the initial operator
does not activate are activated by another operator,

Final The final operator deactivates all the formulas
of the final state.

We now express the constraints derived from
a planning operator O=(Pre,Add,Del) (recall that
Add(O)ADel(O)=

Deletions

* If no other operator activates its added formulas,
then the deactivation of its deleted formulas ex-
actly precedes the activation of its added formulas,

¯ if an operator does not activates its added formu-
las, then the deactivation of its deleted formulas
follows the activation of its added formulas,

A .t ~t, uJ.lulblull~ I,.L] 1.11~ ~;blV~blUll Ul bllg. DI’~L:UlltlI-

tions that an operator does not delete is strictly be-
fore their deactivation,

Preconditions (2) The preconditions that an opera-
tor does not delete can be deactivated when the same
operator activates its added formulas,

Preconditions (3) The deactivation of the precondi-
tions that an operator does not delete is strictly after
the deactivations of its deleted formulas which can be
equal to the activation of the precondition.

As an example, let’s specify the constraints from the
operators involved in the bottom-up problem. The Pu-
tOn(X,Y,Z) operator is the following:

Pre(PutOn) : {on(X, Z), clear (X), clear (Y)
Add(PutOn) : {on(X,Y),clear(Z)}
Del(PutOn) : {on(X,Z), clear(Y)}

Applying the axioms in Table I, we obtain the
following constraints from the PutOn(X,Y,Z) opera-
tor (no constraint generated for min(a(on(X,Z)))
min(a(clear (Y)))):

max(~(on(X, Y))) > max(~(on(X,
max(~(on(X,Z))) >_ min(~(on(X,Y)))
max(o~(on(X, Y))) > max(~(clear
max(~(clear (Y))) >_ min(~(on (X,Y)))-
max(a(clear CZ))) > max(a(on (X, Z)))
max(~(on(X, Z))) > min(a(clear(Z)))
max(oL(clear(Z))) > max(c~(clear(Y)))
max(~(clear (Y))) _> min(a(clear
max(a(clear (X))) > min(a(on(X, Y)))
max(~(clear (X))) > min(~(clear(Z)))
max(~(clear (X))) > max(a(clear(Y)))
max(~(clear (Y))) >_ min(~(clear
max(a(clear (X))) > max(a(on(X,
max(a(on (X, Z))) >_ min(~(clear

Here are now the NewTower(X,Z) operator and the
constraints it generates (no constraint generated for
min(c~(on (X, Z)

Pre(NewTower) : {on(X,Z), clear(X)
Add(NewTower) : {on(X,Table),clear(Z)}
Del(NewTower) : {on(X,Z)}

max(~(on(X,Table))) > max(~(on(X,Z)))
max(o~(on(X, Z))) > min(~(on(X,Table)))-
max(o~(clear (Y))) > max(~(on
max(~(on (X, Z) > min(a(clear (Y))) -
max(~(clear (X))) > min(~(on (X,Table)))
max(~(clear (X))) _> min(~(clear
max(o~(clear (X))) ~ max(~(on(X,
max(~(on(X,Z))) min(c~(clear(X)))

In the above constraints, the two disjoint constraints

max(o~(~)) = min(a(~))

2O

Initial (2) V~ ~ is, 3a(~) = a(~, _, _) with min(a(~))
Final Y~ e L, 3a(~) = a(~, Fo)withmax(a(~)) = M
Deletions V~a E Del(O),~/~ E Add(O),

= o), = on,_)
VO~ max(~(~o~)) > max(c~(~o~))
if Oa =0 then max(a(~o~)) = min(a(~a))
if Oa #0 then max(a(~)) > min(a(~oa))

Preconditions (1) V~ E Pre(O) such that ~o fg Del(O),
3a(~) = a(~, _, _) with max(a(qo~)) > min(a(~))

Preconditions (2) V~ E Pre(O) such that ~ !g Del(O),V~a E Add(O),
=), = o.,_)

with VOa max(a(~)) _> min(a(~a))
Preconditions (3) V~ E Pre(O) such that ~ ¢ Del(O), V~ e Del(O),

= = o)
with VO~ max(a(~)) > max(a(~a)) > min(c~(~))

Table 1: Specification of arithmetic constraints from the classical planning problem data: initial and final states and
the operators; is and L stand for the initial and final state, respectively, Io and Fo for the initial and final operator,
M labels the maximum number of operators and _ stands for "unspecified" and can be understood as an anonymous
Prolog variable. Finally note that since Add(O)NDel(O)= 0 then V~oa~ ~a

and
max(~(~)) > min(a(~a))

respectively corresponding to the disjoint cases (0~
O) and (Oa # O) in Table 1 have been gathered into
the single constraint max(a(~)) > min(a(~)) - 1
cause the choice of making an operator the activator of
a formula can only be made when inserting the operator
in the plan.

A Plaiining Procedure

The idea behind the planning procedure is the follow-
ing: choose the relevant operators for the planning
problem, and then solve the constraints they generate.

Of course, the choosing process must not correspond
to building the solution with POP techniques but re-
ally mean "choosing relevant operators". This choice is
related to activation links: to any formula involved in
the solving of the problem, there is an activation link.
The activation link is incomplete when either the acti-
vator or the deactivator of the formula is unknown; it is
complete when both are known. The choice must make
some activation links (possibly all) complete.

POP is a precondition-based process whereas the
planning process just outlined only deals with both the
add list and delete list. How can we then ensure that
"relevant operators" also are the good ones (that is, if
we don’t concentrate on preconditions, operators won’t
be applicable to situations)? An operator also gener-
ates constraints related to its preconditions, thus taking
preconditions into account.

The planning process begins with the final and initial
state formulas. There exists an activation link for all
these formulas; some belong to both states, some not.
The formulas which belong only to either the initial

state or else the final state correspond to an incomplete
activation link: either the establisher or else the clob-
berer is missing.

An operator, from the planning problem data, is cho-
sen to make an activation link complete. Then the
chosen operator generate constraints and introduces
new formulas and new (possibly incomplete) activa-
tion links. Variables of the aCSP (i.e., the min and
max of the activation links) are also generated and if
we want to find a solution, all these variables must be
constrained: they must be involved in some arithmetic
binary constraints. As seen for PutOn(X,Y,Z) and
Newtower(X,Z), an operator generates no constraint for
min-variables related to formulas of the delete list.

So when does the planning process end? It does end
when all the variables are involved in an arithmetic bi-
nary constraint and all the activation links are complete
(that’s a theorem).

At this point, an aCSP has been built. We must
solve it. A bound consistency solver is called. If the
constraints are satisfiable, we have a solution. Other-
wise, the procedure backtracks to the latest choice.

Here is the planning procedure set up; V is the
set of variables (i.e., min and max of activation links:
min(a(qo)) and max(a(~))), C is a conjunction
metic binary constraints on the variables, M is the max-
imum value of the final state (i.e the maximum value for
any max(a(~))) and A is the set of current activation
links:

A ~-0; V *-~; C ~0; M*--0
for all ~ ~ (is U il) do

if ~o ~ is then
V ~-- VU{(min(a(~)), Io, Dmin(a(~)))}
C +-- CA(min(Dmin(a(~))) = max(Dmin(.(~))))

21

clear(C)

on(D,C)

on(D,Table)

clear(D)

on(E,Table)

on(E,D)

clear(E)

clear(Table)

on(C,Table)

on(C,E)

t = 0 t = 1 t = 2 t ~ 3 t ~ 4

Figure 3: All the formulas involved in the transformation of the initial tower into the final tower. Successive situations
are labelled with successive integers starting with zero for the initial situation. Thick lines and thick circles indicates
when the aligned formula is true, i.e., is activated. There are two "special" formulas: clear(Table) and on(E,D).
clear (Table) is always true whatever the blocks world problem: there is a thick line indicating it is activated from
the initial state to the final state, on(E,D) is activated during two disjoint ranges: (i) the initial state and (ii)
the fourth state to the final state.

A(min(Dmin(a(~)))
if~Eil then

A ~ AU{a(~, Io, Fo)}
V +- VU{(max(a(~)), Fo, Dmax(a(~o)))}
C +- CA(min(Dmax(a(~))) = max(Dmax(a(~))))

A(max(Dmax(a(~)))
else

A
V
C

end
else

A~-
V~
C~

V~
C~

Io,_)}
~-- VU{(max(ol(~)), _, Dmax(a(~)))}
~-- CA(min(Vmax(a(~))) _< max(Dmax(a(~))))
if

AU{a(qo,_,Fo)}
VU{(min(a(~)), _, Dmin(a(~)))}
CA(min(Dmax(c~(~o))) _< max(Dmax(a(¢.o))))

A(min(Dmin(,~(~o)))
VU{(max(a(qo)), Fo, Vmax(a(~o)))
CA(min(Dmax(a(~))) = max(Dmax(a(~))))

A(max(Vmax(a(~)))
end if

end for all
return success when BoundsConsistency(V,C)

The set up ends by checking whether the constraint
network is bounds consistent; if so, it’s because the fi-
nal state is included in the initial state: all activation

links are complete and there is no need for planning. If
not, then some activation links are incomplete and the
planning process begins, adding operators, generating
their variables and constraints according to Table 1 and
then eventually checking for Bounds Consistency when
all variables are constrained and all the activation links
are complete. A, V, C and M come from the set up;
FC is the set of yet unconstrained formulas:

FC ~ {~1 min(a(~)) ¢ C V max(a(~))
While FC¢ 0 and A is incomplete Do

Choose Op s.t. p 6FCAp 6Op
A ~ AUActivation links from Op
V ~ VUVariables from Op
C ~- CAConstraints from Op
M~M+I
UpDate FC with the ~os of Op

end While
If BoundsConsistency(V,C) then

return Success
else Backtrack to the latest choice
end if

Since the ~os belong to operators it’s immediate to
build a totally ordered plan from the variables and their
domains.

22

D,C)

on(D,T

on(E Table)

c~ear(C)

n(D,C).

clEft(Table)

on(I~Table).

~r(E,D)

. on(E,Table)

on (E ,Table).

on(D,Table) PutOn(C,

on(D,Table)
clsar(c) ~,E)
clear(E) g(C)

clear(Table)

on(C,Table)

PutOn (E,

¯ on(E,Table)

Figure 4: A solution plan, 1-cell in the bicategory of plans; the constraints in Table 1 are derived i~om the coherence
axioms of the bicategory. An operator is a rectangle whose (i) left parts contain before formulas, (ii) right parts
contain after formulas, (iii) the upper parts contain the deactivated formulas and (iv) the lower parts the activated
formulas. There is a bijection from the before formulas to the after formulas. Links between formulas state the
propagation of activation or else deactivation; internal links stating the bijection between the before and after
formulas of an operator are omitted. The sets of leftmost and rightmost formulas are supersets of the initial and
final state, respectively, of the classical planning problem and can be cast into a rectangle operator.

Discussion
The planning procedure above has been implemented in
Open-Prolog (BRADY 1988 1998) and has been tested
against a few blocks world problems within the Pweak
system (JACOPIN 1994 1999).

The idea here was not to present extensive testing
of an efficiently implemented (classical) planning pro-
cedure but rather to show how one could cope with the
automatic transformation of a classical planning prob-
lem and the CSP framework, in merging the structures
the former (operators and plans) into the components
(variables, domains and constraints) of the latter.

A first important point is that the plan of Figure 4 is
an 1-cell in a bicategory; this result is a theorem and not
a definition: bicategorical coherence axioms (BI~NABOU
1967) must be checked¯ Details are outside the scope
of this paper and the reader should refer to (PENON To
appear). A second important point is that this result
was established before the specification of the above
constraints: the bicategorical results entailed the con-
straints, and then we tried to take advantage of these
and designed the above planning procedure. A final
point is that we ended up with a bicatogory when look-
ing for plan morphisms (i.e., plan transformation) and
plan composition, starting with plans like the one of

Figure 2, imposing mathematical properties such as as-
sociativity and identity.

Several things are to be done, beyond the simple
implementation problem (efficiency, use of commer-
cial packages, comparisons with other planning tech-
niques and planners, etc): we need to study the rela-
tions between the monoidal categories involved in lin-
ear logic and our bicategorical framework; this could
be an interesting path to the implementation of a theo-
rem prover in the multiplicative fragment of linear logic,
which is relevant to classical planning (JACOPIN 1993;
FRONHOFER 1997); we need to lift up our procedure
from propositional to atomic formulas; we also need a
better close-up at the categorical structure of CSPs,
e.g., (SARASWAT 1992), and its relation to planning.

In the classical version of the blocks world (CHAP-
MAN 1987), clear(Table) has a domain-dependent
property: whatever the problem, it’s always true. We
haven’t looked at domain dependent constraints; a
quick way is to post them during set up, but it’s some-
thing we need to investigate further with relation to the
bicategorical structure. The current procedure does not
take advantage of domain-dependent constraints.

The automatic transformation of a classical planning
problem into an aCSP has not recently drawn much

23

provide successful results in the development of the
CPlan planner (VAN BEEK ~z CHEN 1999). However
CPlan uses a state-based model and not a POP-based
model as is here presented. Variables in CPlan de-
note states and the variables of the planning operators;
whereas our variables denote the activation links, re-
lated to the formulas of the operators; that is, our model
does not change the structure of the POP problem.
Probably the closest work is that of (ALLEN ~ KOOMEN
1983); however, we consider operators as a whole and
do not decompose them into formulas; our constraints
correspond to the Starts, Finishes and Overlaps sym-
bolic constraints on intervals, but we abstract them into
their bounds in an arithmetic CSP and not use them
as such in a symbolic network. Finally our framework
is category theory and not temporal logic.

Note eventually that minimizing M can be cast into
an objective function and then the whole framework
falls in the integer linear programming basket (VOSSEN
et al. 1999). The minimization of M is the way to
produce partially ordered plan, but that’s another story.

References
ALLEN, J., and KOOMEN, J. 1983. Planning using
a temporal world model. In Proceedings of IJCAI’83,
741-747.

BI~NABOU, J. 1967. Introduction to bicategories. In
Report of the Midwest Category Seminar, volume 67
of Lectures Notes in Mathematics. Springer-Verlag. 1-
77.
BRADY, M. 1988-1998. Open-prolog. Web page.
http ://~u~w. tcd. ie/open-prolog/

CHAPMAN, D. 1987. Planning for conjunctive goals.
Artificial Intelligence 32(3):333-377.
FRONH(~FER, B. 1997. Plan generation with the lin-
ear connection method. INFORMATICA, Lithuanian
Academy of Sciences 8(1):3-22.

JACOPIN, E. 1993. Classical ai planning as theo-
rem proving: The case of a fragment of linear logic.
In AAAI Fall’93 Symposium on Automated Deduc-
tion in Nonstandard Logics, Technical Report FS-93-
01. AAAI Press.

JACOPIN, E. 1994-1999. Pweak. Web page. http:/-
/w~n~-poleia. lip6. fr/- j acopin

KAMBHAMPATI, S.; KNOBLOCK, C.; and YANG, Q.
1995. Planning as refinement search: a unified frame-
work for evaluating design tradeoffs in partial order
planning. Artificial Intelligence 76(1-2):167-238.
KAMBHAMPATI, S. 1992. Characterizing multi-
contributor causal structures for planning. In Pro-
ceedings of AIPS’92, 116-125.
MARRIOTT, K.," and STUCKEY, P. 1998. Programming
with constraints: An introduction. MIT Press.

MCALLESTER, D., and ROSENBLITT, D. 1991.
Systematic nonlinear planning. In Proceedings of
AAAI’91, 634-639.

J. v4~vl~, d. 3.U ~lJ~.e~l. ~ UIGCL(~e~U/*IG~I IIIUU~J LOI’ /:l,r-

ticial intelligence classical planning. Lea cahiers de
topologie (In french).

SARASWAT, V. 1992. The category of constraints sys-
tems is cartesian-closed. In Proceedings of the 7~u An-
nual IEEE Symposium on Logic in Computer Science,
341-345.

VAN BEEK, P., and CHEN, X. 1999. Cplan: A con-
straint programming approch to planning. In Proceed-
ings of the 16th National Conference on AI.

VOSSEN, W.; BALL Michael; LOTEM, A.; and NAU, D.
1999. On the use of integer programming models in ai
planning. In Proceedings of IJCAI’99, 304-309.

24

