
Heuristics for HTN Planning As Satisfiability *

Amol D. Mali
Dept. of Electr. Engg. & Computer Science,

University of Wisconsin, Milwaukee, WI 53211, USA.
maii@miller.cs.uwm.edu, Phone: 414 - 906 - 8942

Abstract

Classical planning is the problem of synthesizing a se-
quence of actions to reach the goal state starting from
the initial state. Hierarchical task networks (HTNs)
have been used as a guidance for solving planning
problems where tasks are decomposed into subtasks.
Recently, both action-based planning as well as HTN-
based planning have been east as SAT. The perfor-
mance of planning as SAT has been hitherto remark-
ably improved by using a variety of techniques¯ How-
ever none of these techniques is sensitive to the struc-
ture of domain specific knowledge. To bridge this gap,
we develop and evaluate several heuristics that are sen-
sitive to the structure of the given domain knowledge
(in the form of HTNs), to generate propositional en-
codings of HTN planning. The resulting encodings
are smaller and easier to solve on most of the prob-
lems. Given that the current SAT solvers can han-
dle a limited number of variables (10,000) and clauses
(100,000) in real time, such heuristics sensitive to the
structure of the domain knowledge are important.

1 Introduction

Classical planning is the problem of synthesizing an
executable sequence of actions to reach the partially
specified goal state starting from the completely spec-
ified initial state, assuming deterministic actions and
static and perfectly observable environment. An action
has pre-conditions which are atoms (positive literais)
and effects which are atoms (positive and negative lit-

erais), classified into add effects and delete effects. For
example, to execute the action load(A, R1, London)
(loading package A into rocket R1 at London),
the pre-conditions at(A, London),has_fuel(R1) and
at(R1, London) must be true and after this action is
executed, in(A, R1) will become true (add effect) and
at(A, London) will become false (delete effect), assum-
ing that the action descriptions are defined in such a
way that a package that is loaded is no longer in the
city.

! thank Subb’arao Kambhampati for comments on the
previous version of this paper.

The traditional classical planners (also known as
"split & prune" planners) did refinement search
[Kambhampati 97], starting with an empty plan and
refining it by adding more constraints like actions and
orderings between these. Based on whether the search
is conducted in the space of world states or a space of
partial plans (sets of constraints about orderings and
causal sources of truths of pre-conditions of actions),
the planners are broadly classified as "state space"
planners and "partial order" planners. More encourag-
ing results were obtained by casting planning as propo-
sitional satisfiability [Kautz & Selman 96] and [Kautz
& Selman 99]. The general idea of this paradigm is
to construct a disjunctive structure that contains all
action sequences of length k, some of which may be
plans. The problem of checking if there exists a plan is

posed as satisfiability testing. The SAT instance (en-
coding of the planning problem) contains constraints
that must hold for any specific sequence to be a solu-
tion. The encoding is thus specified in such a way that
it has a model if and only if there exists a provably
correct plan of k steps. If no model is found, a new
encoding is generated by increasing the value of k.

In many domains, human experts can share their
knowledge with the planners by specifying decom-
position strategies for complex tasks, in the form
of schemas that contain constraints that must be
satisfied for the tasks to be fulfilled. Planners
that use such task reduction schemas are known
as "hierarchical task network planners" [Wilkins
88][Erol 95] and [Currie & Tate 85]. For ex-
ample, the task Transport(A, London, Paris, R1) of
transporting the package A from London to Paris
with rocket R1 may be decomposed by specify-
ing the set of constraints (reduction schema) {pl
load(A, R1,London),p2 : unload(A, R1,Paris),ps
fly(R1, London, Paris),pl ~ P3}, where pl,p2 and P3
are steps whose action bindings are specified. Note
that some constraints necessary for the fulfillment of a
task may not be specified in the schemas, e.g. P3 -~ P~.

25

From: AAAI Technical Report WS-00-02. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

here. An HTN planning problem is solved by decom-
posing multiple tasks and resolving interactions be-
tween the primitive (executable) actions from these
tasks till a goal achieving action sequence is found.
HTN planners have been used in several fielded appli-
cations including beer factory production line schedul-
ing and military operations planning [Wilkins 88].
HTN planning can be viewed as an "augmentation"
of action-based planning, where the task reduction
schemas provide an implicit grammar of legal ("de-
sired") solutions or user intent [Kambhampati et al.
98]. User intent (certain preferences about plan gener-
ation) is captured in the reduction schema, in the form
of constraints, so that only those plans that respect
these constraints are generated. Thus plans generated
by HTN planners, in addition to being goal achiev-
ing, also have a parse in terms of the task reduction
schemas. HTNs are used in planning with the moti-
vation of reducing the combinatorics in action-based
planning and/or modeling the domain in a particular
style of decomposition and plan generation.

Hitherto, the performance of planning as satisfia-
bility has been improved either using a smaller en-
coding like state space (based on state space plan-
ning) [Ernst et al 97] and/or propagating domain
specific knowledge [Mali 99(a)] and/or using log-
ical inference like unit propagation (simplifying (a
(a =~ 8)) to (a A fl)) [Kantz & Selman 99]
cially using unit clauses in initial and goal states)

and/or using different action representations (e.g.
splitting move(A, B, C) action as (move_argl_A
move_arg2_BAmove_arg3_C)) or using different frame
axioms for explaining the change in the world state (ex-
planatory rather than classical, see sect. 2.2) [Ernst
et ai 97] or eliminating actions as in the state-based
encodings [Kautz et al 96] and/or using better SAT
solvers like satz-rand [Kautz & Selman 99] that do not
get stuck in undesirable regions of search space. All
these approaches, though remarkable advances, are not
sensitive to the structure of the domain specific knowl-
edge. Our work is about efficiently representing the
domain knowledge given in the form of HTNs, exploit-
ing their structure, so that the resulting encodings of
HTN planning can be simplified to a greater extent,
respecting the grammar of legal solutions. We propose
several heuristics to achieve such representations.

Encodings of action-based planning [Kantz et al 96]
disjunctively represent the potential step --~ action
bindings. For example, the clauses ((iOl = Ol) V (Pl
02) V (Pl = 03)) and ((P2 = ol) V (P2 : 02) V (P2
compactly encode 9 action sequences, each containing
2 actions, where pl,p2 are steps and 01,02 and 03 are
actions. Assuming that the task reduction schemas

are not recursive, [Maii 99(a)] set up HTN planning
encodings (we refer to these as HTN encodings for
brevity) by bounding the number of such schemas re-
quired to solve a problem and constraining the action-
based encodings (state space and causal) in [Kautz
al. 96], with the task reduction schemas. The HTN
encodings contain, as a disjunction, both the poten-
tial non-primitive step-~ non-primitive task bindings
and the potential step --+ action bindings. In their
causal HTN encodings (sect. 2.4), the non-primitive
step -+ non-primitive task bindings, along with the ac-
tions that occur in the reduction schemas, are used to
decide the disjunctive step ~ action binding. Since a
step is not bound to an action outside the task re-
duction schemas, one does not have to consider all
ground actions in the disjunctive action binding of a
step. [Mall 99(a)] propagate this smaller disjunctive
binding to demonstrate a performance improvement
over action-based encodings (that do not contain the
constraints from HTNs). We report several heuristics
for improving their strategy of using the task reduc-
tion schemas to decide the disjunctive step --+ action
binding, in polynomial time.

The heuristics are based on a purely quantitative
analysis like the number of common primitive (directly
executable) actions among the task reduction schemas
and/or the number of their common pre-conditions
and/or common add effects and/or common delete ef-
fects. The task reduction schemas in most planning
domains have such common actions or contain actions
having some common pre-conditions and/or some com-
mon add effects and/or some common delete effects.
For example, though the actions load(A, R1, London)
and load(A, I~2, London) load the same package into
different rockets, they both have the common pre-
condition at(A, London) and the common delete ef-
fect at(A, London). Different heuristics exploit differ-
ent common features to reduce the domains of certain
key variables (note that constraint propagation cannot
achieve this kind of reduction) in the encodings of HTN
planning and consequently, the domains of other vari-
ables shrink as well, when the reduction in the domains
of the key variables (like the reduction in the number of
potential action bindings (domain) of a step (variable))
is propagated (by additional reasoning which heuris-
tics do not carry out, there is another code for doing
it). Thus the encoding sizes go down, both because of
the heuristics and the constraint propagation that suc-
ceeds them. The heuristics do not use the initial and
goal states of the problem, generating a problem inde-
pendent output for the given task reduction schemas.
The heuristics are however dependent on the structure
in which the domain knowledge is specified.

26

This paper makes the following contributions.

¯ We develop several polynomial time domain inde-
pendent pre-processing heuristics to generate the
disjunctive step -+ action binding in the HTN en-
codings. The heuristics reduce the domains of some
key variables, increasing the possibilities of simplifi-
cation by propagation of this domain reduction. The
heuristics do not affect the correctness and the num-
ber of plans found.

¯ The heuristics are sensitive to the structure of the
domain knowledge. Since the heuristics do not need
to know the initial and goal state of the problem,
they generate a problem independent result for given
HTNs.

¯ An empirical evaluation of the heuristics which
shows that the encodings generated using each of
them are indeed smaller and faster to solve on most
of the problems and that for each of the solved prob-
lems, there was at least one heuristic that yielded an
encoding that was the fastest to solve.

Since current SAT solvers handle a limited number
of variables (104) and clauses (106) in real time, it
important to find techniques to simplify the encodings
so that their sizes are within these limits. Thus heuris-
tics exploiting the structure in the domain knowledge
are important.

The paper is organized as follows. In section 2, we
explain the basics of action-based encodings of [Kautz
et al 96] and the causal HTN encoding [Mall 99(a)].
In section 3, we describe 5 heuristics for generating
the disjunctive step -+ action binding. In section 4,
we discuss the empirical results. We survey heuristic
and constraint-based approaches to plan synthesis in
section 5. The conclusions are reported in section 6.

2 Background

In this section, we provide the necessary basics of the
action-based encodings of [Kautz et al 96] and the
causal HTN encoding of [Mali 99(a)].

2.1 Notation

pi denotes a plan step. oj denotes a STRIPS style
ground action. ¢ denotes the null action (no-op) which
has no pre-conditions and no effects. ¢ is used to gen-
erate plans requiring fewer actions or task reduction
schemas than the chosen bound. (Pl = oj) denotes the
step-+action binding.

Pi]~ pj denotes a causal link. p~ -~ pj denotes
that pi precedes pj. AT/denotes a ground non-primitive
task. sl denotes a non-primitive step that is bound

to a non-primitive task. (si = Nj) denotes the non-
primitive step-+ non-primitive task binding, rij de-
notes jth reduction schema of Ni. A reduction schema
may contain actions, non-primitive tasks, causal links
and orderings between these, as in [Erol 95]. When we
refer to task, we always mean non-primitive task. If
a step is bound to a task, it is always a non-primitive
step.

2.2 Action-based state space encoding

To prove that a sequence of actions is a plan, state
space methods essentially try to progress the initial
state I (or regress the goal state G) through the se-
quence to see if the goal state (or initial state)
reached. The following constraints ave represented in
the explanatory frame axiom-based state space encod-
ing of [Kantz et al 96].

1. The initial state is true at time 0 and the goal
must be true at time k. 2. Conflicting actions (one
action deleting the pre-condition or effect of another or
needing negation of pre-condition of another) cannot
occur at the same time step. 3. The "explanatory
frame axioms" state that if the truth of a fluent changes
over the interval [t, t + 1], some action changing that
must occur at t. 4. If an action occurs at time t,
its pre-conditions are true at t and effects are true at
(t H- 1).

2.3 Action-based causal encoding

The plan space (causal) encodings (based on partial
der planning) are based on the ideas of proving the cor-
rectness of a plan using causal reasoning about the es-
tablishment and preservation of goals and the precon-
ditions of individual actions. The following constraints
are represented in the causal encoding of [Kautz et al

96].
1. Each step in the encoding is bound to a sin-

gle action or the no-op. This is stated as a disjunc-
tivestep -+ action binding and mutual exclusion con-
straints. 2. The conditions true or false in the initial
state are the effects of step I and the conditions in the
goal state are the preconditions of step F. I has no
pre-conditions and it is always the first step in a plan
and F has no effects and it is always the last step in a
plan. 3. A step inherits the preconditions and effects
of its action binding. 4. The only way a step can add,
delete or need a condition is if the condition is added,
deleted or needed (respectively) by its action binding.
5. Each precondition of each step must have a causal
link supporting it. 6. The contributor step of a causal
link precedes the consumer step, and if a step is bound
to an action that deletes the condition supported by
the causal link (threat), that step either precedes the

27

contributor or succeeds the consumer. 7. The ~ rela-
tion is irreflexive, asymmetric and transitive.

2.4 Basics of HTN Encodings

The propositional encodings for HTN planning [Mall
99(a)] are developed by constraining the action-based
encodings of [Kautz et al 96], such that their satis-
fying models also conform to the grammar of solu-
tions of interest to a user, specified by the task reduc-
tion schemas. Since most implemented HTN planners
[Wilkins 88] share a lot of structure of the partial order
planners, they constrain the causal encoding in [Kautz
et al. 96] to develop the encodings for HTN planning.
We use their top-down causal HTN encoding in the
further discussion and empirical evaluation. The key
constraints that appear in this encoding are described
below. The complete set of constraints is given in [Mail
99(b)].

1. If a step is bound to a non-null task, it adds the
add effects of the task. 2. If a step is bound to a task,
all constraints in some reduction of that task must be
satisfied. 3. A step is bound to a single task. This
is stated as a disjunction of the potential step -+ task
bindings and pairs of mutually exclusive bindings. 4.
Every goal condition is added by some task.

We reproduce some notation and preliminaries from
[Mall 99(a)] next. Mi denotes the maximum num-
ber of actions in reduction schema of the task Ni and
M = max({Mi [i e [1, m]}), m being the number of
tasks given. K denotes the number of non-primitive
steps used in the HTN encoding. The total number
of steps in an HTN encoding are T, where T = M.K,
since the reduction schemas are not recursive and the
steps are not bound to actions outside the reduction
schemas. This can be viewed as allocating M steps
ranging from P(i-1).M to P(i.M)-I to each non-primitive
step si (M is computed automatically by examining
the reduction schemas). The action bindings of the
steps are decided by the tasks chosen and the actions
in the reduction schemas chosen to fulfill the tasks.

2.5 Disjunctive step -+ action binding

Consider two tasks N1 and N2 such that N1 is ful-
filled by the reduction schema rll which is { Ol, o2, ol -<
o2, N2} and N2 has two reduction schemas r21 and

r22. Let r21 be {o3,o4,o5,oa o4} and r22 be
{ o5, Ol, o5 -< ol). The maximum number of actions
(M) that occur in a reduction schema is 3 (in r21).
K = 2, T = 6. Letpl,p2 andpa be the steps allo-
cated to sl and pa,p5 and p~ be the steps allocated to
s2. Since the action bindings of steps depend on the
non-primitive step -4 task bindings, ((s2 = N2) =~
B)), such that (A ~ ((P4 = 03)A(p5 = 04)A(p6

Figure 1: The potential action bindings of steps in
causal HTN encoding

and (B =~ ((P4 "- 05) A (P5 = ol) A (PB = ¢))). Simi-
larly, formulae can be written for the cases (sl = N2),
(s2 = N1), (81 = gl), (81 = ¢) and (s2 = ¢).

[Mail 99(a)] bind the steps to actions in a naive
style, based on the order in which the actions appear
in the data structure containing a reduction schema,
such that steps with lower indices are bound to ac-
tions that "occur earlier in the data structure. Thus if
the actions from the reduction schema rll appear in
the order ol, o2 in the data structure, they bind Pl to
ol, P2 to 02 and Ps to no-op and state that the variable
(sl = N1) implies a conjunction of these bindings. The
actions that occur in the disjunctive step -4 action
binding for a step can be put together in a set. We
denote the set of potential action bindings of a step pi
by S(pi).

Assuming that the order in which the actions are
written in the descriptions of the reduction schemas
above are same as the order in which they appear in
the data structure, the S(p~) s generated by the [Mall
99(a)] approach are - {ol, on, o5, ¢} (for pt and P4),
{O2,O4,O1, ¢} (for p~. and Pb) and {o5, ¢} (for Ps

P6), also shown in the regular representation in Fig. 1.
Stated in terms of clauses, these are - ((Pl = ol)V(pl
o3)V(pl -- ob)V(pl = ¢)), ((P4 = o1)V(p4 =

05)V(p4 = ¢)), ((P2 = 01)V(p2 ~- 02)V(P2 ~-

¢)), ((P5 = 01) V (P5 = 02) V (Ps V (P5 = ¢)) an
SO 011.

An action-based causal encoding of k steps contains

o(k2 I v I) causal link variables, since a causal link
is generated for each of the I U [pre-conditions in the
domain, considering each of the k steps as a potential
contributor and each of the remaining (k - 1) steps
as a potential consumer. The encoding also contains

O(ks I U I) clauses for resolving threats, since each of
the O(k2 [U I) potential causal links may be poten-
tially threatened by any of the remaining (k - 2) steps.
S(pi) is very important because it can be used to de-
cide whether pi can add, delete or need a condition.
If no element of S(p~) adds or deletes or needs a con-
dition, pi will indeed never add or delete or need this

28

condition respectively.

The causal link variable Pl f~ pj need not be
generated if (i). S(pi) does not contain any action
that adds f or (ii) S(pj) does not contain any action
that needs f. Similarly, the threat resolution clause

((Pi ~ ~ Pj) A Dels(ps, f)) ~ ((P8 "~ Pi) V (pj
need not be generated if (i) S(pi) or S(pj) show that

pi ~ pj will always be false or (ii) no element
S(ps) deletes f. Us!ng S(pi), one can not only reduce
the number of causal link variables and threat reso-
lution clauses, but also the number of variables like
Adds(pc, f), Yeeds(pi, andDeletes(pi, f) and mu-
tual exclusion clauses like -~ ((pi = o j) A (Pi = Oq) The
asymptotic number of such exclusions is O(T I 0 12),
O being the set of ground actions. [Mali 99(a)] have
reported empirical results showing reductions in the
sizes and solving times, yielded by this S(pi) based
reasoning.

3 Heuristics

The five heuristics we develop in this section are vari-
ants of the strategy of computing S(pi) of [Mali 99(a)].
Consider the example in Fig. 1. If the positions of

o5, Ol and ¢ (null) from r22 are changed as shown
the alternative representation, for each pi,i E [1,6],
S(pl) in the new representation is a subset of S(pl) in
original representation. For example, the disjunctive
step,action binding for steps Pl,P4 changes, that is,
((pl = ol) Y (pl = o3) V (pl = ¢)), in the alternative
representation. The new representation will lead to a
provably smaller encoding than the original. Note that
we have not changed the contents of the task reduction
schemas, while coming up with the new alternative.

We give below a generalized template for computing
S(pi) and then describe the heuristics. S(P(i+M)) is
same as S(pi), as can also be seen from Fig. 1. Thus
to compute such sets for K.M steps, it is enough to
compute these sets for the M steps Pl, ..., PM. R de-
notes the sum of the number of reduction schemas of all
the given tasks. C(rij) denotes a copy of the set of ac-
tions in reduction schema rij (we assume that there are
symbols to distinguish between multiple occurrences of
an action). Each S(pi) contains the no-op ¢. The com-
putation in the template terminates in O(MRh) time,
where h is the time required for applying the heuristic
on an iteration. At the time of termination, all C(rij)
are empty.

1. For each step Pi, i ¯ [1, M], S(pi) = {)
2. For each task Nj,j ¯ [1,m],
3. For each reduction schema rjq of Nj,
Choose an action o, ¯ C(rjq) using

the chosen heuristic and do
{ s(pi) (s(p0
C(r~q) ~ (C(r~q) - {o,)), Go

If a,d,p ~re the respectively the maximum num-
ber of add effects, delete effects and preconditions
an action may have, the complexities of applying the
heuristics 2, 3, 4 and 5 to generate S(p~) for
steps are O((MRa)2), O((MRd)2), 2) and
O((MRs)2) respectively, where s is the maximum of
the individual sums of the number of preconditions and
add effects of individual actions.

Note that minimizing [S(pi) I will not necessarily
lead to the smallest encoding, since the potential effects
and preconditions of steps decide the potential causal
links and threats. The orderings and causal links from
the reduction schemas contribute to the encoding size
as well. Computing the S(pi) sets that will lead to the
smallest encoding is combinatorially hard (that is why
we propose a variety of heuristics below). We do not
claim that small encodings are always easier to solve.

The different heuristics below attempt to reduce the
numbers of different types of clauses and variables.
The empirical results in Fig. 2 and 3 show that indeed,
the encodings generated using different heuristics have
significantly different sizes or solving times, especially
on larger problems.

1. Least increase in size of S(pi) While choosing
the action o, to include in the current S(pi), an action
that is already an element of S(p~) is preferred to an
action that is not. If it is necessary to include a new
action, it is chosen arbitrarily. Since there are M steps
whose S(pi) needs to be computed and the maximum
value of I S(pi) is R, andO(MR) comparisons are
needed to add an action to S(pi), the complexity of
computation in the template is O((MR)2). The mo-
tivation for introducing this heuristic is to reduce all
types of variables and clauses that contain primitive
steps or actions. The results (Fig. 2) show that this
heuristic lead to the lowest average encoding solving
time.

2. Least increase in the size of the set of po-
tential add effects Let A(S(pi)) denote the union
of the add effects of actions in current S(p~). While
choosing the action o8 to include in S(pl), the size
of the intersection of the set of add effects of o8 and
A(S(pl)) is considered, oa is included in S(pi) if the
size of the intersection is the least. If there is a tie,
choice of o8 is made arbitrarily. The motivation for
introducing this heuristic is to reduce the number of
causal links, threats and also the variables of type

29

Adds(pi, f),Pi "< pj.

3. Least increase in the size of the set of poten-
tial delete effects Let D(S(pl)) denote the union
of the delete effects of actions in current S(p~). This
works similar to heuristic 2, however here the intersec-
tion of the set of delete effects of os and D(S(pi)) is
considered. The motivation for introducing this heuris-
tic is to reduce number of threats, step ordering vari-
ables (needed to resolve threats), step orderings follow-
ing from these l~y transitivity and Deletes(pi, f) type
variables.

4. Least increase in the size of the set of poten-
tial preconditions Let P(S(pi)) denote the union
of the preconditions of actions in current S(pi). This

works similar to heuristic 2, however here the intersec-
tion of the set of preconditions of os and P(S(pi)) is
considered. The motivation for introducing this heuris-
tic is to reduce the number of causal links, threats and
variables of type Needs(pi, f) and Pi -~ Pj.

5. Least increase in the sum of the sizes of
A(S(pi)) and P(S(p~)) While choosing the action os
to include in current S(pi), the sum of the sizes of
the intersections in heuristics 2 and 4 is considered.
The motivation for introducing this heuristic is to re-
duce the number of causal links, threats, step order-
ing variables and variables of type Adds(pi, f) and
Needs(pi, f). The results (Fig. 2 and 3) show that this
heuristic always lead to encodings with lowest number
of clauses and variables.

4 Empirical Evaluation

To test the effectiveness of our heuristics, we conducted
an empirical evaluation on several benchmark domains.
The descriptions of the benchmark domains used and
the "satz" systematic SAT solver we used are available

at ftp://ftp.cs.yale.edu/pub/mcdermott/domains/
and http://aida.inteUektik.informatik.th-
darmstadt.de / --~ hoos/SATLIB/respectively. Tsp is
the traveling salesperson domain. The task reduction
schemas were created by putting together actions for
traveling (Tsp), loading and unloading packages and
flying planes (transportation logistics), decorating, in-
stallation and construction (house building) and bark-
ing, debarking and sailing (Ferry). The description
the house building domain can be found on the home
page of AIAI, Edinburgh, UK. The plans in the Tsp
and Ferry domains were purely serial. Thus the num-
ber of actions in plans in these domains is same as
the plan lengths. (Notation in Fig. 2, 3 - V, C, T de-

note the number of variables, clauses in and the times
needed to solve the encodings respectively. Times of
the solved encodings are in CPU seconds. A "*" indi-
cates that the encoding could not solved within 5 min-
utes. A "-" denotes that the encoding was too large

to store. LA, LAE, LDE and LPC are the least
increase in the set of potential action bindings,
add effects, delete effects and preconditions heuris-
tics respectively. LPCA is the least increase in the
sum of the sizes of the sets of potential add effects and
pre-conditions heuristic. Caus. and Star. are the
causal HTN encoding based on naive S(pi) computa-
tion strategy and the state space HTN encoding from
[Mall 99(a)] respectively.)

The heuristics are integrated with the code that gen-
erates the encodings. Task reduction schemas not re-
quired for solving the problems were not used in gener-
ating the encodings. It is very common in HTN plan-
ning to use only the relevant task reduction schemas,
e.g. [Smith & Nau 93] reduced the number of nodes in
the game tree (for playing bridge) fro/n 6.01 × 1044
to 1300, by using only the relevant task reduction
schemas. The encodings were generated and solved
on a Sun Ultra with 128 M RAM. The K chosen was
same as the number of reduction schemas required to
solve the problems, however this need not be the case.
Note that K is a parameter input to the encoding gen-
erator and K is not a property of the domain. Like
[Ernst et al 97], we do not report the times required to
simplify the encodings, since these times were signifi-
cantly small. When we talk of reduction in encoding
sizes, it is a reduction over the causal HTN encoding
of [Mall 99(a)] (which is simplified by pre-processing
without heuristics), unless stated otherwise. The em-
pirical results are reported in Fig. 2 and 3.

In a k step state space encoding, a link oa /~ Ob
k--1needs to be represented as V~o2 Vj=~+1 (oa(i) A Ob(j)

(A~=i+l,f(q))), where oa(i) and oh(j) denote that oa
and Ob occur at times i and j respectively and](q)
denotes that f is true at q. Because of this, the state
space encodings were always the largest. Thus we do
not evaluate them on larger problems (Fig. 3). Below
we discuss experimental results from Fig. 2.

The LA heuristic (I S(pi) minimization) islik ely to
yield improvement when task reduction schemas have
significant number of actions in common. The schemas
from the logistics and ferry domain did have trans-
portation related actions in common and the schemas
from house building domain did have construction re-
lated actions in common. Thus the first heuristic did
yield encodings containing fewer variables and fewer
clauses in these domains.

The LAE heuristic ([A(S(p~)) [minimization) is

3O

Domain, LA LAE LDE LPC LPCA CallS. Star.
Actions in plan V, C, T V, C, T V, C, T V, C, T V, C, T V, C, T V, C, T

Ferry, 8 235 211 221 231 211 235 421

K=2, T=8 939 823 883 925 823 947 1750
0.03 0.03 0.03 0.03 0.02 0.05 0.06

Ferry, 15 827 827 811 811 747 1043 4767
K = 4, T = 16 6359 6359 6267 6267 5671 9239 32368

0.61 0.59 0.53 0.57 1.2 5.81
Tsp, 12 1189 1189 1189 1189 1189 1189 3289
K -- 6, T = 12 6397 6397 6397 6397 6397 6409 17534

0.96 0.98 0.92 0.96 0.96 0.61 1.08
Logistics, 15 758 794 794 634 634 990 4930
K ---- 4, T ---- 16 5786 6154 6154 3778 3778 8738 32323

0.4 0.58 0.59 0.29 0.28 0.88

Build House, 46 4371 4413 4317 4239 4239 8463 449893
K=6, T=48 112829 112949 112673 112451 112451 124883 8180596

24.4 28.94 24.19 22.38 22.46 57.87

Figure 2: Empirical evaluation of the 5 heuristics on smaller problems.

Domain, LDE LPC LPCA Caus.WR Caus,

Actions in plan V, C, T V, C, T V, C, T V, C, T V, C, T
Logistics, 27 2256 2137 2137 3411 3411
K = 7, T = 28 29682 28604 28604 61154 61147

5.45 5.03 5.39 18.13 > 45 min
Logistics, 35 3818 3629 3629 6041 6041
K = 9, T = 36 63704 61616 61616 152597 152588

18.28 17.36 17.39 148.41 > 15 min
Ferry, 24 1863 1617 1617 2511 2511
K = 6, T = 24 21039 18453 18453 35799 35793

3.1 2.26 2.16 10.47 189.34
Ferry, 31 3219 3219 2995 4875 4875
K = 8, T = 32 48555 48555 44451 99787 99779

10.63 10.53 7.9 59.99 > 10 min.
Ferry, 39 5143 5143 4803 7693 7693
K ---- 10, T = 40 95623 95623 87833 195143 195133

49.04 48.85 21.27 647.64 > 7 hrs
Ferry, 43 6306 6306 5899 9375 9375
K = 11, T = 44 128043 128043 117780 260230 260219

50.08 50.73 34.11 749.38 > 15 min.
Ferry, 55 10671 10671 10027 15585 15585
K -- 14, T = 56 269811 269811 249105 541327 541313

155.29 155.12 124.17

Figure 3: Empirical evaluation of the heuristics on larger problems¯

31

likely to yield improvements when actions from differ-
ent reduction schemas have significant number of com-
mon add effects (note that no S(pi) can contain more
than 1 action from the same reduction schema, this is
also clear from Fig. 1 and the template). Since this
was the case in the ferry and logistics domains (for
example, loading (into same vehicle) and unloading
objects (at the same location)), this heuristic yielded
improvement in the sizes and solving times. The LDE
heuristic is likely to yield improvement when actions
from different reduction schemas have significant num-
ber of common delete effects. On many problems, this
heuristic was not the best one because the the num-
ber of common add effects dominated the number of
common delete effects.

The LPC heuristic yielded better results when ac-
tions from different reduction schemas had lot of com-
mon preconditions, as in some problems from the ferry,
house building and logistics domains. The LPCA
heuristic yielded better results when actions from dif-
ferent reduction schemas have significant number of
common preconditions and/or add effects. Reduction
schemas fom the Tsp domain did not have any actions
in common and .the actions did not have any common
preconditions or add effects or delete effects. Thus it
is not a surprise that all heuristics lead to the same
encoding. The maximum reductions in the number of
variables, clauses and solving times that we obtained
on smaller problems (Fig. 2) were 50%, 57% and 90%
respectively. Note that there are several other do-
mains like mprime, mystery, molgen-strips and monkey
(descriptions available at the Yale URL cited earlier)
where the actions have common pre-conditions or add
effects or delete effects and we expect the heuristics to
yield better results in the hierarchical versions of these
domains as well.

No single heuristic lead to the fewest number of vari-
ables or fewest clauses or the smallest solution times on
all the problems. Different heuristics are sensitive to
different properties of actions in the reduction schemas
and thus affect different parts of the encodings. Note
that we did not create artificial domains that had the
distinguishing properties that the heuristics exploit.
The performance difference between our heuristics is
likely to increase if they are evaluated on such domains.

The LPCA heuristic always lead to encodings with
the fewest variables and clauses due to the more infor-
mation it used (add effects as well as pre-conditions).
Other heuristics use either only the information about
action names or only the pre-conditions or only the
add effects or only the delete effects and because of this
narrow focus, they did not lead to S(pi)s that lead
the fewer number of clauses and variables than those

in the one lead to by LPCA. Based on the results in
Fig. 2, the heuristics can be ranked as LPCA, LPC,
LDE, LA, LAE (as per an increasing order of the av-
erage number of variables), as LPCA, LPC, LDE, LA,
LAE (as per an increasing order of the average num-
ber of clauses) and as LPC, LPCA, LDE, LA, LAE
(as per an increasing order of the average number of
variables). Because of this and the fact that the sizes
of the encodings generated by LA, LAE and LDE were
close on larger problems as well, we did not evaluate
LA and LAE on larger problems.

None of the larger problems from the chosen domains
(Fig. 3) could be solved within half an hour. Thus
decided to add more information to the encodings in
the form of the number of occurrences of each non-
primitive task needed to solve the problems, as well as
the non-primitive step-+non-primitive task bindings,
for example, (sl -- N1) A (s2 ---- N2) A (sa ---- Na).
experimental results obtained with this additional in-
formation are shown in Fig. 3 (satz was used to solve
all these encodings). Cans. in Fig. 3 is the causal
HTN encoding from [Mall 99(a)] (that was simplified,
but which did not use any heuristics to better compute
S(pi)). Cans. WR in Fig. 3 is their encoding with the
additional information in the form of (si = Nj) type
bindings. Thus the number of variables in the Caus.
and Cans. WR encodings is the same and the number
of clauses differ by a very small amount.

The maximum reductions in the number of variables,
clauses and solving times we obtained on larger prob-
lems were 40%, 60% and 95% respectively (Fig. 3).
These are reductions over the corresponding values for
the Cans. WR encoding (to compare encodings with
the same additional information). Note that though
the additional information helped in solving the larger
problems, the heuristics still had a significant impact
on the solving times, as shown by these reductions. On
these larger problems, the LPCA heuristic always lead
to encodings with the fewest number of variables and
clauses, as well as the lowest solving times.

Besides measuring the total number of variables
and clauses in the encodings, we also measured
the number of different types of variables (e.g.
Adds(pi,f),Dels(pi, f),pi -~ causal link s and
Needs(pi, f) etc.) and clauses (e.g. those needed for
threat resolution, mutual exclusion and enforcing tran-
sitivity). We conducted this dissection of the total sizes
to find if the heuristics indeed reduced the number of
variables and clauses that they were expected to. An
interesting trend revealed by this study is that though
the naive causal HTN encodings (for which S(pi) is
same as the set of all ground actions from all given
task reduction schemas) contain more causal link vari-

ables (O(T2, [[)) th an th e number ofprecedence
variables (O(T2)), some of the simplified causal HTN
encodings of smaller as well as larger problems (pre-
processed using our heuristics or [Mall 99(a), 99(b)]
strategy) had more precedence variables than causal
link variables. This is because the number of prece-
dence variables increases due to the need to enforce
transitivity (that is, ifpi -~ pj and pj -~ pq are created,

Pi -~ Pq should be created as well). Similarly, though
the number of threats resolution clauses in naive causal
HTN encodings (O(T3* [U [)) is higher than the
ber of transitivity axioms (O(T3)), the reverse holds
for the simplified encodings of some of the smaller and
larger problems.

We also evaluated the heuristics on problems from
other domains like moving trains to different tracks
(Meet pass) and putting objects into a briefcase, tak-
ing them out and moving the briefcase (Briefcase do-
main), where the heuristics did yield reductions in
the encoding sizes and solving times. We also eval-
uated 3 more heuristics - 1. Least increase in size of
(A(S(pi))UD(S(pi))) (LADE) 2. Least increase in the
size of (D(S(pi))tJP(S(pi))) (LDPC) and 3. Least in-
crease in the size of (D(S(pi)) t.J P(S(pi)) ¢J
(LADEPC). However these 3 heuristics did not yield
significantly higher reductions in the sizes of the en-
codings or their solving times than those achieved by
the five previously discussed heuristics.

In many cases (as can be seen from the sizes in Fig.
2 and 3), different heuristics lead to the same encod-
ing because of the relationships between the criteria
used by different heuristics. It is rare for actions in the
planning domains to have (i) same add effects and dif-
ferent pre-conditions and/or delete effects, or (ii) same
delete effects and different pre-conditions and/or add
effects or (iii) same pre-conditions and different add
and/or delete effects. Thus S(pi)s computed by differ-
ent heuristics may be the same, leading to the same
encodings.

Several more heuristics for computing the S(pi) sets
can be developed. Note that when computing S(pi),

interactions of actions already included in it with the
actions in the already computed S(pj),j [1,i- 1]
are not taken into account. A heuristic that adds an
action to S(pl) such that the sum of the sizes of the
respective intersections of A(S(pj)),j [1,i- 1] with
the P(S(pi)) resulting from the inclusion of the ac-
tion is minimum, better models the requirement that
there should not be too many steps that make a pre-
condition true. This is a useful heuristic since this re-
quirement also reduces the number of causal link vari-
ables. The time required to generate S(pi) sets using
such heuristics is larger than the ones we evaluated,

but it is still low order polynomial. The strategy of
randomly breaking ties while computing S(pi) can
replaced by finer criteria that take into account more
features of the reduction schemas. The distribution of
actions among the reduction schemas matters. For ex-
ample, the heuristics perform better when n reduction
schemas contain an action, than when a single reduc-
tion schema containing n occurrences of the action.
Heuristics thus need to be sensitive to more features of
reduction schemas. This opens up directions for future
work on developing such more sensitive heuristics.

[Stone et al 94] have stressed the need to have differ-
ent heuristics for controlling search in plan generation
in domains with different characteristics. We stress the
need to have different structure-sensitive heuristics for
pre-processing the knowledge from different domains.

5 Constraint-based Plan Synthesis

Planners in [Blum & Furst 95], [Kautz & Selman 96]
and [Kantz & Selman 99] cast planning as some form of
constraint satisfaction without domain specific knowl-
edge. [Blum & ~rst 95] reported the Graphplan plan-
ner that builds a structure called "planning graph" and
searches it to extract a plan. Odd numbered levels in
the planning graph are action levels and even num-
bered levels are proposition levels. Zeroth proposition
level is the initial state. A proposition that occurs in
proposition level i occurs in all proposition levels j > i.
Similarly, actions in i th action level also occur in all j
th action levels, j > i. i th proposition level is a union
of the (i-2) th proposition level and the add and delete
effects of actions at (i - 1) th action level. A planning
graph compactly encodes several action sequences of
a certain length. Graphplan propagates mutual exclu-
sion relations between actions in the same action level.
[Kautz & Selman 99] convert the planning graph built
by Graphplan into a propositional encoding and solve
it.

[Kautz & Selman 98] extend the SAT planning ap-
proach to include domain specific state constraints, e.g.
state invariants and simplifying assumptions (a loaded
truck should move immediately). [Lotem & Nau 00]
constrain the planning process in Graphplan [Blum &
Furst 95] so that the plans also obey the constraints
in the task reduction schemas. The simplification ap-
proaches in all the planners above that cast planning as
some form of CSP with/without domain knowledge dif-
fer from our heuristics because these approaches infer
additional constraints (generally using the knowledge
of initial and goal state) or control the search online
(doing dynamic constraint satisfaction) or they have
different type of domain specific knowledge.

33

6 Conclusion
The performance of planning as satisfiability has been
hitherto remarkably improved by various techniques.
These techniques are however not sensitive to the
structure of the domain knowledge. Motivated by the
question of representing the domain knowledge (given
in the form of HTNs) in a way that increases the
encoding simplifcation possibilities, we proposed sev-
eral polynomial time pre-processing and user intent
preserving heuristics to achieve these representations.
Note that our heuristics themselves do not perform any
logical inference on the domain knowledge and do not
need to know the initial and goal states of the prob-
lem. We empirically demonstrated that on each of the
problems, at least one. heuristic yielded an encoding
that was the fastest to solve and on most of the prob-
lems, all heuristics yielded improvements in the sizes
and solving times.

Our heuristics are based on purely quantitative mea-
sures and can be integrated with many other tech-
niques of enhancing SAT/CSP-based HTN planning.
The ideas in the heuristics can be adapted to other
kinds of planning cast as some form of CSP (like integer
linear programming) as well, where the domain specific
knowledge is provided as sets of constraints, e.g. plans
to be merged. Given that the current SAT solvers can
handle a limited number of variables (104) and clauses
(106) in real time, the development of such heuristics
sensitive to the structure of the domain knowledge is
important.

References

[Blum & Furmt 95] Avrim L. Blum and Merrick L. Furst, Fast planning
through planning graph analysis, Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), Montreal, 1995.

[Currle & Tare 85] Currie K and Tare A., O-Plan - Control in the open
planning architecture, BSC Expert Systems conference, Cambridge uni-
versity press, 1985.

[Ernst et nl 97] Michael Ernst, Todd Millstein and Daniel Weld, Auto-
matic SAT compilation of planning problems, Proccedlngs of IJCAI-97.

[Erol 9?5] Kutluhan Erol, Hierarchical task network planning: Formal-
ization, Analysis and Implementation, Ph.D thesis, Dept. of computer
science, Univ. of Maryland, College Park, 1995.

[Kambhampati 97] Subbarao Kambhampati, Refinement planning as a
unifying framework of plan synthesis, AI magazine, Summer 1997.

[Kambhampati et el. 98] Subbarao Kambhampati, Amol Mali & Biplav
Srlvastava, Hybrid planning in partially hierarchical domains, Proceedings
of AAAI-98.

[Kautz ~ Selman 90] Henry Kautz and Bart Selman, Pushing the enve-
lope: Planning, propositional logic and stochastic search, Proceedings of
the National Conference on ~.rtificial Intelligence (AAAI), 1996.

[Kautz et al 90] Henry Kautz, David McAllester and Bart Selman, En-
coding plans in propositional logic, Proc. of Knowledge P~epresentation
and Reasoning conference, Cambridge~ Boston, 1996.

[Kautz &~ Selrnan 98] Henry Kautz and Bart Selman, The role of
domain-specific knowledge in the planning as satisfiability framework, Pro-
ceedings of the Artificial Intelligence Planning Systems Conference, Pitts-
burgh, 1998.

[Kautz & Selman 99] Henry Kautz and Bert Selman, Unifying SAT-
based and graph-based planning, Proceedings of IJCAI-99, Stockholm.

[Lotem & Nau 00] Amnon Lotem and Dana S. Nau, New advances
in GraphHTN: Identifying independent subprobleme in large HTN do-
mains, Proceedings of the Artificial Intelligence Planning Systeme con-
ference (AIPS), Colorado, 2000.

[Mall 99(a)] Amol Mall, Hierarchical task network planning as satiefi-
ability, Proceedings of European Conference on Planning, Durham, UK,
1999.

[Mal| 99(b)] Amol Mall, Hierarchical task network planning as satisfi-
ability, Ph.D thesis, Dept. of computer science & engg., Arizona state
university, Tempe, May 1999.

[Smith gz Nau 98] Stephen J. J. Smith and Dana Nau, Games: Planning
and learning, Papers from the 1993 AAAI Fall symposium.

[Stone et al 94] Peter Stone, Manuela Veloso and Jim Blythe, The need
for different domain-independent heuristics, Proceedings of the Artificial
Intelligence Planning Systems (AIPS), 1994, 164-169.

[Wllkins 88] David Wilkins, Practical planning~ Extending the classical
AI planning paradigm, Morgan Kaufmann, 1988.

34

