
Selecting Task Decompositions for Constrained Heuristic Search*

Elise H. Turner and Roy M. Turner
Department of Computer Science

University of Maine
Orono, ME 04469-5752

E-Maih eht ]rmt@umcs.maine.edu

Abstract

There is a large class of problems that can be repre-
sented by task decomposition trees which specify al-
ternative sets of variables that must be given values.
Any one of these alternatives can be represented as a
constraint satisfaction problem. We describe a tech-
nique for selecting a task decomposition that results
in a constraint problem that can be solved efficiently.
This technique takes advantage of the constraint graph
textures suggested by work on constrained heuristic
search. First, texture-based heuristics developed for
the task decomposition tree are used to select alter-
native subtasks. As each subtask is selected, its vari-
ables, and any constraints associated with them, are
added to the constraint graph and constraints are
propagated. In addition, variables in the constraint
graph may be assigned a value when suggested by
texture-based heuristics. When a complete decompo-
sition has been selected, constrained heuristic search is
used to finish solving the constraint problem. Exper-
imental results suggest that the use of texture-based
heuristics for selecting the task decomposition and for
deciding when to assign values in a partial constraint
graph result in a significant improvement in efficiency
and time needed for solving the problem.

Introduction

There is a large class of problems which can be charac-
terized by task decomposition trees (TDTs). A TDT
is an AND-OR tree representing alternative ways of
accomplishing a task. Children of AND-nodes repre-
sent subtasks, while children of OR-nodes are alter-
natives for achieving a subtask. In many cases, the
leaves of the TDT contain variables which must be as-
signed without violating some set of constraints, creat-

*This material is based upon work supported under
contract N0001-14-98-1-0648 from the U.S. Office of Naval
Research. The content of the information does not neces-
sarily reflect the position or the policy of the Government,
and no official endorsement should be inferred. Portions of
this work also appear in (Turner 8z Turner 1999) and are
used by permisson of the International Journal of Applied
Intelligence.

ing a constraint satisfaction problem (CSP) that must

be solved for the selected task decomposition.
In this paper, we describe how the flexibility in

choosing a task decomposition can be exploited to cre-
ate a CSP that can be solved efficiently. We use con-
strained heuristic search (CHS) (Fox, Sadeh, & Baykan
1989) to solve the CSP so that we can exploit texture-
based heuristics to estimate how alternatives within
the task decomposition will affect the CSP. However,
we do not attempt to represent the TDT in the CHS
formalism. Consequently, our approach can be used
on TDTs that are generated from a planner or spec-
ified by some other means without reference to the
CHS formalism. After a more detailed discussion of
our approach and an example, we present experimen-
tal results which suggest that texture-based heuristics
can be used successfully to create CSPs directly from
a TDT.

Using CHS with Task
Decomposition Trees

CHS combines constraint satisfaction and heuristic
search by treating constraint graphs as search states.
The constraint graph contains three types of nodes:
variable nodes, constraint nodes and satisfiability spec-
ifications. Variable nodes are adjacent to the con-
straints in which they are involved, and constraint
nodes are adjacent to the variables which they relate.
Satisfiability specifications are adjacent to constraint
nodes connected by AND, OR or XOR. Operators
are applied to the constraint graph to generate a new
search state. Constraints are then propagated within
the new search state, and a new operator is selected to
create another search state. Operators include adding
or deleting constraints or variables and reducing the
domains of variables, possibly by making an assign-
ment. Features of the topology of the constraint graph
are described by textures. Heuristics, based on these
textures, are created for a domain and used to select
operators.

47

From: AAAI Technical Report WS-00-02. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



We extend CHS for use with a TDT as follows:

¯ Texture-based heuristics are used to determine
whether a new subtask should be selected or a value
should be assigned to some variable in the constraint
graph.

¯ Texture-based heuristics are used to select the al-
ternative that will be used to satisfy each required
subtask.

Our extensions can be viewed as suggestions for how
heuristics can be used to select the operators to be ap-
plied to the constraint graph. However, it is important
to note that the TDT remains separate from the con-
straint graph. Keeping the TDT separate from the
constraint graph is advantageous because it allows the
TDT to be represented outside of the CHS formalism.
Although satisfiability specifications allow alternative
decompositions to be represented easily in some do-
mains (e.g., (Baykan & Fox 1991)), converting a 
to a CHS graph incurs some cost. It can also limit
the options available for selecting the decomposition
by forcing a value to be prematurely associated with
the variable or by forcing an entire task decomposition
to be selected, precluding feedback from one alterna-
tive selection from influencing the next.

However, when the TDT is not represented in the
CHS formalism, heuristics developed to select an al-
ternative cannot simply measure a texture, but must
predict the effect that possible alternatives will have
on the textures of the constraint graph. In addition,
processing before the decomposition is selected may
differ from processing when the constraint graph is
completed. For example, different heuristics may be
used to determine the next operator to be applied to
the constraint graph.

Our algorithm distinguishes between processing
which occurs as the task decomposition is being se-
lected and that which occurs after the constraint graph
is completed. Before an entire task decomposition has
been selected, our algorithm decides whether to select
an alternative to add to the constraint graph or to as-

sign a value in the existing constraint graph. In this
paper, we will refer to any constraint graph that does
not contain an entire task decomposition as a partial
constraint graph. If the algorithm decides to select an
alternative, it chooses an alternative for satisfying a
single subtask and adds the variables and constraints
to the constraint graph. This constitutes a new state
for CHS, and constraints are propagated. Once an en-
tire task decomposition has been selected, our algo-
rithm performs CHS as described in (Fox, Sadeh, 
Baykan 1989).

It is important that the appropriate amount of feed-
back reaches the variables of the TDT without over-
constraining the search. This means that the selec-
tion of one alternative should be allowed to influence
the next, yet the search should not commit to values
too early. The former is handled by selecting the al-
ternative for one subtask at a time and propagating
constraints when that value is added to the constraint
graph. For example, if a variable’s domain is restricted,
the contention for values in the domains of the vari-
ables remaining in the TDT may change. This new in-
formation may influence the texture-based assessment
of the TDT and cause the alternative that best fits the
existing constraint graph to be selected.

In general, we delay committing to values for vari-
ables in the constraint graph as long as possible. This
allows the decision about which value to select to take
advantage of as much global information as possible. In
the task decomposition tree itself the only information
available to use to estimate textures of the resulting
constraint graphs is information about the variables’
domains. This is because variables may not belong to
all task decompositions, so not all variables in the TDT
will be used in the solution. As a result, information
that depends on the selection of an alternative can-
not be easily and reliably calculated. For example, the
number of constraints involving a variable, needed for
the variable tightness texture (Fox, Sadeh, & Baykan
1989), is not available. However, variables present in
a state’s partial constraint graph represent commit-
ments to part of the structure that. will be present in
the complete constraint graph. We can take advantage
of information about the constraints in the partial con-
straint graph to later help select a value for the vari-
able. Thus, there is some advantage for delaying value
selection until a variable js inserted into the constraint

graph so that this information can be used.

However, value selection need not wait until the com-
plete constraint graph is built. There are cases when
values should be assigned in partial constraint graphs
to help inform the alternative selection process. For
example, if we can identify variables which compete
for particular values and assign them to another value,
then we reduce future competition for that value in the
complete constraint graph. By propagating the assign-
ment’s effects back into the TDT, possibly reducing the
domains of some variables, we can use this information
to select alternatives.

An Example Domain

In our example domain, a set of components, each of
which may have several capabilities, must be assigned
subtasks so that all subtasks in some task decompo-

48



3/2

{CP09} {CPI4, {CPII, {CP12} {CPI4, {CP11, {CPI4, {} {CPII, {CPII, {CPl2} {CPI4, {CPI4,
CPI3} CP08} CPII} CP08} CPII} CP08} CP08} CPII} CPl3,

CPIO,
c POT }

Figure 1: A task decomposition tree, showing the domains of variables. Circles are AND-nodes, diamonds are
OR-nodes, and boxes are variables. CAPxx is a variable requiring capability xx, CPyy is a component. Numbers
associated with nodes are in the form: AND-rating/OR-rating.

sition have been assigned. Examples of components
of this sort are robots that have multiple sensors and
effectors that can be operated simultaneously, or com-
puters that can run multiple programs at the same
time. Components are assumed to be assigned to a set
of tasks for the duration of the execution of the root
task.

We assume that the problem is given to the pro-
gram in the form of a TDT and a description of the
set of available components. Primitive tasks appear
at the level above the leaves and are represented by
AND-nodes whose children represent the capabilities
required to carry out the subtask. A leaf specifies the
capability required, the number of resource units that
will be consumed in performing the capability for the
task, and the list of components that can perform the
capability (i.e., that have the capability and that have
the requisite resource units). The leaves are called vari-
ables, since they will be added to the constraint graph,
and the lists of components are the variables’ domains.
Figure 1 shows a representative task decomposition
tree. Component descriptions include the capabilities
that the component can perform and the number of

resource units it has.

The constraint graph that corresponds to a decom-
position is constructed from the variables in that de-
composition of the TDT. Assignment of values to vari-
ables are constrained in two ways: the component as-
signed to the variable must have the capability needed,
and no component can be assigned tasks in excess of its
total resource units. Currently, constraints cannot be
relaxed to produce a solution. We assume that the do-
mains of the variable nodes contain no component that
does not have the requisite capability or that does not

have enough resource units to perform the capability
for that task in isolation. That is, these are the graph’s
unary constraints, and we assume the constraint graph
is node consistent (Mackworth 1977). This can be as-
sured in a simple preprocessing step.

The more interesting kind of constraint is the sec-
ond type. These are resource constraints on the com-
ponents and the variables that potentially use them.
They are represented as n-ary constraints, with the
arity dependent on the number of variables in the con-
straint graph that have the component in their domain.
These are the constraints that actually appear in con-
straint graphs in our approach. When a new variable
is added to a constraint graph, a new constraint of
arity 1 is added for any component that has a capa-
bility needed by that variable, if no other variable in
the constraint graph has that value in its domain. If a
component has a capability needed by the new variable
and one or more capabilities needed by other variables,
then a corresponding constraint for it will already ex-
ist in the constraint graph. In this case, the existing
constraint is linked to the new variable, increasing the
constraint’s arity by one.

Search begins with an initial state consisting of a
TDT and an empty constraint graph. At each state in
which there are remaining alternatives in the TDT, the
algorithm must decide whether to add an alternative
to the constraint graph or assign a value to a variable
already in the graph.

To do this, we apply a heuristic based on Fox et
al.’s variable contention texture (Fox, Sadeh, & Baykan
1989) to the partial constraint graph to see how likely it
is that a particular value must be assigned to a partic-
ular variable. We can estimate the variable contention

49



by taking advantage of the fact that all variables com-
peting for a value are adjacent to the constraint gov-
erning the resource units of that value. Each constraint
in the graph is given a contention value according to
the formula:

Co-
R~

where the summation is over the variables adjacent to
the constraint in the graph. Rv is the number of re-
source units needed by variable v, IDvl is the size of

variable v’s domain, and R~ is the number of resource
units the constraint’s component has that are currently
unassigned to any variable. This estimates the num-
ber of variables contending for the component. Each
variable in the graph is given a contention value that is
the minimum of all contention values of the constraints
on the variable. If any variable has a contention over
some threshold, a value is assigned to that variable
to relieve contention. The first value tried is the one
associated with the variable’s constraint that has the
least contention. If that does not work (i.e., if search
backtracks to this point), then the variable’s other val-
ues are tried in an arbitrary order. If no contention at
any variable in the partial constraint graph is over the
threshold, then the algorithm selects an alternative to
add to the constraint graph instead.

Alternative selection proceeds by selecting variables
from the TDT to add to the constraint graph, generat-
ing a new state. This process begins at the root of the
TDT and makes a selection at each node until a prim-
itive task is reached. At that point, all the primitive
tasks’ variables are added to the constraint graph.

Two types of selections must be made in this pro-
cess: AND-selections and OR-selections. Since all the
children of an AND-node must be satisfied if the task
is to be achieved, all of its children will ultimately be
selected. However, it is important to first add the vari-
ables to the constraint graph that will be the most
difficult to assign.

To select children of AND-nodes, we use a heuristic
based on constraint reliance (Fox, Sadeh, & Baykan
1989). In a constraint graph, constraint reliance mea-
sures the need for a single constraint to be satisfied.
We estimate this for the structure of the task decom-
position tree based on the number of alternative ways
to achieve the subtask. The constraints associated
with the subtask must only be satisfied if that alterna-
tive is selected. The more alternatives for a subtask,
the less we depend on one particular alternative being
achieved, and, hence, the less we depend on its associ-
ated constraints being satisfied. The goal is to select
the subtask with the fewest alternatives to be added
to the tree first. To do this, an "AND-rating" is com-

puted for each node in the TDT. This is computed
bottom-up. A variable’s AND-rating is the length of
its domain. An OR-node’s AND-rating is the sum of
its children’s, and an AND-node’s AND-rating is the
minimum of its children’s. When selecting a child at
an AND-node, the child with the lowest AND-rating
is chosen.

At OR-nodes, choices are made between alternatives
that will be placed in the constraint graph, so the al-
ternative that will give the constraint graph the best
value for some texture should be selected. We base our
selection on the value goodness texture (Fox, Sadeh, 
Baykan 1989), which is used in selecting operators in
CHS. In the constraint graph, this texture measures
the likelihood that a particular value assignment leads
to a solution (Fox, Sadeh, & Baykan 1989). The cor-
responding heuristic for the TDT selects the task al-
ternative with the greatest number of values. We cal-
culate this heuristic by computing an "OR-rating" for
each node in the TDT. This is done bottom-up, as for
the AND-rating, and, in fact, can be done at the same
time. Variables have OR-ratings that are the length of
their domains. An AND-node has an Ott-rating that is
the minimum of its children’s rating. An OR-node has
an OR-rating that is the maximum of its children’s.
The algorithm selects children of OR-nodes in order of
decreasing OR-rating.

When selections have been made for alternatives for
all subtasks, a complete constraint graph represent-
ing one decomposition will have been created. At this
point, our algorithm uses constrained heuristic search
to solve the constraint graph. In this phase of the algo-
rithm, we consider only CHS operators which select an
assignment for a variable. A new state is created when
a value is selected, then constraints are propagated in
that state. A solution is reached when a consistent
assignment has been made for all the variables.

Two heuristics are used to assign values to variables.
The variable tightness texture is used to select the vari-
able, and the value goodness texture is used to select
the value which will be assigned.

Consider the example represented by the TDT in
Figure 1. The initial state contains the TDT and an
empty constraint graph. The first task to work on
is selected using the AND-ratings of the children of
the top-level node, which estimates the constraint re-
liance texture in a constraint graph that would include
that alternative. TN17 is selected because it has the
minimum AND-rating. "At OR-nodes, the child with
the maximum 0R-rating is selected to estimate the
value of the value goodness texture in the resulting
constraint graph. In this case, the alternative TN15
is selected to achieve TN17. A new state is created

50



containing a constraint graph with the three variables
CAP12, CAP14-1, and CAP06-2. The entire branch
of’the TDT leading to TN17 is pruned in the TDT
of the new state, indicating the selection. Four con-
straints are added to the constraint graph to enforce

the resource limits on the new variables and their val-
ues, one each for components CP12, CP14, CPll, and
CP08. The resulting constraint graph is shown in Fig-
ure 2.

r=2 r= 1

Figure 2: Constraint graph resulting from the TDT in
Figure 1 (see text), r values are resources a component
has available.

r=2 1~_

Figure 3: Constraint graph resulting from the TDT in
Figure 1 (see text), r values are resources a component
has available.

From this state, the program again starts at the
top-level AND-node. This time, it selects TN19 and
its only child, TN18. Two variables for the two in-
stances of CAP06 are added to the constraint graph
in a new state, and the branch is pruned. The re-
sulting constraint graph is shown in Figure 3. At this
point, the program notices three variables whose con-
tentions are above the threshold: all of the variables
requiring CAP06 are contending for CP08, which has
a contention value of 3. The program selects one of
the variables, setting its value to be the component in
the domain associated with the constraint having the
lowest contention, in this case, CPll (contention = ¼).
This reduces contention for CP08. The information is
propagated back into the state’s TDT to update the
domains of other variables that this decision may af-
fect, thus potentially reducing future search.

The program continues in this fashion until a com-
pleted alternative is in the constraint graph, at which
time values are selected and constraints propagated by
CHS.1

Experiments
Two programs, Random and Alt-int, were written to
test the hypothesis that our approach results in in-
creased efficiency and decreased run times. Random,
the control for this experiment, first builds a complete
constraint graph for one task decomposition, without
selecting any values for variables. It then uses CHS to
solve the constraint graph. Textures are not used dur-
ing alternative selection. Instead, random selections
are made at both AND-nodes and OR-nodes in the
task decomposition tree to decide which variables to
add to the constraint graph. Textures are used during
CHS, as described above.

Alt-int implements our approach. The selection of
variables to add to the constraint graph is guided by
textures, as described previously. Value selection is
interleaved with alternative selection. The variable
contention-based heuristic is applied, with a thresh-

old of 1, to determine when values should be selected.
When no more choices remain for a decomposition, the
constraint graph is solved using CHS as in Random.

Both programs generate a new search state when
variables are to be added to the constraint graph
and when values are selected. In both programs,
backtracking occurs when no operator can be ap-
plied or when constraint propagation fails in a state.
The current versions of the programs use chronolog-
icai backtracking. In future work, we will explore
using backjumping (Sadeh, Sycara, & Xiong 1995;
Dechter 1990) or other dependency-directed backtrack-
ing to reduce backtracking and to eliminate the need
to check variable contention.

Both programs were run on 1750 randomly-
generated problems. Of these, 503 had solutions. Alt-
int was run once on each problem, while Random was
run 10 times and the results averaged. Each problem
had a set of 5 components (i.e., potential values for
variables), each with 4 randomly-assigned capabilities
drawn from a pool of 20 possible capabilities. Each
component was assigned 2 resource units. A task de-
composition tree was generated for each problem by
randomly selecting the following parameters: number

1As an illustration of the power of selecting values dur-
ing the construction of the constraint graph, a version
of the program that did not select values until the con-
straint graph was completed backtracked over 5000 times
while solving this problem, with an efficiency (see below)
of 0.0006. Using contention-based value selection, the pro-
gram did not backtrack and had an efficiency of 1.

51



Run Time Efficiency

Random 29.7ms 0.876
(65.9) (0.178)

Alt-int 23.1ms 0.924
(26.6) (0.189)

t-test p < 0.005 p < 0.001

Table 1: Mean run times and efficiencies for the ex-
periment. Numbers in parentheses are standard devi-
ations.

of AND node branches (from 1-5); number of OR node
branches (1-7); and resource units required by each
variable (1-2). Capabilities needed by the variables
were randomly drawn from the same pool of 20 possi-
ble capabilities. Each task decomposition tree had the
same depth (3, not counting the root), corresponding
to tasks with 1-5 subtasks, each having 1-7 alterna-
tive ways of being accomplished, and each alternative
requiring 1-5 capabilities. For the trees with solutions,
the number of possible decompositions (possible con-
straint graphs) ranged from 1 to 12,348, with the size
of the solution space ranging up to 56,376.

160
’ ’ ’ ’ ’ ’ ]/t

/IRandom CHS, R Sqt~re=0.2144
140 Alt-ln, CHS, R Square=0.5855 m - ’

/ 1

12o . .

IO0

.o
ssI

60 ¯ sS ¯

4O

20

0 I l I I I I I

0.5 1 1.5 2 2.5 3 3.5 4
Capability TightneSs

Figure 4: Linear regression of run times for the two
programs versus capability tightness.

To estimate the difficulty of solving each tree, a mea-
sure called the capability tightness was computed as:

CT= IVlZ:lCrl
where IVI is the total number of variables in the TDT
and ICrl is the number of capabilities component r has.
The intuition behind this measure is that as the num-
ber of variables rises relative to the total number of

capabilities available, the likelihood will increase that
variables will be in contention for components. Conse-
quently, as the capability tightness increases, the prob-
lem becomes more difficult to solve, and it becomes
more important to make good decisions at all choice
points.

For each problem, time and efficiency were mea-
sured. Efficiency was computed as the ratio of work
needed to work done. Work needed depended on the
solution found by the program and was computed as
the number of value selections and alternative selec-
tions that would have been done had the programmade
the correct choice at each choice point. Value selections
were counted for explicit applications of an operator or
when constraint propagation narrowed a variable’s do-
main to a single value. Each time a set of variables was
added to a constraint graph, the count of alternative
selections was increased. For Random, efficiency was
computed as work needed over the average work done
over all 10 runs.

Runs were performed on a Sun UltraSPARC 140 us-
ing Allegro Common Lisp. Statistics were calculated
using the CLASP software package (Anderson et aL

1995) and Microsoft Excel.
Table I shows the results of the runs. The p values2

were determined using the paired-sample t-test (Co-
hen 1995). Alt-int performed significantly better than
Random with respect to both time and efficiency.

1 i i i = i r i
Random CHS, R Square-0.386

~ " ~ ~ ~
AIt-lnt CHS, R Square,,,o.1291 - -.

0.9 ~"~

0.8 ~’~

0.7

i 0.6

0.5

0.4

0.3

0.2 I
I

I I I I I
0.5 I I 6 2 2.5 3 3.S

Capability TlghtneM

Figure 5: Linear regression of efficiencies of the two
programs versus capability tightness.

Figure 4 and Figure 5 show linear regressions of

~A measure statistical significance that indicates the
probability that the difference in means resulted from
chance alone.

52



time and efficiency, respectively, against tree capability
tightness for the two programs. Though the R2 values
are low, the results suggest that run time increases and
efficiency decreases with increasing capability tightness
for both programs, as expected. However, run time of
Random seems to increase faster than that of Alt-int,
and its efficiency seems to decrease faster.

Conclusion
This research focuses on solving problems represented
by task decomposition trees using constrained heuris-
tic search. Constrained heuristic search has been inte-
grated with task decomposition problems in the past
(Sathi et al. 1992; Baykan & Fox 1991). In CORAL
(Sathi et al. 1992), a task decomposition tree similar
to the ones described in this paper is used to spec-
ify possible configurations of orders that must be filled
by a warehouse, but textures are not used to select
alternatives from the task decomposition tree. Wright
(Baykan & Fox 1991) does use textures to choose a/ter-
native layouts for spatial planning problems. However,
Wright relies on hierarchical constraints to represent
task decompositions entirely within the CHS formal-
ism. This works well for their domain, but as suggested
above, it is less than idea/when the task decomposi-
tion tree will be provided by a planner or other problem
solver, including a human who is unfamiliar with the
formalism.

Our technique both exploits heuristics for selecting
alternatives and allows alternative ways of solving the
problem to be represented in a standard task decompo-
sition tree. We have presented a technique for selecting
a task decomposition by applying heuristics based on
textures. These heuristics allow us to make predictions
about which alternatives will lead to the most favorable
textures in the resulting constraint graph. Experimen-
tal results have shown that texture-based heuristics for
selecting alternatives and for deciding when to select
values in a partial constraint graph lead to significant
improvements in run time and efficiency of search.

References
Anderson, S. D.; Westbrook, D. L.; Schmill, M.; Carl-
son, A.; Hart, D. M.; and Cohen, P. R. 1995. Com-
mon Lisp Analytical Statistics Package: User Man-
ual. Department of Computer Science, University of
Massachusetts.

Baykan, C. A., and Fox, M. S. 1991. Constraint
techniques for spatial planning. In ten Hagen, P.,
and Veerkamp, P. J., eds., Intelligent CAD Systems
III: Practical Experience and Evaluation. New York:
Springer-Verlag. 187-204.

Cohen, P. R. 1995. Empirical Methods in Artificial
Intelligence. Cambridge, Massachusetts: The MIT
Press.

Dechter, R. 1990. Enhancement schemes for con-
straint processing: Backjumping, learning and cutset
decomposition. Artificial Intelligence 41:273-312.

Fox, M. S.; Sadeh, N.; and Baykanl C. 1989.
Constrained heuristic search. In Proceedings of the

Eleventh International Joint Conference on Artificial
Intelligence (IJCAI-Sg).

Mackworth, A. 1977. Consistency in networks of
relations. Artificial Intelligence 8(1):99-118.

Sadeh, N.; Sycara, K.; and Xiong, Y. 1995. Back-
tracking techniques for the job shop scheduling con-
straint satisfaction problem. Artificial Intelligence
76:455-480.

Sathi, N.; Fox, M. S.; Goya/, R.; and Kott, A. S.
1992. Resource configuration and allocation: A ease
study of constrained heuristic search. IEEE Expert
7(2):26-35.

Turner, E. H., and Turner, R. M. 1999. A constraint-
based approach to assigning system components to
tasks. International Journal of Applied Intelligence
10(2/3):155-172.

53




