
Applying Textual Case-based Reasoning and

Information Extraction in Lessons Learned Systems

Kevin D. Ashley

Graduate Program In Intelligent Systems
University of Pittsburgh Learning Research and Development Center

3939 O’Hara Street
Pittsburgh, Pennsylvania 15260

ashley+@pitt.edu
Abstract

Textual Case-Based Reasoning and Information Extraction
may assist in constructing Lessons Learned Systems where
the lessons are texts. For a particular lesson domain,
developers first should identify the kinds of information
needed to compare lessons. Information Extraction
techniques may then be applied in at least three ways to help
extract such information automatically from lesson texts.

Introduction

A Lessons Learned System (LLS) makes available
organization’s previously learned lessons so that
decision makers can use them to guide the analysis of
new situations. It should assist users to: (1) retrieve
relevant previous lessons, (2) assess whether a lesson
can be applied in the current circumstances, and (3)
adapt a lesson to the current problem’s differences.

The belief that lessons learned are a valuable
organizational resource is inherently case-based.
Case-Based Reasoning (CBR) means comparing
problem to prior cases in order to draw conclusions
about the problem and guide decision-making
(Ashley 1992; Kolodner 1995). Treating lessons
learned as the cases, CBR may be helpful if it is
reasonable to assume that previously learned lessons
can guide decision-making in similar circumstances.

Determining similarity is crucial. A decision-maker
must assess whether the new circumstances are
relevantly similar. She must be able to compare the
factual contexts of the past case and current problem
to decide whether the lesson is feasible and
appropriate in the new circumstances and how to
adapt it to account for any important differences.

In this respect, the record of a past lesson must
include enough information for a decision-maker to
assess relevance, application and adaptability.
Normally, this includes a description of the past
situation’s facts, the problem presented, the successful
solution to the problem, any failures encountered in
finding or implementing the solution, and an

explanation of the successes or failures.
While an accurate description of a past situation

may include any kind of data, text is often the most
natural medium for describing the facts, problem,
solution, and explanation. Similarly, current scenarios
are most likely to be described in textual terms.

Automating Lessons Learned Systems

The simplest kind of Lessons Learned "System" is a
notebook of textual lessons. The lessons may be
indexed by abstract characterizations of the lesson or
its factual scenario. A human reader must select
candidate lessons from the index. Applying the lesson
requires a decision-maker to read the lesson, compare
it to the current problem, assess whether it really is
relevant and adapt its lesson appropriately.

Web-based and Information Retrieval (IR)
techniques may automate the retrieval process. As
lessons increase in number and complexity, they may
be stored in an on-line database accessible via a
website. The subject-matter index may become an
indexed list of hypertext links to individual lessons.
In a full-text IR system, the lesson texts could be
indexed by every important word in an inverted
index. Texts could be retrieved through key word
searches or natural language queries, searched and
highlighted for key search terms. Document
relevance would be assessed in terms of standard IR
measures: satisfaction of boolean queries, vector
distance or probabilities (Turtle 1995, 17).

Role of Textual CBR

Depending on the size of the lesson database, the
complexity of the lessons and how decision-makers
will use them, an IR approach to automating the
retrieval task in an LLS may not suffice. IR relevance
measures may not be powerful enough to find
relevant cases. An IR approach cannot assess whether

From: AAAI Technical Report WS-00-03. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

a case applies or how to adapt it.
An AI/CBR technique may automate retrieval with

a more knowledge-intensive relevance measure, one
which directly relates to the problem-solving tasks
users need cases to perform. CBR relevance criteria
relate to the domain-specific features with which to
compare and adapt cases to problem situations. Using
these criteria, the system could help assess
applicability and assist with adaptation.

To apply CBR, one must develop a framework for
representing the case features that are important for
comparing and adapting cases. For convenience, I
will refer to this as the Case Representation
Framework (CRF). The CRF enables a computer
program to compare cases for purposes of assessing
relevance, applicability, and adaptation.

Factors, a device for representing important
features of legal cases (Aleven 1997; Ashley and
Aleven 1997), may have some utility in capturing
lesson learned. Factors represent stereotypical
patterns of facts in a case that strengthen or weaken
an argument in favor of its conclusion. Factors may
correspond to the relative strengths and weaknesses,
benefits and costs, or pluses and minuses of following
one plan versus an alternative. Where, as often
happens, a case involves competing factors, a
successful decision in the case is some evidence that
the strengths outweigh the weaknesses in similar
contexts. That may be the "lesson" of the case.
Assessing whether it applies in a current problem
involves determining whether the same set of
conflicting factors is present, whether some factors
are missing or new factors are present and their
significance. One must also consider background
changes since the previous lesson.

The traditional CBR approach is problematic,
however. To apply the relevance criteria, cases must
be represented in the Case Representation Framework
so that the program can perform comparisons. This
means that the textual lessons must be translated or
mapped into the CRF. Lacking general AI techniques
for understanding natural language, case entry usually
is a time-consuming, manual process and a serious
knowledge acquisition bottleneck. As a result, the
case databases of traditional CBR programs are tiny
compared to IR databases. Similarly, one needs to
represent new problem scenarios in the CRF.

Research in a new sub-field, Textual CBR (TCBR),
has addressed the challenges of a subset of CBR
domains where cases are texts (i.e., textual cases)
(Ashley and Lenz 1998). Programs are under

development automatically to: (1) assign indices
textual cases, (2) retrieve relevant cases, and (3)
extract or highlight relevant passages in textual cases.

TCBR may assist LLS developers to: (1) assign
indices to lessons automatically, (2) retrieve lessons
with relevance criteria directly related to how a lesson
may solve a new problem, and (3) highlight parts of
lesson that are most relevant for assessing whether it
applies and how to adapt it.

Significantly, TCBR techniques do not obviate the
need for a Case Representation Framework. While
some TCBR retrieval techniques do not require a
highly elaborated CRF (e.g., Burke, et al. 19971; Lenz
and Burkhard 1997), systems that learn automatically
to index or highlight cases still do require a CRF,
both to process texts and reason with cases.

An important initial question for LLS designers,
then, is what kind of Case Representation Framework
their particular domain/task requires. How do/should
decision-makers compare the current problem with
past lesson scenarios to decide whether a lesson
applies and how to adapt it? On what kinds of
features do the comparisons turn? Answering these
questions will help in designing appropriate CRFs
and should be a major focus of the Workshop.

Role of Information Extraction

Once an LLS designer has settled upon a Case
Representation Framework, the kind of information
to be extracted from the textual lessons becomes
clear. For purposes of discussion, let us assume that
factors are part of the CRF.

Recent work on Information Extraction (IE) may
be useful. IE comprises knowledge-based techniques
for extracting information from a corpus of texts
within a particular domain of discourse (Riloff 1996;
1993). Typically, IE programs apply a dictionary of
concept nodes, specially-generated from the corpus,
to extract information from new texts. Each concept
node is a frame of information. Triggered by the
appearance of a particular word in a new text, the
concept node tells the IE program which additional
features to look for in the text. For instance, a concept

i FAQ FINDER (Burke, et al. 1997) is a natural language

question-answering system based on USENET files of
frequently-asked questions. Given a query, it retrieves the
most similar Q/A pair from the most appropriate FAQ file.
Since lessons learned and FAQs may be similar, FAQ
FINDER may be a useful prototype for LLSs.

node named "target-subject-passive-verb-kidnapped"
is triggered when the IE program encounters the term
"kidnapped" in a passive voice construction, as in "A
U.S. diplomat was kidnapped by FMLN guerillas
today." (Riloff 1993, 812). The concept node frame
tells the program to look for a sentence subject of the
class human, the person who was kidnapped, and a
prepositional phrase referring to the kidnappers.

Recently, the all-important concept dictionaries can
be produced automatically, or semi-automatically.
For example, AutoSlog-TS can identify an ordered
list of short phrases that are characteristic of a corpus
of relevant documents from which a human can select
the best phrases for adding to the dictionary (Riloff
1996).

The question is whether IE can extract from a
textual lesson data to fill out a Case Representation
Framework. Can it extract factors? Factors are
sentence-length concepts more complex than those
that IE has succeeded in extracting. The lesson texts,
although not as complex as, say, legal opinions,
probably are more complex than newspaper articles,
the typical texts to which IE has been applied.

In work on the SMILE program (Smart Index
LEarner) we apply AutoSlog-TS to help the program
learn to extract information about particular factors
from textual cases. SMILE learns to assign factors to
legal opinions involving trade secret law. It employs
a machine learning algorithm, ID3, to leam decision
trees for making the assignments.

The SPIRE program (Daniels and Rissland 1997)
takes a different approach to a similar task,
highlighting factor-like descriptions in texts.

In SMILE, the training instances come from factual
case summaries in which factors have been identified
manually. Sentences from which it may be directly
inferred that a factor applies are positive instances.
All other sentences are negative instances. An
example of one of the factors is F 15, Unique-Product.
A plaintiff’s claim for trade secret misappropriation is
strengthened to the extent that the "Plaintiff was the
only manufacturer making the product." Figure 1
shows four positive instances of Factor F 15.

ID3 learns a decision tree for a factor by
recursively partitioning the training set to best
discriminate the positive instances like those in
Figure 1 and the negative instances.

For this factor, SMILE induced the decision tree in
Figure 2. The decision tree summarizes a set of rules
for classifying sentences: If the term "unique " is
present then F15 applies; else if "known" and

"general" are present then F15 applies; else if
"capable" is present

1. [Plaintiff] introduced evidence that [plaintiffs
product] was a unique product in the industry. (from
Innovative v. Bowen)

2. It appears that one could not order [plaintiffs
product] in any establishment other than that of the
plaintiff. (from Mason v. Jack Daniel Distillery)

3. The information in the diagram is not generally
known to the public nor to any of [the plaintiff’s]
competitors. (from Tri-Tron v. Velto)

4. Several features of the process were entirely unique
in [product-type] manufacturing. (from Sperry Rand
v. Rothlein)

Figure 1: Instances of Factor FIS, Unique-Product
We have confirmed empirically that SMILE’s
decision trees do a better job of assigning factors than
two reasonably intelligent baseline procedures
(BriJninghaus and Ashley 1999). Nevertheless, there
is room for improvement. For instance, SMILE does
not yet take negation into account. A product is
unique if it is not generally known; the decision tree
in Figure 2 does not make that distinction.

.. mm se.t

F15 applies:
unique product pres’ent absent

/" sentpres’ent

~fies’ent n,"
F15 applies:F15 applies: others not capable pres’entinfo not generally known to make product ~,/

F15 applies:
novel product

Figure 2: SMILE’s Decision Tree for Factor F15

To improve the process of inducing decision trees, we
plan to use Information Extraction in three ways.

First, we attempt to select the short phrases that
may be the most effective concepts for ID3 to employ
in discriminating positive and negative instances of
the factors. We apply AutoSlog-TS to two
collections: trade secret case texts where the relevant
factors are discussed and other, irrelevant cases.
AutoSlog-TS identifies the phrases most
characteristic of the relevant documents.

Second, we employ IE to extract from the cases
certain data associated with typical fact pattems. This
information can improve decision trees and help

3

control the complexity of learning. In a trade secret
case, the plaintiff usually has developed some
confidential product information and sues the
defendant for using that information to develop a
competing product. It is feasible to extract certain
role-playing information from such patterns,
including the parties’ names, their roles in the lawsuit
(i.e., plaintiff or defendant), the names of their
competing products, and possibly their product types.

In the training instances, one can then substitute the
more general role information for the specific names
of parties, products, and product-types. This
substitution makes the training examples more
abstract and useful. By referring to role-playing
concepts like "plaintiff", "defendant", "plaintiffs
product", and "product-type", the decision trees may
better discriminate positive and negative instances.
Instead of referring to specific names, unlikely to
appear in more than one case, the instances refer to
generic role-playing concepts, likely to appear over a
much wider range of cases. For example, in each of
the instances of factor F 15, Unique-Product, shown in
Figure 1, I manually substituted role-playing
information for specific names. Originally, sentence 1
from the case of Innovative v. Bowen stated,
"Innovative introduced evidence that Panl Brick was
a unique product in the industry." Decision trees
learned from more general examples like these will
better discriminate positive from negative instances.
The tree can relate the role information "plaintiffs
product" with "unique" to better capture the pattern
of concepts associated with the factor.

Third, the extracted information may focus
automatic text-processing on the most relevant parts
of a text. Parsing texts yields certain linguistic
information (e.g., about negation and phrases) that
would help SMILE discriminate positive and negative
instances of a factor. On the other hand, parsing
generates too many features and renders the learning
task too complex. It would help if the program could
select the most productive sentences to parse. When a
textual case refers to the parties and products by
name, it is more likely that the court is discussing the
case’s specific facts. These parts of the text are more
likely to identify information from which it can be
inferred whether factors apply.

Conclusion

Textual Case-Based Reasoning programs like SMILE
apply Information Extraction techniques to extract

complex information like factors, which may be
useful for comparing lessons. The IE techniques can
help in selecting representative phrases, extracting
information about typical fact patterns, and directing
more intense language processing to the most fruitful
parts of a text. These techniques may help construct
Lessons Learned Systems where the lessons are texts.
Developers, however, must first identify the kinds of
information needed to compare lessons.

References

Aleven, V. (1997) Teaching Case-Based Argumentation
through a Model and Examples, Ph.D. Dis. Intelligent
Systems Prog., U. Pittsburgh. www.cs.cmu.edu/~aleven

Ashley, K. D. (1992) Case-Based Reasoning and its
Implications for Legal Expert Systems". In Artificial
Intelligence and Law. Vol 1, No. 2, pp. 113-208.
Kluwer. Dordrecht, Netherlands.

Ashley, K. and V. Aleven. (1997) Reasoning Symbolically
About Partially Matched Cases. Int’l Joint Conf. on AI,
IJCAI-97. 335-341. Morgan Kaufmann: San Francisco.

Ashley, K.D. and Lenz, M. (eds.) (1998) Textual Case-
BasedReasoning, Papers from the AAAI-98 Workshop,
AAAI Tech. Rep. WS-98-12 AAAI Press, Menlo Park.

Brtininghaus, S. and K.D. Ashley (1999a) Bootstrapping
Case Base Development with Annotated Case
Summaries. In CBR Research and Development: Proc.
3d Int’l Conf. on CBR. 59-73. Lecture Notes in AI 1650.
Springer: Berlin. www.pitt.edu/~steffi/papers/iccbr99.ps

Burke, R., Hammond, K., Kulyukin, V., Lytinen, S.,
Tomuro, N. and Schoenberg, S. (1997) Question-
Answering from Frequently-Asked Question Files:
Experiences with the FAQ FINDER System, AI
Magazine 18:2 57-66.

Daniels, J.J. and Rissland, E.L (1997) What you saw
what you want: Using cases to seed information
retrieval, Proc. 2d Int’l Conf. on CBR CBR Research and
Development ICCBR-97. 325-336. Lecture Notes in AI
Series No. 1266. Springer: Berlin.

Lenz, M. and Burkhard, H.-D. (1997) CBR for Document
Retrieval: The FAIlQ Project In CBR Res. and Devel.:
Proc. 2d Int’l Conf. on CBR,. ICCBR-97. 84-93. Lecture
Notes in AI Series No. 1266. Springer: Berlin.

Kolodner, J. (1995) Case-Based Reasoning Morgan
Kaufmann: San Mateo, CA.

Riloff, E. (1996) Automatically Generating Extraction
Patterns from Untagged Text, Proc. 13th Nat’l Conf. on
,41, 1044-1049, AAAI Press/M1T Press. Menlo Park, CA.

Riloff, E. (1993) Automatically Constructing a Dictionary
for Information Extraction Tasks. In Proc. 11th Nat’l
Conf. on AL 811-816. AAAI/MIT Press. Menlo Park.

Turtle, H.R. (1995) "Text Retrieval in the Legal World"
Artificial Intelligence and Law, 3: 5-54. Kluwer:
Dordrect.

