From: AAAI Technical Report WS-00-04. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Semantic ratings and heuristic similarity

for collaborative filtering

Robin Burke

Department of Information and Computer Science
University of California, Irvine
burke@ics.uci.edu

Abstract

Collaborative filtering systems make
recommendations based on ratings of user
preference. Usually, the ratings are uni-
dimensional (e.g. like vs. dislike), and can be
either explicitly elicited from users or, more
typically, are implicitly generated from
observations of user behavior. This research
examines multi-dimensional or semantic ratings
in which a system gets information about the
reason behind a preference. Such multi-
dimensional ratings can be projected onto a
single dimension, but experiments show that
metrics in which the semantic meaning of each
rating is taken into account have markedly
superior performance.

Introduction

Collaborative filtering (CF) is a technique for
recommending items to a user’s attention based
on similarities between the past behavior of the
user and that of other users. A canonical example
is the GroupLens system that recommends news
articles based on similarities between users’
reading behavior (Resnick, et al. 1994). This
technique has been applied to many areas from
consumer products to web pages (Resnick &
Varian, 1997; Kautz, 1998), and has become a
standard marketing technique in electronic
commerce.

The input to a CF system is a triple consisting of
a user, an object that the user has an opinion
about, and a rating that captures that opinion: <u,
o, r(u,0)>. As ratings for a given user are
accumulated, it becomes possible to correlate
users on the basis of similar ratings and make
predictions about unrated items on the basis of
historical similarity. In other words, the goal is to
find other users u; whose ratings correlate well
with some user uy, and use these users’ ratings on
some new object o”to predict r(ug, 07).

One of the central problems in applying CF is the
task of gathering ratings. Early systems such as
Ringo (Shardanand & Maes, 1995) asked users

14

to supply ratings directly, but more recently, user
interface concerns have led developers to seek
implicit ratings from users, using observable
variables such as dwell time on a particular web
page, buying behavior, etc. The psychological
status of such ratings has received little attention,
but it is easy to demonstrate that simple one-
dimensional scales do not capture the nuance of
user preference. If I dislike the movie “Die
Hard,” is it because I deem it too violent, or not
violent enough? The kind of recommendation
that should be made would be vastly different in
each case. With sufficient data to pinpoint users’
preferences, this kind of ambiguity may be
resolved. However, applications may not always
have sufficient data about an item or a user. This
is particularly a problem for new items, such as
newly-released movies, that have few user
ratings.

My research has investigated the creation of
knowledge-based recommender systems (Burke,
1999b; Burke, in press) that use multi-scaled
semantic ratings from users. For example, the
restaurant guide Entree' (Burke, Hammond &
Young, 1997) allows users to critique restaurants
as too expensive or too traditional, among other
dimensions. Beyond any possible role in
collaborative filtering, these ratings have a
function in the system’s interface: each critique
or “tweak” invokes a new retrieval redirecting
the user towards items more likely to meet his or
her needs.

Earlier work (Burke, 1999a) noted the potential
for integrating collaborative and knowledge-
based recommendation and described a
framework under which such integration could be
accomplished. I proposed a hybrid recommender
system that uses its knowledge to generate the
best possible set of recommendations and then
uses collaborative filtering to break ties among
them. As noted previously, such a hybrid avoids
some of the “ramp-up” or “cold-start” problems
associated with CF, since the system can make
good recommendations without gathering any

! <URL: http:/infolab.ils.nwu.edw/entree/>

Figure 1. The Entree recommender system.

usage data, and it helps avoid the problems of
knowledge-acquisition and database quality by
allowing a knowledge-based system to refine its
suggestions over time.

Entree

Consider a user who initiates an interaction with
Entree using a known restaurant, Wolfgang
Puck’s “Chinois on Main” in Santa Monica.” As
shown in Figure 1, the system finds a similar
Chicago restaurant that combines Asian and
French influences, “Yoshi’s Cafe,”3 as well as
other restaurants (not shown) that are ranked by
their similarity. The user, however, is interested
in a cheaper meal and selects the “Less $$”
button. The result (not shown) is a creative Asian

2 The user may also make a database query based on desired
restaurant features.

% Note that the connection between “Pacific New Wave”
cuisine and its Asian and French culinary components is part
of the system’s knowledge base of cuisines.

15

restaurant in a cheaper price bracket: “Lulu’s.”
However, the French influence is lost — one
consequence of the move to a lower price
bracket. The user can continue browsing and
critiquing until an acceptable restaurant has been
located.

Entree has been in continuous operation as a
public web utility since July 1996. The
experiments described below use logs through
June 1999. The system does not retain any user
data - it does not use cookies or other
mechanisms to identify a user returning to the
site. For this reason, these experiments may show
something of a lower bound on the efficacy of
CF: a site would normally be expected to gather
user ratings over multiple sessions of interaction
and tie them directly to a user identifier.! The log
data was partitioned into sessions identified by IP
address and terminating after 10 minutes of

4 On the other hand, ratings gathered over a longer period of
time would reflect a diversity of search goals, a diversity
presumably not present in a single search session.

inactivity. There are approximately 50,000
sessions in the 3 years of usage data.

Approach

The research reported here attempts to estimate
how much improvement might be expected from
adding CF to an existing knowledge-based
recommender system, and to determine what
filtering algorithm would produce the best
performance. The central issues are the
generation of ratings and the computation of
intra-user similarity.

Each session consists of a list of user actions and
displayed restaurants. A number of restaurants
are retrieved as likely candidates, but only one is
highlighted. There are eight possible actions a

user can take: “Less 3,” “Nicer,” “More
Creative,” “More Traditional,” “Quieter,”
“Livelier,” “Change Cuisine,” and “Browse” (the

choice to move to a different restaurant in the
return list.) In the case of the user choosing an
alternative cuisine, the log does not record the
user’s choice. A user can begin the session with a
known restaurant as a starting point or with a
query that describes the type of restaurant sought.
(These queries were also not logged.) So, for
each restaurant, we can associate one of 10
ratings: Entry point, Exit point, or one of the
eight actions.

Sessions range in length from one to 20
interactions, but typically contain less than ten
ratings. Occasionally, the same restaurant is rated
more than once. For example, a user might see a
recommendation, browse to the other restaurants
in the list, return to the original suggestion, and
then perform a tweaking action. We discard all
but the most recent rating.

One possible collaborative filtering approach
using this data is to project the multi-dimensional
ratings onto a single dimension, a simple binary
like / dislike scale. For example, if user A sees
“Yoshi’s Cafe” and says “Give me something
cheaper,” this can be recorded as a negative
rating. If the wuser stops browsing upon

5 The Entree data set is available at the UCI KDD Archive
<URL: hitp://kdd.ics.uci.edw/ >.

16

encountering this restaurant, the user is assumed
to have found what he or she seeks, and a
positive rating is assigned.6 Ratings produced in
this way can be directly plugged into standard CF
algorithms.

Another approach is to look only for users with
exactly the same ratings: treating ratings on
different scales as incommensurable. We would
only match user A against others who also
thought that “Yoshi’s Cafe” was too expensive.
We can formulate this version of the problem as
an information retrieval task where each term
consists of a restaurant / rating combination. For
example, we can use a cosine measure of
similarity, treating each session as a vector of
binary values whose dimensionality is that of all
restaurant/rating combinations. The drawback of
this “sparse” metric is that only a small number
of users would have had exactly the same
reactions to a given set of restaurants, meaning
that predictions will be based on a smaller
number of users than in a collaborative approach.
A third technique takes into account the
semantics of the ratings themselves: a similarity
metric is created based on the relationships
between ratings. For example, if user B looks at
“Yoshi’s Cafe” and says “Give me something
nicer,” we should probably rate users A and B as
dissimilar even though they both disliked the
same restaurant — they did so for essentially
opposite reasons. This is the “heuristic
similarity” approach. It does not establish a
single scale onto which all ratings are projected,
but rather looks at similarity on a rating-by-rating
basis. A similarity value is assigned to each
possible pair of ratings, using an adjacency table
generated by considering the semantics of each
response type, and a few common-sense
considerations:

e A rating is maximally similar to itself.
o “Browse” is not similar to any other rating.

%1t is possible that the user has given up in frustration, in
which case a positive rating would be inappropriate. This
kind of ambiguity is common in other CF domains, such as
web log analysis. A system that was tied to e-commerce
transactions or in the case of restaurants, on-line reservation
placement, would have more reliable positive ratings.

Table 1: Adjacency matrix for Entree ratings

Browse | Cheaper | Nicer | Trad. | Creat. | Lively | Quiet | Cuisine | Entry | Exit
1 0 0 0 0 0 0 0 0 0 | Browse
1 -1 -0.5 -0.5 -0.5 -0.5 0 0 0 | Cheaper
0.5 0.5 -0.5 0.5 0 0 0 | Nicer
1 -1 -0.5 0.5 0 0 0 | Trad.
1 0.5 -0.5 0 0 0 | Creat.
1 -1 0 0 0 | Lively
1 0 0 0 | Quiet
1 0 0 | Cuisine
1 1 | Entry
1 | Exit
e Some ratings have natural opposites: improve the quality of the recommendations
“Livelier” / “Quieter”, “Traditional” / made by the knowledge-based component. The
“Creative.” evaluation technique reflects this application. See

The full comparison table is shown in Table 1.
This metric takes the qualitative differences
between ratings into account, but it allows more
kinds of intra-user comparison than the sparse
metric.

Evaluation

To evaluate different CF approaches, the data
was randomly partitioned into equal-sized
training and test sets of approximately 25,000
sessions. From the test set, only highly-active
users were extracted, those with at least 15
restaurants rated, 199 users in total. These users
provided enough individual data to evaluate each
approach, even though they were a small
minority of the test data. With user-identified
data, a system would accumulate 15 ratings for a
user very quickly.

The goal of CF for Entree is not strictly to
predict ratings. A default negative score is highly
effective at predicting ratings since almost 80%
of the ratings are negative. Rather the task is to

the outline of the algorithm in Figure 2. For each
session S, the system first isolates a positively
rated restaurant r - an item the user found
satisfactory. The goal is to bring this restaurant to
the user’s attention as soon as possible, so the CF
system must pick this positively-rated item from
a group of negatively-rated ones.

To simulate this task, the system randomly
selects 6 items from S with a negative rating, and
groups them with r as the test partition T. Eight
items then become training data for a particular
user, excess ratings being discarded at random.
(Five such training/test splits are generated for
each session for cross-validation.) Using the
training partition, a prediction is made for the
rating of each test item fe T, and the one with the
highest predicted score is selected as the
recommendation. Additional training data is
added in steps, and predictive performance is
reported when four, six or eight of the ratings are
known to the system.

For the correlation filter, predictions of the rating
of a test item ¢ are made by selecting all users
who have rated ¢ filtering those who meet a

move r from S to T
move 6 random s from S to T
for 1 <- 4, 6, 8
p <- t such that P({s,,.
if p equals r
correct prediction

-8},

(1)

Let S = A session: { s,
pair <restaurant, rating>
r = a positive rating from S
T = test data for the session,
P(S,

.. 8.}, n>=15 where each s, consists of a

initially { }
t), a prediction function that predicts the score of test
item t, given ratings from training data in S.

t) is maximized

Figure 2. Evaluation algorithm

17

100.0%

90.0%

I:I C':’o’r}él'é'tioh @éé]ar)

80.0%

70.0% —

1 Average (scalar)
— BAverage (binary) -

& Correlation (binary)

60.0%

50.0%

Accuracy

W Sparse (cosine)
M Heuristic

40.0%

30.0% -

20.0% -

10.0% -

0.0% -

minimum threshold of correlation with the test
user based on the training data, and averaging
their ratings of .’ The same experimental scheme
was applied also to the sparse metric, using
cosine similarity, and with the heuristic metric,
using the average of the adjacency values for all
items rated in common. As a baseline, we also
used a predictor computed from the average
rating for all users.

The experiment evaluated the two different ways
of projecting ratings on a scale: a binary method
and a scalar method. Under the binary method,
most ratings have a score -1 (since they cause
the user to move away from the restaurant in
question). The only exceptions are “Entry point”
and “Exit point,” which are both treated as
positive ratings (+1). The scalar method adds two
additional distinctions: “Exit point” gets a
slightly lower rating (0.8) since we cannot be
fully confident that it signifies success as
opposed to frustration, and “Browse” gets less of

7 Since the rating data is relatively sparse, a default score of
0 (no preference) is assigned when an item is rated in one
session but not in the other (Breese, Heckerman & Kadie,
1998).

6 8

Ratings seen
Figure 3. Experimental Results

18

a negative rating (-0.5) to reflect the fact that
users are not directly critiquing a restaurant, but
instead poking around among other returned
items. The hypothesis was that the scalar ratings,
which incorporate some semantic information,
would have performance in between that of the
correlation and heuristic techniques.

The experiment therefore had six conditions:
intra-user Correlation computed with both binary
and scalar ratings, the Sparse metric using cosine
similarity, and the Heuristic metric, together with
a pair of predictors using the Average rating
computed with the two rating techniques. Figure
3 shows the results of the experiment. (Error bars
represent the 95% confidence interval.)
Surprisingly, the scalar version of the ratings was
not better than the simpler binary projection.
Both the Average and Correlation metrics using
scalar ratings were slightly worse than the
Average using binary ratings. The Sparse metric
slightly outperformed Correlation using binary
ratings, but this difference is not statistically
significant. The Heuristic technique was shown
to be the clear winner. It approached 100%
accuracy at the task of predicting what restaurant
the customer will like, and even with a small

100.0%

90.0% -

80.0% -

Accuracy

70.0%

60.0% -

50.0%

Ratings seen

Figure 4. Heuristic prediction for users with 10 ratings or more

amount of data (4 ratings), better than 95%
accuracy was achieved.

The performance of the Heuristic technique was
further evaluated given a smaller amount of
training data. A sample of the data (6600
sessions) was extracted and performance
evaluated on shorter sessions (10 ratings or more,
total of 264 users), using five ratings for testing
and three, four and five ratings for training.
Figure 4 shows these results, which are consistent
with the performance for more active users.
Having seen three ratings, the Heuristic metric
can predict the preferred item from the five item
test set with 87% accuracy, rising to 92% after all
five ratings are seen.

Future Work

The heuristic approach to collaborative filtering
described above is being applied at the commer-
cial successor to Entree: Recommender.com, a
provider of recommendation generation services
to e-commerce sites.

The main drawback to the heuristic approach is
that it involves additional knowledge engin-
eering: for n possible ratings, an * adjacency
matrix must be generated. This is particularly a
problem in domains that have a large number of
possible tweaks, such as the domain of movies. A
user might, for example, ask for a similar movie
but without a particular actor: “Die Hard”
without Bruce Willis. It would be impractical to
manually construct an adjacency matrix rating
the similarity of all such choices. Further
research will investigate whether the similarity

19

between two tweaks by learned from user data as
follows.

We can begin with the assumption that all ratings
are dissimilar, and then try to find evidence for
similar. Suppose, for example, there are two
users A and B whose ratings for many items are
identical, but who differ on their rating of some
item o: r(4, o) = r;and r(B, o) = r,. We would
take this as evidence that r; and r, should be
considered similar ratings.

Conclusion

It is hardly surprising that the meaning of actions
should be an important consideration in
determining similarity between user profiles: why
a user likes or dislikes something must surely be
important. Nor is it surprising that heuristic
similarity has received little attention, given that
few applications have access to semantic
critiques such as those used in Entree. However,
the results described here suggest that even
modest efforts invested in improving the
semantic richness of a user interface enable the
gathering of predictively-powerful usage data. In
these experiments, the performance gains
obtained by using better data far exceeds any
incremental benefit that might be expected from
applying better algorithms to data that is
semantically weak.

Acknowledgements

These experiments were designed with the
assistance of Daniel Billsus of UCI The

development of Entree was supported at the
University of Chicago by the Office of Naval
Research under grant F49620-88-D-0058. The
interface to the Entree system was designed and
created by Robin Hunicke at the University of
Chicago. Many others contributed to the FindMe
effort at the University of Chicago, including
Terrence Asselin, Kai Martin, Kass Schmitt, and
Robb Thomas.

References

Breese, J. S.; Heckerman, D. and Kadie, C. 1998.
"Analysis of Predictive Algorithms for
Collaborative Filtering,” In Proceedings of the
14th Conference on Uncertainty in Artificial
Intelligence, pp. 43-52. San Francisco, CA:
Morgan Kaufmann.

Burke, R. In press. Knowledge-based
Recommender Systems. In A. Kent (ed.),
Encyclopedia of Library and Information
Systems. In press.

Burke, R. 1999a. Integrating Knowledge-Based
and Collaborative-Filtering ~ Recommender
Systems. In AAAI Workshop on Al in Electronic
Commerce. page 69-72. AAAL

Burke, R. 1999b. The Wasabi Personal Shopper:
A Case-Based Recommender System. In
Proceedings of the 11th National Conference on
Innovative Applications of Artificial Intelligence,
pages 844-849, AAAI

Burke, R., Hammond, K., and Young, B. 1997.
The FindMe Approach to Assisted Browsing.
IEEE Expert, 12(4), pp. 32-40.

Kautz, H. (ed.) 1998. Recommender Systems:
Papers from the AAAI Workshop. AAAI
Technical Report WS-98-08. AAAL

Resnick, P., Iacovou, N., Suchak, M., Bergstrom,
P., and Riedl, J. 1994. GroupLens: an open
architecture for collaborative filtering of
netnews. In CSCW '94: Proceedings of the
conference on Computer supported cooperative
work, 175-186. New York: ACM Press.

Resnick, P. and Varian, H. R. 1997.
Recommender systems. Communications of the
ACM, 40(3) 56-58.

Shardanand, U. and Maes, P. 1995. Social
information filtering algorithms for automating
“word of mouth” In CHI-95: Conference
proceedings on Human factors in computing
systems, 210-217. New York: ACM Press.

20

