
Service Discovery in the Future Electronic Market

Harry Chen, Dipanjan Chakraborty, Liang Xu, Anupam Joshi, Tim Finin
{hchen4, dchakrl, lxu2, joshi, finin}@cs.umbc.edu

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

Abstract

The trend that the electronic market is taking,
aided by the concomitant development of mo-
bile devices, suggests a major change from the
way electronic commerce is done today. The in-
creased use of PDAs and laptops requires that e-
commerce services and transaction processing fa-
cilities need to be accessed from a wireless device.
This brings new and challenging research problems
into the picture. Discovering services dynamically
will become increasingly important in the mobile
e-commerce scenario. A service will be selected
automatically for a job, taking into consideration
its physical location, "context" and other semantic
information. To support this scenario, the existing
discovery mechanisms need to move beyond trivial
attribute or interface matching. They would need
to be much more knowledge based. In this paper,
we present a summary of the existing service dis-
covery protocols and the work that we have done
in the service discovery area in our quest to make
service discovery more dynamic.

Introduction

As thousands of companies and customers are con-
nected to the fast growing Internet, the exist-
ing electronic market (eMarket) is primed for its
next evolution. In the future, instead of inter-
acting with the "do-it-yourself" web storefronts,
customers will be able to communicate with the
businesses via an automated service-oriented eMar-
ket model(Hewlett-Packard 2000). In the eMarket
model, businesses not only can offer services and
products through the static desktop computers, but
can also make their services and products available
to the customers anytime and anywhere. For exam-
ple, many investment institutions like Ameritrade
and Morgan Stanley Dean Witter are offering in-
vestment services via mobile devices. Online book-

Copyright (~) 2000, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

store Amazon.corn is offering services via cellular
phones.

As businesses offer various types of services to
their customers, service discovery in the future
eMarket becomes very important. Services are
deployed in various forms and with different lev-
els of complexities. Some services might be more
software-oriented, such as personal banking via cel-
lular phone or finding the closest restaurant. Some
services might be more hardware-oriented, such as
submitting pictures from a digital camera to a color
printer or remotely controlling home devices (VCR,
Security Systems etc.) using a PDA. No matter
what forms the services take, it is important for
customers to be able to find the desired services
effectively and correctly. A good service discovery
infrastructure is one of most important base foun-
dation to the future eMarket.

This paper is organized into five sections. In the
first Section we describe some of the existing ser-
vice discovery architectures that we have surveyed.
In the second Section we describe what we believe
to be the common weaknesses of the existing ser-
vice discovery architectures for building the future
service-oriented eMarket. In particular, we concen-
trate our discussion on the Jini architecture. In the
third Section we describe the basics of intelligent
service discovery protocols. In the fourth Section
we describe the enhancements that we believe can
be applied to the Jini architecture, allowing the Jini
architecture to be better suited as the service dis-
covery foundation to the future eMarket. We also
describe our on-going research work in the XReg-
gie project and development of the Ronin Agent
Framework. Finally, the conclusion is given in the
last section.

21

From: AAAI Technical Report WS-00-04. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



A Survey on different Service
Discovery Architectures

Echoing the demands for service discovery infras-
tructures, architectures like Service Location Pro-
tocol (SLP) (SVRLOC Working Group 1997), 
(Arnold et al. 1999), Universal Plug and Play
(UPnP) (Mic 1999) and Salutation (Sal 1999) 
been developed to explore the service discovery is-
sues in the context of distributed systems.

In this section we briefly describe four recent in-
dustry supported efforts to create standards for ser-
vice discovery. Due to lack of space, we do not
present other systems such as Bluetooth or Ninja.

Service Location Protocol
The Service Location Protocol (SLP) is a product
of the SVRLOC Working Group of the Internet En-
gineering Task Force (IETF). (E. Guttman 1999)
It is a protocol for automatic resource discovery
on IP networks. SLP is a language independent
protocol. It bases its discovery mechanism on ser-
vice attributes and can cater to any form of service,
whether it is hardware or software.

The SLP infrastructure consists of three types of
agents: User Agent, Service Agent and Directory
Agent. The User Agents acquire service handles for
end user applications that request for services. The
Service Agents are responsible for advertising ser-
vice handles to the Directory Agents, making ser-
vices available to the User Agents. The Directory
Agents collect together service handles and main-
tain the directory of advertised services. The core
functionalities of the SLP are the following:
¯ Obtaining service handles for User Agents.

¯ Maintaining the directory of advertised services.

¯ Discovering available service attributes.

¯ Discovering available Directory Agents.

¯ Discovering the available types of Service Agents.

A service is described by configuration values for
the attributes which are possible for that service.
For instance, a service that allows users to down-
load audio or video content can be described as a
service that is a pay-per-use real-time service or
a free-of-charge service. The SLP also supports a
simple service registration leasing mechanism that
handles the cases where service hardware is broken
but the services continue to be advertised.

Jini

Jini is a distributed service-oriented architecture
developed by Sun Microsystems. Jini services can
be realized to represent hardware devices, software
programs or a combination of the two. A collection

of Jini services forms a Jini federation. Jini ser-
vices coordinate with each other within the federa-
tion. The overall goal of Jini is to turn the network
into a flexible, easily administered tool on which
human and computational clients can find services
in a flexible and robust fashion. Jini is designed to
make the network a more dynamic entity that bet-
ter reflects the dynamic nature of the workgroup
by enabling the ability to add and delete services
flexibly.

One of the key components of Jini is the Jini
Lookup Service (JLS), which maintains the dy-
namic information about the available services in
the Jini federation. Every service must discover one
or more JLS before it can enter a federation. The
location of the JLS could be known before hand,
or they may be discovered using multicast. A JLS
can be potentially made available to the local net-
work (i.e. the local LAN) or other remote networks
(i.e. the Internet). The JLS can also be assigned
to have group names so that a service may discover
a specific groups in its vicinity.

When a Jini service wants to join a Jini feder-
ation, it first discovers one or many JLS from the
local or remote networks. The service then upload
its service proxy (i.e. a set of Java classes) to the
JLS. This proxy can be used by the service clients
to contact the original service and invoke methods
on the service. Service clients interact only with
the Java-based service proxies. This allows vari-
ous types of services, both hardware and software
services, to be accessed in a uniform fashion. For
instance, a service client can invoke print requests
to a PostScript printing service even if it has no
knowledge about the PostScript language.

Universal Plug and Play

Universal Plug and Play (UPnP), pushed primar-
ily by Microsoft, is an evolving architecture that is
designed to extend the original Microsoft Plug and
Play peripheral model to a highly dynamic world of
many network devices supplied by many vendors.
UPnP works primarily at lower layer network pro-
tocol suites (i.e. TCP/IP), implementing standards
at this level. This primarily involves addition to the
suite, certain optional protocols which can be im-
plemented natively by devices. The keyword here
is "natively". UPnP attempts to make sure that
all device manufacturers can quickly adhere to the
proposed standard without major hassles. By pro-
viding a set of defined network protocols, UPnP
allows devices to build their own APIs that im-
plement these protocols - in whatever language or
platform they choose.

UPnP uses the Simple Service Discovery Pro-

22



tocol (SSDP) for discovery of services on IP net-
works. SSDP can be operated with or without a
lookup or directory service in the network. SSDP
operates on the top of the existing open standard
protocols, using HTTP over both unicast UDP
(HTTPU) and multicast UDP (HTTPMU). 
registration/query process sends and receives data
in HTTP format, but has special semantics.

When a service wants to join the network, it first
sends out an advertise (or announcement) message,
notifying the world about its presence. In the case
of multicast advertising, the service sends out the
advertisement on a reserved multicast address. If
a lookup (or directory) service is present, it can
record such advertisements. Meanwhile, other ser-
vices in the network may directly observe these ad-
vertisement. The advertise message contains an
URL that identifies the advertising service and an
URL to an XML file that provides a description of
the advertising service.

When a service client want to discover a service,
it can either contact the service directly through the
URL that is provided in the service advertisement,
or it can send out a multicast query request. While
discovering a service through the multicast query
request, the client request may be responded by the
service directly or by a lookup (or directory) ser-
vice. The XML service description does not play a
role in the service discovery process. (Rekesh John
1999)

Salutation

Salutation is a service discovery and session man-
agement protocol developed by leading information
technology companies. Salutation is an open stan-
dard, independent of operating systems, commu-
nication protocols and hardware platforms. The
Salutation was created to solve the problems of ser-
vice discovery and utilization among a broad set
of appliances and equipment in an environment of
widespread connectivity and mobility. The archi-
tecture provides applications, services and defines
a standard method for describing and advertising
their capabilities, as well as finding out the capa-
bilities of others. The architecture also enables ap-
plications, services and devices to search for a par-
ticular capability, and to request and establish in-
teroperable sessions with them.

The Salutation architecture defines an entity
called the Salutation Manager (SLM) that func-
tions as a service broker for services in the network.
Services may be subdivided by meaningful func-
tionality call Functional Unit, representing some
essential feature (e.g. Fax, Print or Scan) Fur-
thermore, the attributes of each Functional Unit

are captured in the Functional Unit Description
Record. Salutation defines the syntax and seman-
tics of the Functional Unit Description Record.
(e.g. name, value)

SLM can be discovered by services in a number
of ways such as the following:
¯ Using of a static table that stores the transport

address of the remote SLM.

¯ Sending broadcast discovery query over the
transport using the protocol defined by the Salu-
tation architecture.

¯ Inquiring the transport address of a SLM from
a central directory server. This protocol is un-
defined by the Salutation architecture. However,
the current specification suggests the use of Ser-
vice Location Protocol (SLP) in conjunction with
SLM. (Sal 1999)

¯ The service specifies the transport address of a
remote SLM directly.

The service discovery process can be performed
across multiple Salutation managers. One SLM can
discover other remote salutation managers and de-
termine the services registered there. Service Dis-
covery is performed by comparing a required ser-
vices type(s), as specified by the local SLM, with
the service type(s) available on a remote SLM. Re-
mote Procedure Calls are used to transmit the re-
quired Service type(s) from the local SLM to the
remote SLM and to transmit the response from the
remote SLM to the local SLM. Through manipula-
tion of the specification of required Service type(s),
the SLM can determine the characteristics of all
services registered at a remote SLM, the charac-
teristics of a specific service registered at a remote
SLM, and the presence of a service on a remote
SLM by matching a specific set of characteristics.

Defeciencies in existing Service
Discovery Architectures

While many of the architectures provide good base
foundations for developing systems with distributed
components in the network, we argue that they are
not sufficient for building the future eMarket. They
suffer from some or all of the following problems:

¯ Lack of Rich Representations:
Services in the eMarket will be heterogeneous in
nature. These services are defined in terms of the
their functionalities and capabilities. The func-
tionality and capability descriptions of these ser-
vices will be used by the clients to discover the
desired services. The existing service discovery
infrastructures lack expressive languages, repre-
sentations and tools that are good at represent-

23



ing a broad range of service descriptions and are
good for reasoning about the functionalities and
the capabilities of the services (Chen 2000). 
the Jini architecture, service functionalities and
capabilities are described in Java object interface
types. (Arnold et al. 1999) Service capability
matchings are processed in the object-level and
syntax-level only. This means that the user must
be able to specify an object-level interface when
looking for a service, rather than a description at
a higher level.

¯ Lack of Constraint Specification and Inex-
act Matching:
The Jini Lookup Service typically do not support
that notion of constraints on service attributes.
For instance, the generic Jini Lookup and Discov-
ery mechanism allows a client to find a printing
service that is at a particular location, or has a
given queue length. However, these mechanisms
are not powerful enough to find the geographi-
cally closest printing service that has the short-
est print queue. Moreover, the protocols do exact
matching while finding out a service. Thus they
also lack the power to give a "close" match even if
it was available. For example, returning a Black
and White printer when the user asks for a color
printer.

¯ Lack of Ontology Support:
Services in the eMarket need to interact with
clients and other services across enterprises. Ser-
vice descriptions and information need to be
understood and agreed among various parties.
In another word, a well-defined domain specific
common ontology must be present before any ef-
fective service discovery process can take place.

We found that common ontology infrastructures
are often either missing from or not well repre-
sented in the existing service discovery architec-
tures. Architectures like Service Location Pro-
tocol, Jini and Salutation do provide some sort
of mechanisms to capture ontology among ser-
vices. However, these mechanisms like Java class
interfaces or ad-hoc data structures are unwieldy
and unlikely to be widely adapted by the in-
dustries to become standards. In the Univer-
sal Play and Plug (UPnP) architecture, service
descriptions are represented in XML (eXtensible
Markup Language), which provides a good base
foundation for developing extensible and well-
formed ontology infrastructure (Mic 1999). How-
ever, service descriptions in UPnP do not play a
role in the service discovery process (Rekesh John
1999).
In the existing Jini architecture, ontologies are

captured in the level of Java object interface
types. We believe this ad-hoc representation is
not a feasible approach for developing common
ontology. Information captured in the Java pro-
gramming language level is difficult to be under-
stood by non-Java entities. Furthermore, the ex-
press power of the Java programming language
can only capture a limited amount of informa-
tion about the services. Therefore, this is not a
feasible approach to describe information in the
world of the eMarket.

Applying AI Techniques to the
Service Discovery Infrastructures

One way to enhance the service discovery infras-
tructures is to apply AI techniques to the existing
systems specifically in the areas of knowledge rep-
resentation, reasoning and intelligent agents (Chen
2000). As a part of our experiments to find a suit-
able solution for building a service discovery infras-
tructure for the future eMarket, we have developed
the Ronin Agent Framework and XReggie to en-
hance the service discovery infrastructure in the
existing Jini architecture. The Ronin Agent Frame-
work is a Jini-based distributed agent development
framework (Chen 2000). Ronin introduces a hy-
brid architecture, a composition of agent-oriented
and service-oriented architecture, for deploying dy-
namic distributed systems. Ronin provides a simple
but powerful agent description facility that allows
agents to find each other and an infrastructure that
encourages the reuse of the existing non-Java AI ap-
plications. The project XReggie investigates how
Jini and similar systems can be taken beyond their
simple syntax-based service matching approaches,
adding expressive powers to the service descriptions
(Anupam Joshi, Liang Xu 2000).

Enhancing the Jini Service Discovery

for Future eMarket
Jini offers a simple and robust service discov-
ery infrastructure for building highly dynamic dis-
tributed systems. However, using Jini as the build-
ing block for the future service-oriented eMarket
that are adaptive, interactive, interoperatable and
autonomous, we need to extend and modify the ex-
isting Jini architecture.

Adding Agent Descriptions and making
AI Tools available through Ronin

The Ronin Agent Framework is a Jini-based dis-
tributed agent development framework. Ronin in-
troduces a hybrid architecture, a composition of
agent-oriented and service-oriented architectures,

24



for deploying dynamic distributed systems. Among
many of the distinguishable features of the frame-
work, Ronin offers a simple but powerful agent de-
scription facility that allows agents to find each
other and an infrastructure that encourages the
reuse of the existing non-Java AI applications.

The Ronin description facility provides two dis-
jointed sets of agent attributes: the Common
Agent Attributes and the Domain Agent Attributes.
(Chen 2000) The Common Agent Attributes and
the Domain Agent Attributes are two sets of Jini
service attributes that are associated with each
Ronin agent in the Jini Lookup Service. The Com-
mon Agent Attributes defines the generic func-
tionalities and capabilities of an agent in domain-
independent fashion. The Agent Domain At-
tributes define the domain specific functionality of
an agent. The framework defines the semantic
meaning of each Common Agent Attribute, but it
does not define the semantic meaning of any Do-
main Agent Attribute.

The Ronin description facility can enhance the
Jini service discovery infrastructure in the eMarket
in the following ways:

* As all agent-oriented Jini services, Ronin agents,
share a set of Common Agent Attributes, they
can discover other services solely based on the do-
main independent functionalities of the services.

¯ Once a service has discovered another service us-
ing the Ronin description facility, it is possible for
these two services to form basic communication
negotiation based on the semantic meanings of
the Common Agent Attributes. For instance, if
a service has knowledge about the type of Agent
Communication Language (ACL) that the other
service speaks, they can start their conversation
by following the pre-defined standard ACL nego-
tiation protocol.

The Ronin framework encourages the reuse of the
existing non-Java AI applications. The philosophy
is that developing infrastructures, such service dis-
covery in the eMarket, that are highly adaptive, in-
teractive, interoperatable and autonomous requires
more than just the Jini architecture. Developing
infrastructures that are more "intelligent" often re-
quires sophisticated AI tools and techniques, such
inference engine, knowledge representation system,
constraint programming etc. For instance, it would
be useful for a Jini Lookup Service to be able to rea-
son about the capabilities of its registered services,
enabling the JLS to make more "intelligent" service
lookup recommendations.

The present Ronin framework provides a Jini
Prolog Engine Service (JPES). (Harry Chen 2000)
This service provides remote Prolog engine services

to Jini-enabled components in the network. The
JPES provides a distributed logical programming
tool to the Jini-enabled services. An enhanced Jini
Lookup Service can use the JPES to reason about
the capabilities of services and can make more "in-
telligent" recommendations.

XReggie: Supporting Rich and
Constraint based Inexact Matching in
Jini
The project XReggie investigates how Jini and
similar systems can be taken beyond their simple
syntax-based service matching approaches, adding
expressive powers to the service descriptions, and
augmented to build a recommender for distributed
components in a pervasive computing environment.

At the heart of the XReggie is the enhanced Jini
Lookup Service that provides "service location" for
Jini-enabled services. XReggie can help service
clients to discover services in a manner essentially
unchanged from the existing Jini Lookup and Dis-
covery infrastructure. In addition, it allows services
to advertise their capabilities in a well-structured
descriptive format using XML. Furthermore, XReg-
gie allows services to be discovered using the XML
descriptions and be matched at a semantic level.

XReggie adds the facility to describe service func-
tionalities and capabilities using XML. A service is
described using XML in terms of its capabilities,
requirements and service attributes.

When a service registers with the JLS, it regis-
ters an XML description entry as well. When a
client wants to use a service, the client creates a
XML DOM object that describes the desired ser-
vice along with its constraints. The XML match
in JLS handles constraints such as requirements,
cost, mobility etc. XReggie allows service discovery
to be performed in a more structured and descrip-
tive fashion. It ensures that a client receives only
those components which it is capable of executing
in terms of hardware or software requirements.

Conclusion

The trend of e-commerce is towards a service-
oriented model, and service discovery infrastruc-
ture will play an important role in such an environ-
ment. We have reviewed a number of existing ser-
vice discovery infrastructures. All these infrastruc-
tures suffer from some common problems such as
lack of descriptive languages, representations and
tools that are good at representing a broad range
of service descriptions and are good for reasoning
about the functionalities and the capabilities of the
services. Lack of infrastructures for defining com-
mon ontology across enterprises and customers is

25



another key problem in today’s service discovery
architectures.

We have developed the Ronin Agent Frame-
work and XReggie that aimed to enhance the per-
formance of the Jini service discovery infrastruc-
ture in the future eMarket. The Ronin frame-
work enhances the Jini service discovery infras-
tructure by providing a simple but powerful de-
scription facility and encourages the reuse of the
non-Java AI tools in the Jini environment. The
XReggie project enhances the Jini service dis-
covery infrastructure by extending the existing
JLS to handle services registration and match-
ing using the well-structured XML descriptions.
More information about our work can be found at
http://www.cs.umbc.edu/dna.

References

Anupam Joshi, Liang Xu. 2000. A jini based
framework for a component recommender system.
In Proc. 16th IMACS World Congress, Special
Session on PSES /or Scientific Computation (In-
vited Submission).

Arnold, K.; Wollrath, A.; O’Sullivan, B.; Scheifler,
R.; and Waldo, J. 1999. The Jini specification.
Reading, MA, USA: Addison-Wesley.

Chen, H. 2000. Developing a Dynamic Distributed
Intelligent Agent Framework Based on the Jini Ar-
chitecture. Master’s thesis, University of Mary-
land Baltimore County.

E. Guttman, C. P. 1999. RFC 2608: Service Lo-
cation Protocol v.2 Draft. Technical report, Sun
Microsystems.

Harry Chen. 2000. Jini Prolog Engine Service
(JPES). Available online from http://gentoo.
cs. umbc. edu/j pes/.

Hewlett-Packard. 2000. Understanding E-
Service: Chapter 2 of the Internet. Available
online from http://www.hp.com/e-services/
under st anding/chapt er2/.

Microsoft Corporation. 1999. Universal Plug and
Play Device Architecture Reference Specification,
version 0.9 edition.

Rekesh John. 1999. UPnP, Jini and Salutaion - A
look at some popular coordination framework for
future network devices. Technical report, Califor-
nia Software Labs. Available online from http:
//www. cswl. com/whitepaper/tech/upnp, html.

The Salutation Consortium Inc. 1999. Saluta-
tion Architecture Specification (Part-I), version
2.1 edition.

SVRLOC Working Group. 1997. SLP White Pa-

per. Available online from http://playground.
sun. com/srvloc/slp_whit e_paper, html.

26




