From: AAAI Technical Report WS-00-04. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Automated Negotiation from Declarative Contract Descriptions

Daniel M. Reeves and Benjamin N. Grosof and Michael P. Wellman and Hoi Y. Chan

University of Michigan Artificial Intelligence Laboratory
1101 Beal Avenue, Ann Arbor, MI 48109-2110 USA
{dreeves, wellman } @umich.edu
http://ai.eecs.umich.edu/people/{dreeves, wellman}/

IBM T.J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532 USA
{grosof, hychan} @us.ibm.com
http://www.research.ibm.com/people/g/grosof/

Abstract

We give a new, implemented approach for automating the ne-
gotiation of business contracts. We use our previous work
on developing a declarative language for expressing and rea-
soning about contracts and negotiations. Here we newly ex-
tend it to include a knowledge base of rules about negotiation
structures and auctions. This work addresses three important
research questions. First, how can we represent information
to allow automatic inference of negotiation structures? Sec-
ond, how can we automate negotiations in a way that will
closely drive a realistic automated platform (the Michigan
Internet AuctionBot)? Third, how can we use auction re-
sults to form a final contract? We use our work on Courte-
ous Logic Programs, a form of logic-based knowledge rep-
resentation, as a way to express fully-specified, executable
contracts and extend this to also express partially-specified
contracts that are in the midst of being negotiated. In our cur-
rent prototype, we have developed concepts and vocabulary
to reason about several aspects of the negotiation process: (1)
high-level knowledge about alternative negotiation structures,
(2) general-case rules about auction parameters, (3) rules to
map the auction parameters to a specific auction platform (the
Michigan Internet AuctionBot), and (4) special-case rules for
specific domains, including rules from potential buyers and
sellers about capabilities, constraints, and preferences. By
performing inferencing on the rule sets and interfacing to our
auction server, our prototype is able to automatically config-
ure a set of auctions, the results of which will “fill in the
blanks” of a partial contract. We use an upcoming Trading
Agent Competition as an example domain and are able to au-
tomatically generate all the auctions used in the competition
(and other possible configurations) starting from a formal de-
scription of the competition domain. The result of this project
is an extended approach which allows both the automation of
the negotiation process, includes conducting of auctions, and
produces contracts with are themselves executable using rule-
based techniques.

Copyright © 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

42

Introduction

One form of commerce that can benefit substantially from
automation is contracting, where agents form binding,
agreeable terms, and then execute these terms. The over-
all contracting process comprises several stages, including
broadly:

1. Discovery. Agents find potential contracting partners.

2. Negotiation. Contract terms are determined through a
communication process.

3. Execution. Transactions and other contract provisions are
executed.

In this work we are concerned primarily with negotiation,
and specifically with the process by which an automated ne-
gotiation mechanism can be configured to support a particu-
lar contracting episode. We present a shared language with
which agents can define the scope and content of a negotia-
tion, and reach a common understanding of the negotiation
rules and the contract implications of negotiation actions.
Note that we make a sharp distinction between the defini-
tion of the negotiation mechanism, and the actual negotia-
tion strategies to be employed by participating agents. Our
concern here is with the former, though of course in design-
ing a mechanism one must consider the private evaluation
and decision making performed by each of the negotiating
parties.

The contribution in this work is a system which bridges
the gaps between the discovery and negotiation phases
above, and between negotiation and execution. We call the
current prototype of this system ContractBot. By starting
from a formal description of a partial contract—describing
the space of possible negotiation outcomes—ContractBot
automatically generates configuration parameters for a ne-
gotiation mechanism. Then, by monitoring the individual
auction results, it generates the final, executable contract.

Overview of Problem and Approach

The central question in configuring a contract negotiation is,
“What is to be negotiated?” In any contracting context, some

features of the potential contract must be regarded as fixed,
with others to be determined through the contracting pro-
cess. At one extreme, the contract is fully specified, except
for a single issue, such as price. In that case, the negotia-
tion can be implemented using simple auction mechanisms
of the sort one sees for specified goods on the Internet. The
other extreme, where nothing is fixed, is too ill-structured to
consider automating to a useful degree in the current state of
the art.

Most contracting contexts lie somewhere in between,
where an identifiable set of issues are to be determined
through negotiation. Naturally, there is a tradeoff between
flexibility in considering issues negotiable and complexity
of the negotiation process. But regardless of how this trade-
off is resolved, we require a means to specify these issues so
that we can automatically configure the negotiation mecha-
nisms that will resolve them. That is, we require a contract-
ing language—a medium for expressing the contract terms
resulting from a negotiation.

In this project, we focus on the automatic configuration
of negotiations based on a contract and show how the ne-
gotiation results can be used to construct a final, “filled-
in” contract. Sections “Auction-Based Negotiation” and
“Courteous Logic Programs as KR” provide background
on auction-based negotiation and the rule language we use
to express contracts. Section “Contracting Framework”
frames the overall process of automated contract negoti-
ation and shows how rules generated during the negotia-
tion process can be combined with the partial contract to
form an executable final contract. In Section “Courteous
Logic Programs for Configuring Auctions” we discuss in
detail how the language is used to infer parameters for con-
figuring the negotiation—that is, parameters for a set of
auctions—focusing on the upcoming Trading Agent Com-
petition (Wellman & Wurman 1999) as an example domain
(Section *Domain Specific Rules: Trading Agent Compe-
tition”). Finally, in Section “Prototype Implementation,”
we discuss the details of our ContractBot prototype. It pro-
cesses the contract description (rules for describing possi-
ble components and their attributes) along with meta-level
rules about the negotiation and about individual auctions. It
combines all this with rules from buyers and sellers about
their constraints and preferences over the possible negotia-
tion structures. Based on inferencing by a rule engine, it
generates the appropriate auctions and determines the auc-
tion parameters. When transactions happen in the auctions,
it generates the corresponding rules and produces a final
contract.

Contracting Language

In developing a shared contracting language, we are con-
cerned with the three stages of contracting: discovery, nego-
tiation, and execution. This breadth of scope is one argument
for adopting a declarative approach, with a relatively ex-
pressive knowledge representation (KR). “Declarative” here
means that the semantics say which conclusions are entailed
by a given set of premises, without dependence on procedu-
ral or control aspects of inference algorithms. In addition to
flexibility, such an approach promotes standardization and

43

human understandability.

Traditionally, of course, contracts are specified in legally
enforceable natural language (“legalese™), as in a typical
mortgage agreement. This has great expressive power—but
often, correspondingly great ambiguity, and is thus very dif-
ficult to automate.! At the other extreme are automated lan-
guages for restricted domains; in these, most of the meaning
is implicit in the automated representation. This is the cur-
rent state of Electronic Data Interchange (EDI). We are in
the sparsely occupied middle ground, aiming for consider-
able expressive power but also considerable automatability.

Our point of departure for our KR is pure logic programs
(in the knowledge-representation-theory sense, not Prolog).
(Baral & Gelfond (Baral & Gelfond 1994) provide a helpful
review.) Logic programs are not only declarative and rel-
atively powerful expressively, but also practical, relatively
computationally efficient, and widely deployed.

Our KR builds on prior work (Reeves et al. 1999) repre-
senting business rules in Courteous Logic Programs (CLPs)
(Grosof 1997; Grosof, Labrou, & Chan 1999), described in
more detail in Section “Courteous Logic Programs as KR.”
To express executable contracts, these rules must specify the
goods and services to be provided, along with applicable
terms and conditions. Such terms include customer service
agreements, delivery schedules, conditions for returns, us-
age restrictions, and other issues relevant to the good or ser-
vice provided.

As part of our approach, we extend this KR with features
specific to negotiation. Foremost among these is the abil-
ity to specify partial agreements, with associated negotiable
parameters. A partial agreement can be viewed as a contract
template. Some of its parameters may be bound to particular
values while others may be left open. In our current proto-
type, we focus on rules that express aspects of how these
parameters are actually negotiated—i.e., rules for configur-
ing the negotiation mechanism (set of auctions)—but also
generate rules for the final contract based on the negotiation
results.

Negotiable Parameters

Once we have this contracting language, our next step will
be to use it to establish the automated negotiation process.
As noted above, a key element of this is to identify the nego-
tiable parameters. The contract template effectively defines
these parameters by specifying what the contract will be for
any instantiation of parameter values.

The problem then, is to enable the contract language to
allow descriptions of contract templates. In addition, we re-
quire auxiliary specification of possible values for parame-
ters, and dependencies and constraints among them. Given
this specification of what can be negotiated, we require a
policy to determine what is actually to be included in the
given negotiation episode (rather than assigned a default
value, or left open for subsequent resolution).

'Even if a natural language contract is completely unambigu-
ous, it would require a vast amount of background and domain
knowledge to automate.

This answers the question of what is to be negotiated; the
remaining question is 2ow. In general, there are many ways
to structure a negotiation process to resolve multiple param-
eters, We focus on processes mediated by auctions. As we
describe below, the problem then becomes one of configur-
ing appropriate auctions to manage the negotiation.

Auction Configuration

To support the configuration of auctions based on rules about
the contract and about the negotiation, we have created
three general-purpose sets of rules, Auction-Configuration,
Auction-Space, and AuctionBot-Mapping (see subsections
under “Courteous Logic Programs for Configuring Auc-
tions” and corresponding appendices) which provide back-
ground knowledge about the configuration of auctions.
Auction-Configuration encodes control-level knowledge
about the process of generating a suite of auctions to support
negotiation of multiple parameters. It also encodes knowl-
edge for aggregating agent preferences in determining the
set of auctions to create. Auction-Space is modeled on our
current parameterization of auction design space (Wurman,
Walsh, & Wellman 1998) (discussed in Section “Auction-
Space”). It lays out the set of auction parameters, spec-
ifying their domains, and default values, as well as con-
straints and other rules about how they influence each other.
Additionally, it clusters sets of parameters based on well-
known auction types such as Continuous Double Auctions
(CDA)? or English.? The AuctionBot-Mapping ruleset maps
the auction-space parameterization to the AuctionBot. The
mapping is not at all straightforward since we have signifi-
cantly changed our view of the parameterization of auction-
space but our implementation on AuctionBot has not kept up
due to backward compatibility constraints and has become
rather convoluted.

To configure a set of auctions for a particular domain,
we incorporate additional rules from the contract template
and from potential buyers and sellers. These rules, com-
bined with the background knowledge about auction con-
figuration described above, are used to infer the actual auc-
tion parameters for a suite of auctions that will implement
the chosen negotiation structure. We discuss an example in
Section “Domain-specific Rules: Trading Agent Competi-
tion” which implements the creation of the auctions for the
ICMAS Trading Agent Competition (Wellman & Wurman
1999) as well as choosing between multiple possible config-
urations for the competition.

Composing Final Contracts

Once ContractBot configures and generates the suite of auc-
tions, it monitors the auctions, waiting for transactions. Each
transaction generates a fact specifying what component was
transacted, what the values were for each of its attributes,
who the buyer and seller were, and the price and quan-
tity. The partial contract contains rules that make use of

2Stock markets are examples of CDAs. See Friedman and
Rusts’s book on double auctions (Friedman & Rust 1993).

3Consumer auctions on the Internet (like eBay) are mostly vari-
ants of English auctions.

44

such transaction facts once they are filled in. The portion
of the contract template that combines with the transaction
facts we call the proto-contract. A typical rule in the proto-
contract might be to say that the amount paid by agent X to
agent Y is the sum of the prices in all transactions in which
X bought from Y minus the sum of transactions in which Y
bought from X. More about the proto-contract and forming
executable final contracts is discussed in Section “Contract-
ing Framework.” Section “Domain-specific Rules: Trading
Agent Competition” discusses an example of generating fi-
nal contracts in the Trading Agent Competition domain.

Auction-Based Negotiation

Mechanisms for determining price and other terms of an ex-
change are called auctions. Although the most familiar auc-
tion types resolve only price, it is possible to define multidi-
mensional generalizations and variants that resolve multiple
issues at once. This can range from the simple approach of
running independent one-dimensional auctions for all of the
parameters of interest, to more complicated approaches that
directly manage higher-order interactions among the param-
eters.

Auctions are rapidly proliferating on the Internet.* Al-
though typical online auctions support simple negotiation
services, researchers have begun to deploy mechanisms with
advanced features. For example, our own Michigan Internet
AuctionBot supports a high degree of configurability (Wur-
man, Wellman, & Walsh 1998) (http://auction.eecs.umich.
edu/), and IBM’s auction system supports one-sided sales
auctions integrated with other commerce facilities (Kumar
& Feldman 1998).

Although muitidimensional mechanisms are more com-
plicated, and not yet widely available, we expect that they
will eventually provide an important medium for automated
negotiation. For example, combinatorial auctions allow bid-
ders to express offers for combinations of goods, and deter-
mines an allocation that attempts to maximize overall rev-
enue. We are aware of one prototype system currently sup-
porting combinatorial auctions over the Internet (Sandholm
to appear). Multiattribute auctions, typically employed in
procurement, allow specification of offers referring to mul-
tiple attributes of a single good (Branco 1997).

Whether a multiattribute auction, a combinatorial auction,
or an array of one- or zero-dimensional auctions® is appro-
priate depends on several factors. Although a full discussion
is beyond the scope of this paper, we observe that these fac-
tors can bear on any of:

o The coherence of auction configurations. For example, if
some attributes are inseparable (say, arrival and departure
times), then it makes no sense to treat them as separate
goods in a combinatorial auction.

o The expected performance of auction configurations. For
example, if parameters represent distinct and separable

*As of this writing, eBay alone has over 4 million currently
running auctions.

SA zero-dimensional auction is one which determines only
price. A one-dimensional auction determines price and quantity.

contract options, then they could be handled either by
separate or combined auctions. Whether they should be
combined depends on how complementary the negotiat-
ing agents perceive them to be.

o The complexity of auction configurations, for both the
mechanism infrastructure and participating agents. Di-
mensionality plays a large role in complexity tradeoffs.

In Sections “Auction-Configuration” and “Domain-
specific Rules: Trading Agent Competition” we discuss and
give examples of some of the limited support that the current
ContractBot provides for reasoning about some of the above
criteria.

Courteous Logic Programs as KR

The KR we are using to represent contracts is Courteous
Logic Programs. Courteous LPs expressively generalize or-
dinary LPs by adding the capability to conveniently express
prioritized conflict handling, i.e., where some rules are sub-
ject to override by higher-priority conflicting rules. For ex-
ample, some rules may be overridden by other rules that
are special-case exceptions, more-recent updates, or from
higher-authority sources. Courteous LPs facilitate specify-
ing sets of rules by merging and updating and accumulation,
in a style closer (than ordinary LPs) to natural language de-
scriptions. Priorities are represented via a fact comparing
rule labels: overrides(rulel, rule2) means that rulel has
higher priority than rule2. If rulel and rule2 conflict, then
rulel will win the conflict. See Section “Courteous Logic
Programs for Configuring Auctions” for examples of labeled
rules and prioritizations.

Courteous LPs have several virtues semantically and com-
putationally. A Courteous LP is guaranteed to have a con-
sistent, as well as unique, set of conclusions. Priorities and
merging behave intuitively. Execution (inferencing) of cour-
teous LPs is fast: only relatively low computational over-
head is imposed by the conflict handling.

Our work on representing contracts via Courteous LPs
builds on prior work at IBM representing business rules. The
implementation we are using is a Java library called Com-
monRules available from IBM (com).

Contracting Framework

We now describe the process of automatically turning a par-
tially specified contract into a fully specified, executable
one. The partial contract, or contract template, is a declar-
ative description of the space of possible negotiation out-
comes with additional rules for influencing the structure of
the negotiation and how it will be configured. Our previ-
ous work (Reeves et al. 1999) presents a language based
on Courteous Logic Programs for representing contract tem-
plates and shows that this language is sufficiently general
to support the negotiation of any aspect of an executable
contract. As shown in Figure 1, the contract template con-
sists partially of rules that will implement the final agree-
ment (called the “proto-contract”), as well as rules that de-
scribe the components of the contract left to be determined.
The proto-contract refers to facts and conditions regarding,
for example, mechanics of the deal (payment and delivery)

45

or ancillary agreements such as return policies (see Section
“Courteous Logic Programs as KR”). It is the part of the
contract that carries over unchanged into the final contract,
and which combines with the facts output by the negotiation
mechanism to result in an executable ruleset that implements
the agreement. We point out, however, that this distinction
need not be sharp. In fact, an important advantage of our
rule-based representation language is the ability to re-use
rules and reason about them on different levels. Rules in the
proto-contract that implement some aspect of the final deal
may also be used as part of the inferencing to establish an
appropriate negotiation mechanism. For example, time con-
straints on delivery may dictate final clearing times for auc-
tions. Figure 2, shows in more detail how a partial contract,
including its proto-contract, is mapped to a final contract us-
ing general rules about auction configuration (see Section
“Courteous Logic Programs for Configuring Auctions”).

The rules in the partial contract that describe the nego-
tiable aspects have two purposes. The first is to describe
the hierarchy of components and attributes of a contract. In
our previous work we present a richer component descrip-
tion ontology which allows reasoning about orthogonality
and separability of pieces of a contract, as well as arbitrar-
ily nested hierarchies of components and attributes. This
is aimed at more sophisticated multidimensional negotiation
mechanisms that we plan to support in AuctionBot in the
future. For the purposes of our current prototype, we only
support partitioning the contract into separable components,
each of which may have a set of attributes. However, we
also allow the contract template to express reasoning about
various ways to split up a component into separable com-
ponents. The final partitioning of the contract into a set of
components may be influenced by potential buyers and sell-
ers who submit rules that specify their constraints and pref-
erences among the alternative negotiation structures.

The second purpose for rules about the components of a
contract is to specify high-level knowledge about how the
individual components should be negotiated. The rule en-
gine can then infer the necessary parameters for configur-
ing the negotiation mechanism. This is currently a set of
single-dimensional auctions for each included component,
but could also by a multidimensional mechanism that would
determine attributes of a component simultaneously, or al-
low bidders to directly express preferences of subsets of
components.

The key step in this process—interfacing the discovery
phase (the partial contract) with the negotiation phase (set
of auctions)—is then the configuration of the negotiation
mechanism based on the inferencing done from the contract
template and rules submitted by buyers and sellers. After the
set of auctions are configured and run and the negotiation
phase is complete, we can automatically enter the execution
phase by generating the the final contract as a function of
the proto-contract and the auction results. (and the focus of
the prototype discussed in Section “Prototype Implementa-
tion”) is then the configuration of the negotiation mechanism
based on the inferencing done from the contract template.
After the set of auctions are configured and run and the ne-
gotiation phase is complete, high-priority facts are added to

Contract Template

Rules
Implementing
Agreement
("proto-contract")

' SZZWC?%?;T and - Transaction
other Negotiation g;?é? (Erl}'gee r,qty
Eﬁ%c;tlatlon-level Mechanism other attributes)

Executable Contract

Rules
Implementing
Agreement
("proto-contract")

Figure 1: Overall contracting process, partial to complete contract.

the contract, yielding a set of rules that fully implements the
negotiated agreement.

In the next two sections we describe our implementation
of the overall contracting process. Namely, (1) the configu-
ration of the negotiation mechanism based on rules describ-
ing possible partitionings of the contract into components,
rules from buyers and sellers influencing the choice of ne-
gotiation structure, and rules about how individual compo-
nents should be negotiated; (2) the generation of an exe-
cutable contract by combining rules generated for each auc-
tion transaction with the proto-contract from the contract
template.

Courteous Logic Programs for Configuring
Auctions

In this section we discuss the logic programming aspects of
inferring the parameters for the negotiation mechanism. The
primary set of rules for this inferencing comes from the con-
tract template (see Section “Domain-specific Rules: Trad-
ing Agent Competition” for a detailed example of a con-
tract template) but we also have three sets of rules that serve
as background knowledge about the space of possible ne-
gotiation mechanisms. The first is Auction-Configuration
(Section “Auction-Configuration™) which is used for deter-
mining which set of auctions to create based on agent pref-
erences and constraints. It implements the method of set-
ting up a multidimensional negotiation by creating an ar-
ray of single-dimensional auctions—one for each combina-
tion of attribute values. Additionally, it contains miscel-
laneous, low-level rules used in the configuration of auc-
tions. The next ruleset is Auction-Space (Section “Auction-
Space”) which provides basic knowledge about our param-
eterization of the space of possible auction mechanisms,
as well as defaults for auction parameters and constraints
among them. It also contains various heuristics for setting
auction parameters and aggregation of sets of parameters

46

into “auction types”. The last ruleset (Section “AuctionBot-
Mapping”) maps this general auction knowledge to a spe-
cific auction server—the Michigan Internet AuctionBot.

Together, the rules from the contract template (and rules
from buyers and sellers) and the auction mechanism back-
ground knowledge enable the inferencing engine to reach a
set of conclusions that is sufficient to configure the negotia-
tion.

Auction-Configuration

The Auction-Configuration ruleset (see Appendix “Auction
Configuration Ruleset” implements the technique of simu-
lating a multiattribute auction by holding an array of single-
dimensional auctions—one for every point in attribute-
space. It generates valueTuple predicates for every com-
bination of attribute values, noting which component each
belongs to. It then creates an auction for each of the value
tuples, and the parameters for those auctions inherit from
the parameters for the parent component. In addition to
determining the set of auctions for a particular component,
Auction-Configuration helps determine how to partition the
negotiation into components. For example, it infers a score
for each of several possible components® by counting the
total number of buyers and sellers interested in them, unless
there are no buyers or no sellers, in which case the score is
zero:

<m> score(?Component, ?N) <-

numBuyers (?Component, ?NB) AND
numSellers (?Component, ?NS) AND
-1s(?N, plus(?NB, ?NS)).

<high> score(?Component, 0) <-
numSellers (?Component, 0).
<high> score(?Component, 0) <-

numBuyers (?Component, 0).

%See Section “Domain-specific Rules: Trading Agent Compe-
tition” for examples of alternative components for a contract.

The numBuyers and numSellers rules are deter-
mined based on buyers and sellers who submit rules spec-
ifying their interest in buying or selling certain components
of the contract.

Also included in Auction-Configuration are rules govern-
ing the priorities of other rules, as in the example above.
There are currently several levels of rule priorities: lowest,
verylow, low, medium (abbreviated as “m”), high, veryhigh,
and highest. The “lowest” labels are only used in Auction-
Space to catch any unassigned parameters from other rule
sets. The higher priority labels are used any time an excep-
tion is needed to a standard rule. An example of this occurs
in the Hotel section of the Trading Agent Competition rules,
included in Appendix “Trading Agent Competition Contract
Template.” “Highest” rules are used for constraints.” It is
from these priority rules that we know, for example that the
rule labels in the example above have priority such that set-
ting a score to zero when there are no buyers or sellers over-
rides setting the score to the sum of the number of buyers
and number of sellers.

The last section in Auction-Configuration simply speci-
fies that only one value may be inferred for each auction
parameter. Which value to infer (when there are multiple
possible) is determined by the conflict resolution rules (see
Section “Courteous Logic Programs as KR”).

Auction-Space

The first thing that Auction-Space (see Appendix “Auction-
Space Ruleset”) specifies are the domains of each of the auc-
tion parameters, as well as defaults for each of them. The
parameterization is based initially on AuctionBot but ex-
tended and improved in more recent work (Wurman, Walsh,
& Wellman 1998). The default values for parameters are
labeled as lowest priority rules so that parameters inferred
based on specific aspects of a negotiation will take prece-
dence. For example, the following rules specify that by
default, any auction should have multiple buyers and one
seller, and that ties for winning bids should be broken by
first-in/first-out..

<lowest>
auction(multipleBuyers, 1).
<lowest>
auction(multipleSellers, 0).
<lowest>

auction(tiebreaking, fifo).

In the next section of Auction-Space, we specify condi-
tional default parameters——that is, what certain parameters
should default to, given that certain other parameters have
already been inferred. For example, if we know that an auc-
tion has a single seller then, by default, it should have mul-
tiple buyers, and vice versa.

<verylow>
auction(?ID, multipleBuyers, 1)

"They may also be used outside of any particular rule set—for
example, when creating a batch of auctions based on the same rule
set but for which one or two parameters should change for each
auction.

47

<_
auction(?ID, multipleSellers, 0).

<verylow>
auction(?ID, multipleSellers, 1)
<_

auction(?ID, multipleBuyers, 0).

Next are hard constraints between parameters. For ex-
ample, if there is bidding rule that says one must meet the
current quote, then this implies that one need not beat the
quote.

<highest>
auction(?ID, beatQuote,
auction(?ID, meetQuote,

0) <-
1).

Notice that constraints are similar to conditional defaults
except that constraints have overriding priority, while condi-
tional defaults are just that—defaults that will be overridden
by values inferred elsewhere.

The remaining rules rules all involve negotiation-~
Type/ 2 predicates in the body. NegotiationType is used in
a contract to specify meta-level information for the negoti-
ation mechanism. Auction-Space maps such knowledge to
specific auction parameters, which correspond loosely to the
parameters in AuctionBot, but that mapping is completed
in AuctionBot-Mapping (Section “AuctionBot-Mapping”).
Note that negotiationTypes can infer other negotiation-
Types but that the inferencing must trickle down to auc-
tion predicates eventually. For example, negotiation-
Type (continuous) implies, among others, negoti-
ationType (continuousClears) which in turn im-
plies auction (quoteMode, bid). Following are the
rules for inferring continuous quotes and clears:

negotiationType (?ID,
continuousQuotes)
AND
negotiationType (?ID,
continuousClears)
<-
negotiationType (?1ID,
continuous) .

auction(?ID, quoteMode, bid)

<_

negotiationType (?ID,
continuousClears).

auction(?ID, intClearMode, bid)

<_..

negotiationType (?1ID,
continuousQuotes) .

One particularly useful feature of Auctionbot-Space is
that it encodes several well-known auction types. For ex-
ample, specifying a negotiation type of “CDA” is all that is
necessary to infer all the characteristics that define an auc-
tion as a CDA—chronological matching, continuous quotes
(bid-ask) and clears, double-sided, and discrete goods.

<>

auction(?ID, matchingFunction,
earliestTime)

AND

negotiationType(?ID, continuous)

AND

negotiationType (?ID, double)

AND

auction(?ID, divisible, 0)

AND

auction(?ID, quoteMode,
bidandask)

< pe—

negotiationType(?ID, cda).

The conflict resolution that CLP provides is also useful
here. For example, it allows specifying that an “Amazon-
style” auction is just like “eBay-style” except that Ama-
zon auctions don’t close until ten minutes of inactivity have
passed.

<ebay>

auction(?ID, matchingFunction,
mthPrice)

AND

auction(?ID, multipleBuyers, 1)

AND

auction(?ID, multipleSellers, 0)

AND

auction(?ID, divisible, 0)

AND

negotiationType (?ID, revealAll)

AND

auction(?ID, bidRules,
[bidQtyl, bidwithdrawr,
bidQuoteb, bidPrev2,
bidPrev5])

AND

negotiationType (?ID,
allNotifications)

AND

negotiationType (?ID,
continuousQuotes)

AND

auction(?ID, quotePolicy,

askOnly)

AND

auction(?ID, quotelIncrement, 1)

AND

auction(?ID, intClearMode, none)
AND
auction(?ID, finalClearMode,

fixed)

AND

auction(?ID, matchingFunction,
mthPrice)

<—

negotiationType (?ID, ebay).

negotiationType (?ID, ebay)

48

<_
negotiationType (?ID, amazon).

<amazon>

auction(?ID, finalClearMode,
inactivity)

AND

auction(?ID,
finalClearInactivityInterval,
600)
/* 10 minutes inactivity */
<_
negotiationType(?ID, amazon).

/* Amazon rule is an exception */
overrides (amazon, ebay).

This hierarchy could be extended further by making an
eBay auction a special case of a standard English auction.

Auctionbot-Mapping

The Auctionbot-Mapping (see Appendix “AuctionBot Rule-
set”) is a set of rules for inferring AuctionBot parameters
from the improved and generalized parameterization given
in Auction-Space.

The reason this is necessary is that we have contin-
ued to improve, clean up, and generalize our parameteriza-
tion of auction design space (Wurman, Wellman, & Walsh
to appear) but the AuctionBot has not kept up, due to
backward-compatibility constraints. For example, in the
Auction-Space rule set, we have added to the auction pa-
rameterization by introducing an additional auction parame-
ter, mnatchingFunction (either price-based—Mth, M +
1st—or based on time of bid). AuctionBot does not recog-
nize this parameter but it is used in AuctionBot-Mapping to
derive the superfluous “auction type” parameter which the
AuctionBot does currently need. In this way, all other rule
sets can ignore “auction type” and instead use the interface
provided in Auction-Space—one that uses such existing pa-
rameters as quote and clear mode, along with the added pa-
rameter matchingFunction. When the AuctionBot pa-
rameters are changed to reflect this new parameterization,
Auction-Space will already support it, and the rules to infer
the old “auction type” can (optionally) be deleted.

Following is a rule that maps the fundamental parame-
ters defining a Vickrey auction to the deprecated AuctionBot
“type” parameter value corresponding to Vickrey auctions.

<m> /* Vickrey, sealed-bid */

auctionbot (?ID, type, 3)

<_

auction(?ID, matchingFunction,
mPlusFirstPrice)

AND

auction(?ID, finalClearMode,
synchronized)

AND

auction(?ID, multipleSellers, 0)

AND

auction(?ID, quoteMode, 0)
AND
auction(?ID, intClearMode, 0).

Other auction types such as CDA and Chronological
Match can be inferred similarly. Note that CDA is a spe-
cial case of Chronological Match. This is elegantly captured
in CLP.

<chronmatch>

auctionbot (type, 4)

<-

auction(matchingFunction,
earliestTime) .

<cda>

auctionbot (type, 5)

<

auction{(matchingFunction,
earliestTime)

AND

auction(intClearMode, bid).

/* special case */
overrides (cda, chronmatch).

Domain-specific Rules: Widget Example

In this section we present a simple example of a subset of
a contract from which our prototype is able to automati-
cally configure the appropriate auctions. Section “Domain-
specific Rules: Trading Agent Competition” describes a
more elaborate domain. In this example, there is only
one component of the contract (a widget) and it has only
one attribute (quality) with two possible values (regular and
deluxe). (There are no alternative negotiation structures.)
This information is represented with the following rules:

/* Possible Values: */
value(quality, regular).
value(quality, deluxe).

/* Specify the components and
their attributes: */

component (widget) .
attribute (widget, quality).

The possible values were not tied to the widget compo-
nent because in general they might have applied to more
than one component. The following general rule creates
value/3 rules for each component based on the general
value/2 rules and the components that have been de-
clared:

value (?Component, quality,
component (?Component)
AND value(quality, ?2Q).

A widget is a multiattribute negotiable but the current
AuctionBot only supports single-dimensional auctions (ne-
gotiating price and quantity). A brute-force method for im-
plementing a multiattribute auction is to simply create an

?Q) <-

49

array of single-dimensional auctions, one for each point in
attribute-value space. The following rule enumerates all the
points in attribute-value space for all components—in this
simple example, only two points will be enumerated, one
for each possible value of the single attribute of the single
component, a widget: (This rule is actually unnecessary in
ContractBot because inferring valueTuples is done automat-
ically as part of Auction-Configuration.)

valueTuple (?Component,
dotOp (?Quality,nil))
<_
value (?Component, quality,
?Quality) .

Note that the dotOp/2 predicate is used to represent a
list (dotted pair) since the current implementation of CLP
does not support lists explicitly. The above rule creates a
valueTuple/2 fact for every possible way to assign val-
ues to the attributes of a component.

Next, we provide general information about the nego-
tiation of widgets. These facts are used by Auctionbot-
Mapping and Auction-Space to generate the full set of auc-
tion parameters for widget auctions. (In this case, most of
the parameters will be default values specified in Auction-
Space.)

negotiationType (widget,
continuous) .

negotiationType (widget,
double) .

negotiationType (widget,
revealAll) .

At this point, we have inferred all of the auction parame-
ters for widgets and we have enumerated the valueTuples for
all the auctions we need to create. We now combine those
steps to explicitly create the auctions and have each of the
auctions created get its parameters from the parameters we
derived for widgets in general.

For every valueTuple, we infer a makeAuction/1 fact
which takes a list (thought of as an ID) and tells our proto-
type to create an actual auction. We also infer a parent /2
fact for every valueTuple. This tells us the component that
each auction belongs to. (Inferring the set of auctions from
the valueTuples is also done automatically in the Auction-
Configuration rule-set, as well as inheritance of parameters
from parent components.)

makeAuction (dotOp (?Component,

?Values))
AND
parent (dotOp (?Component, ?Values),
?Component)
<_

valueTuple (?Component, ?Values).

Finally, we specify the auction parameters for each cre-
ated auction—simply the parameters that we derived in gen-
eral for the component that the auction belongs to (its par-
ent).

auction(?ID, ?Attr, ?Val) <-

parent (?ID, ?Component)
AND
auction(?Component, ?Attr, ?Val).

Domain-specific Rules: Trading Agent
Competition

In July 2000 in Boston at the International Conference on
Multiagent Systems, the University of Michigan is hosting
a trading agent competition in which participants will write
agents to do automated trading in a set of auctions on the
AuctionBot. The auctions will simulate the domain of a
travel agent assembling trips for its customers. The goods
that agents will be shopping for are flights (defined by day
and destination—out or back), hotels (defined by day and
quality), and entertainment tickets (defined by day and type
of event). Each of the types of goods are sold in a differ-
ent kind of auction. Flights are sold at randomly fluctuating
fixed prices. Hotels are sold in an ascending English auc-
tion. Agents buy and sell entertainment tickets in a contin-
uous double auction much like trading securities in a stock
exchange.

The design of the Trading Agent Competition (TAC)
game describes in detail how the goods are partitioned into
a set of auctions and exactly what the parameters of those
auctions are. Appendix “Trading Agent Competition Con-
tract Template” is a rule set that generates that partition-
ing (among a space of possible partitionings) and auction
configurations based on a higher-level description of the
TAC game. It also includes rules from buyers and sell-
ers, indicating how they would like the contract to be par-
titioned into components. As given, the TAC contract tem-
plate and buyer/sellers rules will infer the same components
described above—the partitioning used in the actual TAC
competition—but simple changes to buyer or seller rules
will infer alternative structures for hypothetical TAC nego-
tiation mechanisms. For example, we currently have rules
from multiple buyers expressing willingness to buy bundled
travel packages (flight, hotel, and entertainment bundled into
one good). Adding a rule from a single seller expressing
willingness to sell such a good would result in a repartition-
ing of the set of auctions to include complete travel pack-
ages.

The first thing the TAC contract template specifies is a
proto-contract. As described in Section “Contracting Frame-
work,” the proto-contract is the subset of the contract tem-
plate that, when combined with the rules coming out of
the negotiation mechanism, form the final, executable con-
tract. As mentioned in Section “Composing Final Con-
tracts,” we show a typical rule for a proto-contract that we
have included in the TAC example, namely, inferring the to-
tal amount that a given agent owes another agent after the
negotiation:

pay (?Agentl, ?Agent2, ?Amt) <-
setof (?Payl2,
transact (?Agentl,
?Agent2,
?Component,
?AVList,

?Payl2, ?Qty),
?Payl2List) AND
setof (?Pay21,
transact (?Agent2,
?Agentl,
?Component,
?AVList,
?Pay2l, ?Qty),
?Pay2l1lList) AND
sum{?Payl2List, ?Payl2Total)
AND
sum(?Pay21lList, ?Pay2lTotal)
AND
is (?Amt, minusOp (?Payl2Total,
?Pay2lTotal)).

More specific to TAC, we include rules in the proto-
contract to infer the utility that a travel agent receives from
its transactions, according to the definition of the TAC
game.? Following is a part of the utility calculation which
says that a client’s utility is a function of whether they were
able to procure a trip, how many days deviation from their
ideal travel dates they were, and their bonuses for staying in
the nice hotel and seeing the entertainment they wanted:

<high> clientUtility(?Client, 0)
<- feasibleTrip(?Client, 0).
<m>
clientUtility(?Client, ?U) <-
feasibleTrip(?Client, 1) AND
travelPenalty(?Client, ?TP) AND
hotelBonus (?Client, ?HB) AND
funBonus (?Client, ?FB) AND
is(?U, 1000 - 100 * ?TP
+ ?HB + ?FB).

Note that although the complete ruleset for utility calcu-
lation is not given, all of the above predicates can be in-
ferred by transaction facts generated by the ContractBot as
it monitors the auction results. We can now infer a travel
agent’s utility in the competition by summing the utilities of
its clients and subtracting its expenses:

utility(?TravelAgent, ?U) <-
setof (?Client,
clientOf (?Client,
?TravelAgent),
?ClientList) AND
map (clientUtility, ?ClientList,
?ClientUtilities) AND
sum(?ClientUtilities,
?Profit) AND
expenses (?TravelAgent,
?Expenses) AND
is(?U, ?Profit - ?Expenses).

Note that determining the expenses for an agent is a vari-
ation on the pay predicate given above. (See Appendix

8 A utility calculation would probably not make sense in a proto-
contract in the real world, but in the TAC game, the utility is used
externally—i.e., to determine the winner of the competition.

50

“Trading Agent Competition Contract Template” for de-
tails.)

The first thing the TAC contract template specifies after
the proto-contract is the possible values for the attributes of
the goods. For example, the following facts set the possible
types of entertainment events:

value (entertainment,
type, baseball).

value (entertainment,
type, symphony).

value (entertainment,
type, theatre).

After specifying the domains for the attributes of the
goods, there are several sections of rules corresponding to
possible components of the TAC domain, and giving the at-
tributes of each of the components, as well as specifying
negotiation-level rules for the components. For example, the
following rules specify that flights have two attributes—type
(out or back) and day.

attribute(flight, type).
attribute(flight, day).

value(flight, day, ?Val)
<~ value(day, ?val).

Note that the possible values for flight types were enumer-
ated in separate rules. The possible values for flight days are
inferred from the globally defined day values, declared with
value/2 predicates.

By using the description of the possible components of
the contract, along with other rules about how to split the
components into a set of auctions, the procedure determines
the groups of auctions to create. There are also rules that
help infer what the parameters of those auctions should be.
For example, the following rules specify that hotels should
be auctioned “eBay style,” with the exception that buyers
can bid for multiple quantities, and in fact submit entire dis-
crete demand schedules—a list of quantities demanded for
each of a set of prices.

<m> negotiationType (hotel, ebay).

<high> auction(hotel, bidRules,
[pgPoints, noWithdraw,
beatQuote, beatPreviousBid]).

The TAC contract template has sections for several com-
ponents besides flights, hotels, and entertainment. It also
has round trip flights (parameterized by arrival day and de-
parture day), hotel blocks (which have a type as before,
plus first and last night for a contiguous range of rooms),
flight/hotel bundles (with attributes for day in, day out, and
hotel type), entertainment packages (which bundle a set of
entertainment tickets for a trip), and finally, complete travel
packages (parameterized by arrival, departure, type of hotel,
and when each type of entertainment is to be seen, including
never).

By stating relationships between these components and
incorporating rules from buyers and sellers, we can rea-
son about alternative negotiation structures for TAC. The
relationships we encode in the current example are mutual

51

exclusivity rules about which components an agent would
never be interested in simultaneously. For example, individ-
ual one-way flights and flight/hotel bundles are considered
mutually exclusive:

mutex_head <- component (flight)
AND component (flighthotel).

And the travel package component subsumes all other
possible components:

mutex_head <-
component (travelpackage) AND
component (?X)
mutex_given
notEquals (?X, travelpackage).

Prototype Implementation

In this section we discuss our implementation of the over-
all contracting process described in Section “Contracting
Framework.” Figure 2 depicts the overall process of turning
a contract template along with rules from buyers and sell-
ers into a final contract, and thus an executed deal. At the
heart of this process are the three sets of background knowl-
edge discussed in Section “Courteous Logic Programs for
Configuring Auctions”—Auction-Configuration, Auction-
Space, and AuctionBot-Mapping. ContractBot.clp wraps
these rulebases together along with a file of miscellaneous
utilities (util.clp) and the Prolog (XSB) queries that drive
the inferencing.

The inferencing engine itself is actually a series a Perl
scripts that guide the input to ContractBot and the back-
ground knowledge through the inferencing engines. The
main ContractBot executable accepts arbitrary CLP rules
(generally the contract template and buyer/seller rules) on
standard input and combines these rules with the back-
ground knowledge specified in contractBot.clp. This con-
glomeration of CLP input is fed into the “Courteous Com-
piler”, a component of IBM CommonRules which compiles
CLP into ordinary Prolog. This Prolog code is then com-
bined by another script with the queries specified in con-
tractBot.clp and fed into the XSB Prolog engine.

It is these queries that generate the output that the fol-
lowing modules need to interact with the AuctionBot. For
example, to generate the list of auctions to be created, con-
tractBot.clp makes the following query:

:— setof(ID, makeAuction(ID),
writelist (L), nl.

L),

This simply writes a list to standard output containing all
the auction IDs for which there is a makeAuction fact en-
tailed by the knowledge base. These facts are generated by
Auction-Configuration for point in attribute space for every
component inferred. Components, in turn, are inferred from
the contract template and from buyer and seller rules.

The output of the Prolog queries amounts to a list of auc-
tions and parameter values for each auction. The list of auc-
tions and parameter settings are fed to the create-auctions
module which connects to the AuctionBot via the Mathe-

conracibee olp

Wil aba-conligaly ationspaee . astonbololp XRB goeriey

5, 1 Ehepareiaedders y —
O ey what e, b i | [Em 'm]
¥ |ty wan a| CLPIXSR e
A A Ky 1 N LT ¥
Comtra Tengle | v | inferoncing [vcrinar |
* pomsibile e P ﬁngiﬂﬁ 3ot wavhons .
g, 1 EOETOOEER spr0] o S I ——
4 * LM.WMM:MJ

L — f‘§ Airibuies

+ figgtistiondevel 7
s
* Prodcseonirat

3

¢ - -y
promsed. [REGRLEIE fapts }immmmw

%
fhoal contet ;

CLPXSE.
* inferencing
engine -

)

Figure 2: How ContractBot uses its auction knowledge to turn a partial contract into a complete, executable contract.

matica implementation of the AuctionBot’s API° and cre-
ates the auctions. The list of auctions is also sent to the
auction-watcher module which monitors the specified auc-
tions and composes the corresponding transaction facts (see
Sections “Contracting Framework” and “Domain-specific
Rules: Trading Agent Competition”) whenever a transac-
tion occurs on AuctionBot in an auction relevant to the con-
tract. Finally, the transaction facts are concatenated with the
proto-contract from the original contract template to form an
executable contract which can itself be fed through an infer-
encing engine to execute the terms of the deal.

Section “Domain-specific Rules: Widget Example”
presents a simple example of a partial contract that can be
used as input to our prototype. In Appendix “Trading Agent
Competition Contract Template” we provide a more elab-
orate example which generates the set of auctions used in
an upcoming Trading Agent Competition. The domain for
the competition involves three components—flights, hotels,
and entertainment—each of which has two attributes, type
and day. Our prototype is able to reproduce the same set of
auctions actually used in the competition, but using only a
high-level description of the goods to be negotiated and the
nature of the negotiations.

Related Work

This work builds on a project at IBM T. J. Watson Research
called Business Rules for Electronic Commerce (BREC).

Mathematica was chosen for its clean implementation of the
API and its convenient LISP-like handling of the auction and pa-
rameter lists.

52

(http://www.research.ibm.com/rules/) Its goal is to support
the encoding of business rules using Courteous Logic Pro-
grams (Grosof 1997). This is the basis for the representa-
tion of business contracts that we are using here. Note that
this work differs from existing work under similar names.
Notably, Tuomas Sandholm’s Contract Net and other work
in distributed AI and industrial engineering describe mech-
anisms for subcontracting among agents in order to divide
work in accomplishing a task. By contrast, our approach is
to support an automated negotiation mechanism for agents
to decide upon agreeable terms of a contract, which can then
be executed electronically.

Multidimensional negotiation is the other aspect of this
work which has an existing literature. As discussed in Sec-
tion “Auction-Based Negotiation,” combinatorial auctions
allow bidders to make offers for combinations (bundles) of
goods. We are aware of one prototype that supports combi-
natorial auctions on the Internet (Sandholm to appear). Mul-
tiattribute auctions have typically been used for procurement
(one buyer, many sellers). They allow bidders to express
willingness to buy over an entire space of attributes of a sin-
gle good (Branco 1997).

Conclusion and Future Work

This paper builds on our framework for the overall con-
tracting process (Reeves et al. 1999) by implementing a
system for automatically configuring a negotiation mecha-
nism based on a formal description of a partial contract and
interpreting the results of the negotiation to form a com-
plete and executable contract. We present an infrastructure

for configuring negotiations and carrying out the resulting
contracts. The background knowledge supporting this in-
frastructure is embodied in three CLP rule sets: Auction-
Configuration, Auction-Space, and Auctionbot-Mapping.
Auction-Configuration supports reasoning about alternative
negotiation structures and how to split contract into an ar-
ray of auctions. Auction-Space implements a cleaner, more
general parameterization of the auction design space, im-
poses constraints and conditional defaults on the parame-
ters, and infers auction parameters from higher-level knowl-
edge about a negotiation. AuctionBot-Mapping maps the
Auction-Space parameterization to the existing set of Auc-
tionBot parameters.

Our prototype can generate sets of auctions corresponding
to a multicomponent, multiattribute negotiation, and sup-
ports reasoning about alternative ways to decompose a con-
tract into components and attributes. A simple example of
this is discussed and we also use the prototype to generate
the auctions for the upcoming Trading Agent Competition.
We also discuss additional uses for this prototype as a gen-
eral way to programmatically create sets of auctions, not just
in the contracting context.

One piece of future work on ContractBot will involve
writing agents that participate in the infrastructure we’ve de-
veloped. This is an extremely rich area for analyzing com-
plex agent strategies since an agent using ContractBot must
not only know how to bid intelligently in a vast space of ne-
gotiation mechanisms, but also intelligently contribute rules
to influence which negotiation mechanism is chosen. This
will also entail further work on the contracting infrastruc-
ture, such as richer mechanisms for aggregating agent pref-
erences in configuring negotiations.

We would also like to extend AuctionBot and thus our
ontology in ContractBot to support richer negotiation mech-
anisms than the current naive approach to handling mul-
tiple attributes of a component—creating an array of auc-
tions, one for every combination of attribute values. This is
not tractable and needs to be augmented with multiattribute
and/or combinatorial auctions.

Finally, we would like to use the knowledge bases we are
developing to drive the back end of human interfaces for
auction creation—such as the CGI interface to AuctionBot.
For this we need to add rules to infer an order for asking the
user auction parameters, and the CLP engine will need to be
run after each input so that constraints and defaults can be
propagated.

References

Baral, C., and Gelfond, M. 1994. Logic programming and
knowledge representation. Journal of Logic Programming
19,20:73-148.

Branco, F. 1997. The design of multidimensional auctions.
RAND Journal of Economics 28:63-81.

IBM CommonRules. http://www.research.ibm.com/rules/
commonrules-overview.html.

Friedman, D., and Rust, J., eds. 1993. The Double Auction
Market. Addison-Wesley.

53

Grosof, B. N.; Labrou, Y.; and Chan, H. Y. 1999. A declar-
ative approach to business rules in contracts: Courteous
logic programs in XML. In ACM Special Interest Group
on E-Commerce (EC99), 68-77.

Grosof, B. N. 1997. Building Commercial Agents: An
IBM Research Perspective. In Proceedings of the Second
International Conference and Exhibition on Practical Ap-
plications of Intelligent Agents and Multi-Agent Technol-
0gy (PAAM97). P.O. Box 137, Blackpool, Lancashire, FY2
9UN, UK. http://www.demon.co.uk/ar/PAAM97: Practical
Application Company Ltd.

Kumar, M., and Feldman, S. I. 1998. Internet auctions. In
Third USENIX Workshop on Electronic Commerce, 49—-60.
Reeves, D. M.; Grosof, B. N.; Wellman, M. P; and Chan,
H. Y. 1999. Toward a declarative language for negotiating
executable contracts. In AAAI-99 Workshop on Artificial
Intelligence in Electronic Commerce (AIEC-99).
Sandholm, T. to appear. Approaches to winner determina-
tion in combinatorial auctions. Decision Support Systems.
Wellman, M. P, and Wurman, P. R. 1999. A trading
agent competition for the research community. In IJCAI-
99 Workshop on Agent-Mediated Electronic Trading. See
also, http://tac.eecs.umich.edu/.

Wurman, P. R.; Walsh, W. E;; and Wellman, M. P. 1998.
Flexible double auctions for electronic commerce: Theory
and implementation. Decision Support Systems 24:17-27.
Wurman, P. R.; Wellman, M. P,; and Walsh, W. E. 1998.
The Michigan Internet AuctionBot: A configurable auction
server for human and software agents. In Second Interna-
tional Conference on Autonomous Agents, 301-308.
Wurman, P. R.; Wellman, M. P.; and Walsh, W. E. to
appear. A parameterization of the auction design space.
Games and Economic Behavior.

Auction Configuration Ruleset

See http://ai.eecs.umich.edu/
people/dreeves/autonego/
auction-config.clp

Auction-Space Ruleset

See http://ai.eecs.umich.edu/
people/dreeves/autonego/
auction-space.clp

AuctionBot Ruleset

See http://ai.eecs.umich.edu/
people/dreeves/autonego/
auctionbot.clp

Trading Agent Competition Contract
Template

See http://ai.eecs.umich.edu/
people/dreeves/autonego/tac.clp

