
Toward a Marketplace Infrastructure for Virtual Organisations

Alun Preece

University of Aberdeen, Computing Science Department
Aberdeen AB9 2UE, Scotland

Phone: +44 1224 272296; FAX: +44 1224 273422
Email: apreece@csd, abdn. ac.uk

Abstract

This paper is a progress report on our work to cre-
ate an open, flexible infrastructure to support vir-
tual organisations through knowledge fusion technol-
ogy. Knowledge fusion refers to the process of locat-
ing and extracting knowledge from multiple, hetero-
geneous on-line sources, and transforming it so that
the union of the knowledge can be applied in problem-
solving. When applied in enterprise-to-enterprise elec-
tronic commerce, the knowledge fusion process allows
partners to exchange rich business information, and
act in an agile and coordinated manner. As an exam-
ple, we have created a demonstration application in
the domain of telecommunications service provision,
in collaboration with British Telecom. In our current
work, we are extending our infrastructure to include
mechanisms to regulate the operational marketplace,
to ensure that a virtual organisation complies with the
rules of the market.

Introduction and Motivation
At the AAAI’99 workshop on Artificial Intelli-
gence for Electronic Commerce we reported on
the KRAFT project (Knowledge Reuse And Fu-
sion/Transformation) and its application to support-
ing virtual organisations (Preece, Gray, ~ Hui 1999).
KRAFT is intended to be used in an extranet situation
where partner organisations exchange business knowl-
edge in a constraint-based format, and form dynamic
alliances by finding a mutually-beneficial solution to
their various requirement constraints. In KRAFT, con-
straints are expressed against an object data model,
and exchanged using a standard agent communication
language (Preece et al. 1999). The core KRAFT ar-
chitecture has the facilities for:
¯ locating appropriate on-line sources of knowledge;
¯ transforming heterogeneous knowledge to a homoge-

neous constraint interchange format;
¯ fusing the constraints with associated data to form a

dynamically-composed constraint satisfaction prob-
lem (CSP);

¯ harnessing existing constraint solver engines to com-
pute CSP solutions.

Recent work in the study of virtual organisations
has lead to a commonly-accepted life-cycle for these
organisations:
1. needs identification: definition of the services or

products provided by the virtual organisation;
2. partner selection: composition of the group of part-

ners that, together, can meet the identified needs;
3. operation: conduct of the transactions by which the

services or products are provided by the partners;
4. dissolution: disbanding of the group of partners, in-

cluding any final settlement of payment or other clos-
ing transactions.
The KRAFT architecture supports this life-cycle as

follows:
1. needs identification: customers’ requirements can

be expressed readily and naturally as a set of con-
straints; likewise, the capabilities of service and
product providers can be expressed using con-
straints;

2. partner selection: by combining and checking the
constraints from customers and service/product
providers, a virtual organisation can be composed
that has the potential to meet the customers’ re-
quirements;

3. operation: additional constraints will appear during
the process of working to satisfy a specific customer’s
requirements -- these may come from the customer
itself, or from any of the suppliers; the constraint-
solving process can easily accommodate these con-
straints, dynamically;

4. dissolution: the constraint solving process will yield
a set of results that include the conditions that must
be met when the virtual organisation is disbanded.
The remainder of this paper is organised as fol-

lows: the next section reviews the KRAFT architec-
ture; then, we present a waikthrough of a demonstra-
tion KRAFT application in the domain of telecommu-
nications service provision (develped with British Tele-
corn); finally, we discuss ongoing work to add facili-
ties necessary to operate regulated electronic markets
within KRAFT.

54

From: AAAI Technical Report WS-00-04. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Review of the KRAFT Architecture
The KRAFT architecture was conceived to support
configuration design applications involving multiple
component vendors with heterogeneous knowledge and
data models. This kind of application turns out
to be very general, covering not only the obvious
manufacturing-type applications (for example, config-
uration of personal computers or telecommunications
network equipment) but also service-type applications
such as travel planning (for example, composing pack-
age holidays or business trips involving flights, ground
travel connections, and hotels) and knowledge man-
agement (for example, selecting and combining busi-
ness rules from multiple heterogeneous knowledge and
databases on a corporate intranet).

Constraints in KRAFT
The most common modern approach to configuration
design problems is to tackle them as constraint satisfac-
tion problems (Freuder & Faltings 1999). Where com-
ponents in the design will come from a number of dif-
ferent vendors, the domains of many of the variables in
the CSP are entities stored in each vendor’s local prod-
uct database catalogue. Many of the constraints in the
CSP will be on these entity types, defining how the
components can be used in configured designs. Some
constraints will refer to related instances of other en-
tity types, whose values must be extracted from some
other vendor’s database and checked for compatibil-
ity. Incompatibilities often arise due to the presence of
subtle assumptions in vendor’s product catalogues --
in traditional printed catalogues, these assumptions of-
ten appear as "small print"; hence, we refer to this kind
of knowledge in KRAFT as small print constraints.

As an example, the product catalogue for (fictitious)
disk drive vendor, Storage Inc, may have the following
small print associated with each of its range of Zip
disk drives: this Zip disk drive requires a PC with a
USB-type port. This kind of small print can readily be
expressed as a constraint which can be exchanged with
other vendors and resellers:

constrain
each d in disk_drive

such that name(vendor(d))
"Storage Inc"

and type(d) = "Zip"
at least 1 p in ports(host_pc(d))

to have type(p) = "USB";

Similarly to other knowledge-interchange sys-
tems (Neches et al. 1991), KRAFT requires par-
ticipating agents to transform their local knowledge
to a well-known format, and use a shared ontology
of terms; the above constraint is expressed in the
KRAFT Constraint Interchange Format (CIF),
the terms of a shared ontology for PC system con-
figuration. These transformations are implemented
within a wrapper agent for each individual vendor, as
part of the setting-up needed for the vendor to join
the KRAFT network. Once transformed, the small

print constraints can be fused together with other
constraints from various sources, as shown in Figure 1.

In a typical configuration design application, some
constraints will be provided by the customer; oth-
ers will come from the vendors as discussed above;
there will also be constraints coming from the service
provider who will act as the configurator of the prod-
uct or service provided by the application. Typically,
the configurator service-provider will be a value-adding
reseller from the point-of-view of the component ven-
dors. Note that there may be multiple configurators,
each providing a different product or service; also, the
design process may have additional stages, where one
reseller sells to another reseller, each adding their own
constraints to the final product or service. Details of
how the constraint fusion process operates within the
KRAFT architecture are given in (Preece et al. 1999).

KRAFT Agents

The KRAFT architecture is agent-based:

¯ facilitator agents support the description and loca-
tion of on-line sources;

¯ sources are wrapped by agent software to transform
local knowledge to and from the interchange format;

. mediator agents support the querying of sources,
and fusion of knowledge from the sources;

e legacy solver engines are provided with agent wrap-
pers as front-ends to their services.

An overview of the generic KRAFT architecture is
shown in Figure 2. KRAFT agents are shown as
ovals. There are three kinds of these: wrappers, me-
diators, and facilitators. All of these are in some
way knowledge-processing entities. External services
are shown as boxes. There are three kinds of these:
user agents, resources (typically databases or knowl-
edge bases), and solvers. All of these external services
are producers and consumers of knowledge: users sup-
ply their requirements to the network in the form of
constraints via a user agent service, and receive results
in the same way. Resources store, and can be queried
for, knowledge and data. Solvers accept CSPs and re-
turn the results of the solving process.

KRAFT agents communicate via messages using a
nested protocol suite. KRAFT messages are imple-
mented as character strings transported by a suitable
carrier protocol: in the current implementation, the
carrier protocol is TCP via the socket interface; prelim-
inary work has also been done on an implementation
using CORBA IIOP (Preece, Borrowman, & Francis
1998). A simple message protocol encapsulates each
message with low-level header information including a
timestamp and network information.

The body of the message consists of two nested pro-
tocols: the outer protocol is the agent communica-
tion language CCQL (Constraint Command and Query
Language) which is a subset of the Knowledge Query

55

Customer-side Configura tor Supplier-side

i Customer’s Produc, I "Sma,,pr,nt"1requirements | | configuration | constraints from
constraints input | | constraints- | 1st vendor’s

via a user interface,) [, generic & specific J product catalogue

[

"Smallprint"1constraints from
2nd vendor’s

product catalogue

Figure 1: Fusion of constraints from multiple sources.

and Manipulation Language (KQML) (Labrou 1996).
Nested within the CCQL message is its content, ex-
pressed in the CIF protocol (Constraint Interchange
Format).

In the current implementation, the syntax of
KRAFT messages is Prolog term structures. An
example message is shown below. The outermost
kraft_msg structure contains a context clause (low-
level header information) and a ccql clause. The mes-
sage is from an agent called storage_inc to an agent
called pc_configurator. The ccql structure contains,
within its content field, an encoded CIF expression
(here, we see a "pretty-printed" CIF constraint; in the
implementation, CIF expressions are actually trans-
mitted in a compiled internal format).

kraft_msg (
context (1, id(19), pc_configurator, storage_inc,

time_stamp(date(29,9,1999), time(14,45,34))),
ccql (tell,

sender : storage_inc,
receiver : pc_configurator,
reply_with : id(18),
ontology : shared,
language : cif,
content : [

constrain
each d in disk_drive

such that name(vendor(d))
"Storage Inc"

and type(d) = "Zip"
at least i p in ports(host_pc(d))

to have type(p) = "USB"

])
)

Use of Prolog term structures is chiefly for conve-
nience, as most of the current knowledge-processing
components in the KRAFT implementation are writ-
ten in Prolog. However, the Prolog term structures
are easily parsed by non-Prolog KRAFT components;
currently there are several components implemented

in Java, for example. It is likely that the next version
of the KRAFT implementation will use XML instead
of Prolog term structures, as XML retains the ease of
parsing, while being a more open interchange standard.

KRAFT Walkthrough
This section presents an operational walkthrough of
the generic KRAFT network shown in Figure 2. The
generic network features a user agent UA, its wrapper
WUA, a facilitator F, two sample mediators Mi, Mj,
two sample resources Ri, Rj and their wrappers WRy,
WRj, and a solver S and it’s wrapper Ws. In general,
of course, there may be multiple user agents, solvers,
and any number of mediators and wrapped resources.
There may also be multiple facilitators.

The walk-through traces the steps involved in solv-
ing a single request, issued by a user to the user agent,
UA. Each numbered step is from the point-of-view of
a particular component, named at the start of the step.
Messages between components are shown in the form:

CCQL-perf ormative(Message content) -~ Receiver

1. UA submits a request QUA in a format local to the
user agent. QUA will typically be some kind of query,
and may include constraints (expressed in the local
constraint language).

2. WUA transforms QUA into a KRAFT request QK, in
CIF expressed against the shared ontology. Again,
QK may include constraints (now expressed in CIF).

3. If WUA already holds an advertisement
advertise(A, CA), where:

A is a named KRAFT agent
CA is a capability of A
CA matches QK

Then goto step 5.

Else send message to facilitator F:

56

UA
UA = User Agent
M = Mediator
W = Wrapper
F = Facilitator
R = Resource
S = Solver

ai

Figure 2: Overview of the generic KRAFT architecture.

recommend_*(QK) --+

4. F searches it’s directory for an advertisement
advertise(A, CA), where CA matches QK, and
sends:t

forward(advertise(A, CA)) -+ WUA

5. WUA sends QK to the agent identified in the adver-
tisement:

ask(QK) --+

6. A processes QK according to the kind of agent it is:

¯ If A is a wrapped resource, Win:
WR~ transforms QK into a local query Qm, in the
local ontology, which it submits to the Resource
Ri; when Wm receives the response data Din, it
transforms Dm to a KRAFT result data object
DK, in CIF/shared ontology:
tell(Dg) --+ WUA

¯ If A is a mediator,]Vii:
Mi decomposes QK into subtasks QK,...QK.;
then, in parallel, serially, or in some combination
thereof, A recursively performs steps 3-6 with:

each QK~ substituting for QK
Mi substituting for WUA

Mi receives responses, and fuses them into a
unified KRAFT result data object, DK, in
CIF/shared ontology:
tell(Dg) --+ WUA

1This walk-through assumes that the agents are using
"recommend-style" facilitation (Labrou 1996). KRAFT fa-
cilitators also support "broker-style" facilitation, where the
facilitator will relay the request QK directly to the adver-
tising agent A on WUA’S behalf.

¯ If A is a wrapped solver, Ws:
Ws transforms QK into statements in the solver’s
local language, which it submits to S.
(*) If the Solver’s response is a request for more
data, Ds, then Ws:

transforms Ds to a KRAFT request, Qgs
recursively performs steps 3-6 with:

Qgs substituting for QK
Ws substituting for WUA

receives response(s), transforms them,
submits them to the solver,
and goes to (*).

Else Ws:
transforms response to a KRAFT
result data object, DK,
in CIF/shared ontology:
tell(DK) -+ WUA

If WS needs to recursively perform steps 3-6 as
noted above, then in performing step 3 it is pos-
sible that the solver’s wrapper will consult the fa-
cilitator to find an agent that can handle its data
request; however, it is likely that the solver’s wrap-
per will direct it’s requests for more data back to
the originator of QK (probably a mediator). This
is because the mediator will likely be constructing
variable domains on behalf of the solver.

7. WUA receives the KRAFT result object, transforms
it into the local format, and passes it to UA for dis-
play.

Related Work

The design of the KRAFT architecture builds upon re-
cent work in agent-based distributed information sys-
tems. In particular, the roles identified for KRAFT

57

agents are similar to those in the InfoSleuth sys-
tem (Bayardo 1997); however, while InfoSleuth is pri-
marily concerned with the retrieval of data objects,
the focus of KRAFT is on the combination of data
and constraints. KRAFT also builds upon the work
of the Knowledge Sharing Effort (Neches et al. 1991),
in that some of the facilitation and brokerage methods
are employed, along with a subset of the 1997 KQML
specification (Labrou 1996). Unlike the KSE work,
however, which attempted to support agents commu-
nicating in a diverse range of knowledge represen-
tation languages (with attendant translational prob-
lems), KRAFT takes the view that constraints are
good compromise between expressivity and tractabil-
ity.

In its emphasis on constraints, KRAFT is similar
to the Xerox Constraint Based Knowledge Brokers
project (Andreoli, Borghoff, & Pareschi 1995); the dif-
ference is that the Xerox work focusses upon the use
of constraints to support querying of distributed data
sources, rather than the extraction of constraints from
distributed sources, and the use of these constraints in
configuration design problem-solving.

The Smart Clients project (Torrens & Faltings 1999)
is related to KRAFT in the way they conduct problem-
solving on a CSP dynamically specified by the cus-
tomer, using data extracted from remote databases.
Their approach differs from KRAFT in that only data
is extracted from the remote databases, no small print
constraints come attached to the data; also, all the
problem-solving is done on the client, rather than by
mediator agents. No constraints are therefore trans-
mitted across the network; conversely, it is the con-
straint solver that is transmitted to the client’s com-
puter, to work with the constraints specified locally by
the customer.

Finally, ongoing work at IBM’s T. J. Watson Re-
search Center is similar in concept to KRAFT’s use of
small print constraints (Reeves et al. 1999). The dif-
ference is that this work uses a rule-based formalism to
specify contractual "fine print" in the form of business
rules. Logic programming techniques are then used to
reason with the rules.

KRAFT Virtual Organisation

Demonstration

The KRAFT architecture has been instantiated with
a realistic application in the domain of telecommuni-
cations network data services design; this application
was specified by the KRAFT project’s industrial part-
ner, BT. The network data services design problem
considered by KRAFT is in the phase of network con-
figuration from the viewpoint of a customer at a single
site, allowing a BT network designer to select services
and equipment to meet the customers’ requirements:

¯ A suitable Point of Presence (POP) at which to con-
nect to the BT network.

¯ Suitable Customer Premises Equipment (CPE) with
which to service the connection; types of CPE in-
clude routers, bridges, and FRADs, though it was
decided to focus initially solely on router products.

A conceptual view of the application architecture is
shown in Figure 3(a). This application maps onto the
generic architecture shown in Figure 2 as follows:

¯ A single wrapped User Agent, designed by BT, pro-
vides a user interface for the two kinds of request
listed above. Coupled to this user agent is a database
of designer knowledge, which will be accessed dur-
ing the network data services configuration design
process. The User Agent Wrapper provides network
access to and from both the user agent and the De-
signer’s DB.

¯ As the two kinds of request are independent (it
is possible to select a CPE on the basis of a
customer’s LAN and WAN requirements, without
knowing which POP will be used, and vice versa), it
was decided to provide a separate mediator for each
task: the POP request is handled by the POP Me-
diator, and the CPE request is handled by the CPE
Mediator.

¯ There is a single Facilitator which is not specific to
the application domain, except that it has access to
the shared ontology.

¯ There are four wrapped resources:

- POP Database, a database of POPs (based on
BT’s own POP database);

- Vendor 1 DB, a product catalogue database for a
CPE vendor (based on the actual product cata-
logue of 3Corn);

- Vendor 2 DB, a product catalogue database for a
second CPE vendor (based on the actual product
catalogue of Cisco).

- Designer’s DB, a source of network data services
design constraints (based on knowledge acquired
from BT network data services designers).

¯ There is a single wrapped legacy constraint Solver
engine.

All the agents (mediators, facilitators, and wrappers)
are implemented in Prolog. The user interfaces (user
agent and a message monitor) are Java applications.
The database resources are managed by independent
instances of the P/FDM DBMS2, each with its own
local schema. The constraint solver is ECLiPSe. Inter-
agent communication is implemented by asynchronous
message passing using the Linda model (Carriero
Gelernter 1989).

The four wrapped resources are considered to be
pre-existing legacy databases. For the purposes of the
prototype, simplified versions of these databases were
created; however, care was taken to ensure that the

2http://~. csd. abdn. ac. uk/- pfdm

58

UA
i

Designer’sDB I

POP
DB

Vendor 1
DB

Vendor 2
DB

Solver

(a) KRAFT Network DataServices application architecture

UA

Designer’s
DB

POP
DB

Vendor 1
DB

Vendor 2
DB

Solver

(b) KRAFT Network DataServices application interaction 1: locate a POP

UA

Designer’s
DB

POP
DB

Vendor 1
DB

Vendor 2
DB

Solver

(c) KRAFT Network DataServices application interaction 2: choose CPE

NOTE In (b) and (c), interactions with the facilitator are not shown.

Figure 3: A conceptual view of the KRAFT demonstration application.

59

databases of CPE information were created indepen-
dently, so as to ensure realistic heterogeneity. Each
of the databases was populated with data and con-
straints; for example, a vendor database was popu-
lated with data on the vendor’s CPE products, and
constraints defining the valid usage of each product.
The main aim of creating the four resources was to
demonstrate the feasibility of creating wrapper agents
to transform between the internal knowledge represen-
tation (data and constraints) and the KRAFT CIF lan-
guage.

When the various service-providing agents come on-
line, each sends an appropriate advertise message to
the faciliator:

¯ POP DB Wrapper advertises that it can supply POP
data objects;

¯ Vendor 1 Wrapper advertises that it can supply
router data objects where the manufacturer is "Ven-
dor 1";

¯ Vendor 2 Wrapper advertises that it can supply
router data objects where the manufacturer is "Ven-
dor 2";

¯ Solver Wrapper advertises that it can process finite
domain CSPs;

¯ POP Mediator advertises that it can supply infor-
mation on POPs that are closest to a given location;

¯ CPE Mediator advertises that it can supply CPE
data objects from multiple vendors that meet given
customer requirements.

¯ User Agent Wrapper advertises that it can supply
network data services design constraints.

Handling POP Requests

A POP request issued by the user agent results in
the following sequence of actions, summarised in Fig-
ure 3(b):

1. Via the User Agent, the user specifies the loca-
tion of the customer’s site, and the customer’s re-
quired wide-area network (WAN) services (for
ample, Frame Relay and ISDN).

2. The User Agent Wrapper formulates the POP query
as a KRAFT message, and attempts to locate an
agent that can answer the query by contacting the
Facilitator through a recommend CCQL message, in-
dicating that it needs to find a POP closest to a given
location.

3. The Facilitator matches the User Agent Wrapper’s
request to the advertisement from the POP Media-
tor, and forwards the matching advertisement back
to the User Agent Wrapper.

4. The User Agent Wrapper sends an ask-one message
to the POP Mediator, requesting a POP that meets
the user’s requirement constraints (location and ser-
vices).

5. The POP Mediator contacts the Facilitator to find a
source of POP data, and is forwarded the advertis-
ment from the POP DB Wrapper. It then sends an
ask-all message to the POP DB Wrapper, request-
ing all POP data objects with the required services.

6. Assuming that the POP DB Wrapper’s reply was
non-empty, the POP Mediator computes which
POPs are nearest the customer’s site, and sends
these data objects in a tell message to the User
Agent Wrapper. This computation is simple enough
that the POP Mediator performs it itself, and does
not need to invoke the Solver.

7. Upon receipt of the data from the POP Mediator,
the User Agent Wrapper transforms it to the lo-
cal format for presentation to the user via the User
Agent itself.

.

Handling CPE Requests

A CPE request issued by the user agent results in
the following sequence of actions, summarised in Fig-
ure 3(c):

1. Via the User Agent, the user specifies additional con-
straints on the type of equipment needed, includ-
ing support for various LAN protocols used within
the customer’s site (TCP/IP, AppleTalk, 10 base
Ethernet, etc) and support for the required WAN
services that determined the choice of POP (Frame
Relay, ISDN, etc).

2. The User Agent Wrapper interacts with the Fa-
cilitator as above, this time looking for vendor-
independent CPE data objects. It is forwarded the
CPE Mediator’s advertisement.

3. The CPE Mediator receives an ask-all request
from the User Agent Wrapper, specifying all the
customer’s requirement constraints. It sends a
recommend-all message to the Facilitator to dis-
cover all CPE vendors currently on-line.

4. The Facilitator finds no CPE vendors have adver-
tised but, knowing from the shared ontology that
router is a kind of CPE, it is able to forward CPE
Mediator the advertisements from Vendor 1 Wrap-
per and Vendor 2 Wrapper.

5. The CPE Mediator uses some of the customer’s re-
quirement constraints to formulate ask-all requests
to each vendor’s wrapper. Each wrapper responds,
telling the CPE Mediator the router data objects
that meet the given requirements, and any attached
%mall print" constraints on these router data ob-
jects.

The CPE Mediator formulates a CSP by fusing the
constraints it now has:

¯ all the customer requirement constraints;
¯ all the "small print" constraints on router data

objects from both vendors;

60

¯ network data services design constraints which it
obtains by sending an ask-all message to the
User Agent Wrapper, having discovered its loca-
tion from the Facilitator.

7. The CSP is formulated as a finite domains CSP, so
the CPE Mediator interacts with the Facilitator to
discover a finite domain solver. It then sends the
Solver Wrapper the CSP.

8. Assuming there is at least one solution to the CSP,
the Solver Wrapper tells the solution set to the
CPE Mediator, which then returns these results to
the User Agent Wrapper.

9. The user can examine the solutions (if any) via the
User Agent and, if necessary, refine the constraints
and invoke further requests to the KRAFT network.

The application has been constructed and experiments
conducted with it. Background details are available
in (Fiddian et al. 1999). The application shows the
feasibility of the KRAFT approach to supporting dis-
tributed configuration design systems where vendors
are able to advertise their product catalogues to re-
sellers, who in turn offer value-adding services to cus-
tomers via customised user agents.

Adding Marketplace Support to
KRAFT

The current version of the KRAFT architecture lacks
some important mechanisms needed to support virtual
organisations fully: there is nothing to ensure that a
transaction between partners is properly conducted,
and closed. To date, we have assumed that all part-
ners are fully cooperative and trustworthy. This is
clearly a naive assumption, so we are now extending
the KRAFT architecture with mechanisms to enforce
good behaviour among participating agents. At the
same time, we are working to make the architecture
more open and robust. This work-in-progress is out-
lined below. A future paper will report on the final
results.

Marketplace Mediation Services

We are introducing a new type of mediator -- the Mar-
ketplace Mediator -- which has responsibility for en-
forcing the rules and policies of the marketplace among
all participating agents. Interactions between agents
are now separated into two kinds:

¯ Information-seeking operations are essentially just
for "browsing" or "window shopping". There are
no guarantees being made in these interactions, and
no agent can be held accountable for inaccuracy, in-
completeness, or impermanence of information ob-
tained. These are essentially the current type of in-
teraction in KRAFT systems; no marketplace medi-
ator is involved in these operations. Agents typically
use these operations to explore provisional solutions,

before deciding whether to initiate a business trans-
action.

¯ Business transactions are governed by well-defined
(but flexible) interaction protocols that result
committed deals between agents. These operations
must be conducted through a marketplace mediator.
Each participant in a business transaction sacrifices
some of its autonomy to the marketplace mediator,
which runs the interaction protocol on behalf of the
marketplace.

When an agent wishes to initiate a business trans-
action with one or more other agents, it uses the fa-
cilitation services to find a marketplace mediator that
will run the desired interaction protocol. We have built
three interaction protocols to date:

¯ Fixed-price buy/sell: This is the simplest form of
deal, where the seller states a price which the buyer
either accepts or rejects. Upon stating its price, the
seller will be committed to that price if the buyer
accepts it. Upon accepting the price, the buyer is
committed to paying. If either party breaks its com-
mittment, the marketplace mediator will record this
behaviour in a reputation database so that it will
have bearing on future deals. (In the extreme case,
the offending agent will be banned from future deal-
ing in the marketplace.)

¯ Negotiated-price buy/sell: This protocol is an exten-
sion of the above simple case, to allow the buyer and
seller to "haggle" over price. Either side may agree
to suggest the initial price. Stated prices are binding
as before.

¯ English-auction buy/sell: This protocol implements
an English auction with multiple buyers and a single
seller. Here, the marketplace mediator is performing
the role of an auction house and auctioneer.

These interaction protocols will form the links in
electronic supply chains. For example, in the telecom-
munications service provision scenario, we could envis-
age the following links:

¯ the customer enters into a negotiated-price buy/sell
with the service reseller;

¯ the service reseller enters into a negotiated-price
buy/sell with the POP operator;

¯ the service reseller enters into a fixed-price buy/sell
with the CPE vendor.

We are currently completing the implementation of a
generic marketplace mediator which is capable of being
instantiated with interaction protocols. This infras-
tructure is being built in Java over the Jini framework,
to allow runtime discovery of marketplace services, and
fully dynamic binding/rebinding between agents.

Conclusion
This paper has described the KRAFT agent-based ar-
chitecture for supporting virtual organisations. The

61

generic framework of the architecture is reusable across
a wide range of knowledge processing systems, includ-
ing applications in electronic commerce and knowledge
management, where various partners ally themselves
together because they wish to interact by exchanging
constraints. The prototype network data services ap-
plication has proven the concept of supporting virtual
organisations by constraint fusion. However, the cur-
rent architecture assumes an unreasonably high degree
of trust and cooperation between partners so we are ex-
tending it to include robust mechanisms to enforce the
rules and policies of an electronic marketplace.

Acknowledgements KRAFT is a collaborative re-
search project between the Universities of Aberdeen,
Cardiff and Liverpool, and BT. The project is funded
by EPSRC and BT.

References

Andreoli, J.; Borghoff, U.; and Pareschi, R. 1995.
Constraint agents for the information age. Journal of
Universal Computer Science 1:762-789.

Bayardo, R. 1997. InfoSleuth: agent-based seman-
tic integration of information in open and dynamic
environments. In Proc. SIGMOD’9Z

Carriero, N., and Gelernter, D. 1989. Linda in con-
text. Communications of the ACM 32:444-458.

Fiddian, N. J.; Marti, P.; Pazzaglia, J.-C.; Hui, K.;
Preece, A.; Jones, D. M.; and Cui, Z. 1999. A knowl-
edge processing system for data service network de-
sign. BT Technology Journal 14:117-130.

Freuder, E., and Faltings, B., eds. 1999. Configu-
ration: Papers from the AAAI-99 Workshop. Menlo
Park, CA: AAAI Press.
Labrou, Y. 1996. Semantics for an Agent Commu-
nication Language. Ph.D. Dissertation, University of
Maryland, Baltimore MD, USA.

Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.;
Senator, T.; and Swartout, W. 1991. Enabling tech-
nology for knowledge sharing. AI Magazine 12(3):36-
56.

Preece, A.; Hui, K.; Gray, W. A.; Marti, P.; Bench-
Capon, T.; Jones, D.; and Cui, Z. 1999. The kraft
architecture for knowledge fusion and transformation.
In Research and Development in Intelligent Systems
XVI (Proc ES99), 23-38. Springer.

Preece, A.; Borrowman, A.; and Francis, T. 1998.
Reusable components for KB and DB integration. In
Prac. ECAI’98 Workshop on Intelligent Information
Integration, 157-168. ECCAI.

Preece, A.; Gray, P.; and Hui, K. 1999. Supporting
virtual organisations through knowledge fusion. In
Artificial Intelligence for Electronic Commerce: Pa-
pers from the AAAI-99 Workshop. Menlo Park, CA:
AAAI Press.

Reeves, D.; Grosof, B.; Wellman, M.; and Chan, H.
1999. Toward a declarative language for negotiat-
ing executable contracts. In Artificial Intelligence
for Electronic Commerce: Papers from the AAAI-99
Workshop. Menlo Park, CA: AAAI Press.
Torrens, M., and Faltings, B. 1999. Smart clients:
constraint satisfaction as a paradigm for scaleable
intelligent information systems. In Artificial Intel-
ligence for Electronic Commerce: Papers from the
AAAL99 Workshop. Menlo Park, CA: AAAI Press.

62

