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Abstract

This paper presents a new method of measuring performance
when positives are rare and investigates whether Chomsky-
like grammar representations are useful for learning accu-
rate comprehensible predictors of members of biological se-
quence families. The positive-only learning framework of
the Inductive Logic Programming (ILP) system CProgol is
used to generate a grammar for recognising a class of pro-
teins known as human neuropeptide precursors (NPPs). As
far as these authors are aware, this is both the first biological
grammar learnt using ILP and the first real-world scientific
application of the positive-only learning framework of CPro-
gol. Performance is measured using both predictive accuracy
and a new cost function,Relative Advantage(RA). TheRA
results show that searching for NPPs by using our best NPP
predictor as a filter is more than 100 times more efficient than
randomly selecting proteins for synthesis and testing them for
biological activity. The highestRA was achieved by a model
which includes grammar-derived features. ThisRA is signif-
icantly higher than the bestRA achieved without the use of
the grammar-derived features.

Introduction
This paper presents a new method of measuring performance
when positives are rare and attempts to answer, by way of a
case-study, the question of whether grammatical representa-
tions are useful for learning from biological sequence data.
We address the question by refuting the following null hy-
pothesis.

Null hypothesis: The most accurate comprehensible multi-
strategy predictor in our study does not employ Chomsky-
like grammar representations.

The performance of each model is measured using a new
cost function,Relative Advantage(RA). The next section
definesRA and explains why it is used in preference to pre-
dictive accuracy.

The domain of the case study is the recognition of a
class of proteins known as human neuropeptide precursors
(NPPs). These proteins have considerable therapeutic po-
tential and are of widespread interest in the pharmaceutical
industry. Our most accurate comprehensible multi-strategy
predictor of NPPs employs a Chomsky-like grammar repre-
sentation.

Multi-strategy learning (Michalski & Wnek 1997) aims
at integrating multiple strategies in a single learning system,
where strategies may be inferential (e.g. induction, deduc-
tion etc) or computational. Computational strategy is de-
fined by the representational system and the computational
method used in the learning system (e.g. decision tree learn-
ing, neural network learning etc).

We refute the null hypothesis as follows. A grammar
is generated for a particular class of biological sequences.
A group of features is derived from this grammar. Other
groups of features are derived using other learning strategies.
Amalgams of these groups are formed. A recognition model
is generated for each amalgam using C4.5 and C4.5rules.
The null hypothesis is refuted because:
1. the best performance achieved using any of the models

which include grammar-derived features is higher than the
best performance achieved using any of the models which
do not include the grammar-derived features;

2. this increase is statistically significant;

3. the best model which includes grammar-derived features
is sufficiently more comprehensible than the best ‘non-
grammar’ model.

Relative Advantage
NPPs are identified either through purely biological means
or by screening genomic or protein sequence databases for
likely NPPs, followed by biological evaluation. If we wish
to go beyond using sequence homology to find new mem-
bers of the (generally small) NPP families, we need a recog-
nition model for NPPs in general. However if this recog-
nition model is poor then it may not be much better than
random sampling of sequence databases and the cost-benefit
of any experimental evaluation of NPPs found by such a pro-
cedure would be prohibitively small.

In developing a general recognition model for human
NPPs, we are faced with three significant obstacles.
1. The number of known NPPs in the public domain

databases of protein sequence (e.g. SWISS-PROT (Em-
mertet al. 1994)) is very small in proportion to the total
number of sequences. When we developed our method
of estimating RA (May 1999), SWISS-PROT contained
79,449 sequences, of which some 57 could definitely be
identified as human NPPs.
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Table 1:2�2 Contingency table for the test set. The axes of
the2�2matrix are labelled by the sets NPP sequences, Ran-
dom sequences,H (Hypothesis predictions) andH (com-
plement of H). The cells of the matrix represent the car-
dinalities of the corresponding intersections of these sets.
n1+n2+ n3+ n4 = n, wheren is the number of instances
in the test set.

Set of test Set of test
NPP sequences Random sequences

H n1 n2
H n3 n4

2. There is no guarantee that all the human NPPs in SWISS-
PROT have been properly identified. We estimate there
may, in fact be up to 90 NPPs in SWISS-PROT.

3. There is no benchmark method for NPP recognition that
can be used to compare any new methods. We must there-
fore compare our recognition model with random sam-
pling to evaluate success.

This domain requires a performance measure which ad-
dresses all of these issues. For domains in which positives
are rare, predictive accuracy, as it is normally measured in
Machine Learning (assuming equal misclassification costs):

� gives a poor estimate of the performance of a recognition
model. For instance, if a learner induces a very specific
model for such a domain, the predictive accuracy of the
model may be very high despite the number of true posi-
tives being very small or even zero.

� does not discriminate well between models which exclude
most of the (abundant) negatives but cover varying num-
bers of (the rare) positives. (This is illustrated later in this
paper - see Table 6.)

Therefore we define arelative advantage(RA) function
which predicts the reduction in cost in using the model ver-
sus random sampling. In contrast to other performance mea-
sures,RA is meaningful and relevant to experts in the do-
main.

Definition of RA
In the following, ‘the model’ refers to a recognition model
for predicting whether a sequence is a NPP. RA can be de-
fined in terms of probability as follows. Let C = the cost
of testing the biological activity of one protein via wet-
experiments in the laboratory;
NPP = Sequence is a NPP;
Rec = Model recognises sequence as a NPP.

RA =
C=Pr (NPP )

C=Pr (NPP j Rec) =
Pr(NPP j Rec)

Pr(NPP )
(1)

Let testing the model on test data yield the2�2 contingency
table shown in Table 1 with the cellsn1, n2, n3, andn4. Let
n = n1+n2+n3+n4 be the number of instances in the test
set. Note that the random set of sequences referred to in the
right-hand column may include some NPP sequences. Ta-
ble 2 shows an estimate of the contingency table that would

Table 2:2� 2 Contingency table for the positives and nega-
tives in the test set. The axes of the2� 2 matrix are labelled
by the sets NPP sequences, Negative sequences,H (Hypoth-
esis predictions) andH (complement of H). The cells of the
matrix represent the cardinalities of the corresponding inter-
sections of these sets.� = M=S whereS is the total number
of sequences in the entire SWISS-PROT database, of which
M are NPPs.

Set of test Set of test
NPP sequences Negative sequences

H n1 n2 (1� �)
H n3 n4 (1� �)

Table 3:2�2Contingency table for SWISS-PROT. The axes
of the2 � 2 matrix are labelled by the sets NPP sequences,
Negative sequences,H (Hypothesis predictions) andH
(complement of H). The total of the counts/frequencies in
the four cells= S, whereS is the total number of sequences
in the SWISS-PROT database.

NPP sequences Negative sequences
in SWISS-PROT in SWISS-PROT

H
�

n1
n1+n3

�
M

�
n2

n2+n4

�
(S �M)

H
�

n3
n1+n3

�
M

�
n4

n2+n4

�
(S �M)

be obtained if it were possible to identify and remove all the
positives from the set of randoms.

If the proportion of NPPs in the test set was known to
be the same as the proportion of NPPs in the database
then we could estimatePr(NPP ) to be(n1 + n3)=n and
Pr(NPP j Rec) to ben1=(n1 + n2). These estimates can-
not be used with our method because we cannot assume
that the proportion of NPPs is the same in the test set and
database.

In order to derive a formula for estimating RA given
both a set of positives and a set of randoms, we estimate
Pr(NPP ) andPr(NPP j Rec) as follows. LetS be the
total number of sequences in the database, of whichM are
NPPs.

Pr(NPP ) =
no:ofNPPsinthedatabase

no:ofsequencesinthedatabase

= M=S (2)

Pr(NPP j Rec) = Ndb NPP recog

Ndb seq pred pos

(3)

whereNdb NPP recog is the number of NPPs in db which
are recognised by model andNdb seq pred pos is the number
of sequences in db which the model predicts to be NPP.

Table 3 shows the expected result of using the learned
recognition model on the entire SWISS-PROT database.
Note that the factor(1 � �) does not appear as it cancels
out. From Equation 3 and Table 3 it follows that:



Pr(NPP j Rec) '

�
n1

n1+n3

�
�M�

n1
n1+n3

�
M +

�
n2

n2+n4

�
(S �M)

= (Mp1)=(Mp1 + (S �M)p2) (4)

wherep1 = n1=(n1 + n3) andp2 = n2=(n2 + n4). Substi-
tuting Equations 2 and 4 into Equation 1 gives

RA =
(Mp1)=(Mp1 + (S �M)p2)

M=S

=
Sp1

Sp2 +M(p1 � p2)
(5)

Estimating Relative Advantage
In the following Relative Advantage over the entire popula-
tion is represented byRA in capital letters where as Relative
Advantage over a sample is denoted by lower case i.e.ra.
As the value ofM is not known, we estimate

P90
M=57 RA.

Therefore we integrate Equation 5 with respect to M. The
lower limit of M is equal to the number of known NPPs in
SWISS-PROT. The upper limit ofM is the most probable
maximum number of NPPs in SWISS-PROT i.e. a total of
the known NPPs and those proteins which have yet to be
scientifically recognised as a NPP.

90X
M=57

RA ' Sp1 �
Z 91

M=57

1

(p1 � p2)M + Sp2
@M

=
Sp1

(p1 � p2)
ln

91(p1 � p2) + Sp2
57(p1 � p2) + Sp2

(6)

We estimate
P90

M=57 RA by summing an estimate of theP90
M=57RA for each instance in the test set as follows,

wheren is the number of instances in the test set. This
method has the advantage that it allows the significance of
the difference between the RA of two models to be gauged.

nX
k=1

90X
M=57

rak (7)

From Equation 7 and the contingency table it follows that:

90X
M=57

ra =
1

n

4X
i=1

 
ni

90X
M=57

rai

!
(8)

Each
P90

M=57 rai is estimated by substitutingp1 = a
a+c and

p2 = b
b+d into Equation 6. The values ofa, b, c andd are

determined by three steps.

1. Whatever thei value,a, b, c andd are initially given the
values of the corresponding counts/frequencies in the con-
tingency table for the test set (see Table 1).

2. Each one ofa, b, c andd, is decremented providing that
the value before subtraction is greater than 1.
We do not decrement when the value before subtraction
is zero because this can result inp1 or p2 having negative
values; this does not make sense becausep1 andp2 are
probabilities. We do not decrement when the value is one

because this can causep1 or p2 to have the value zero,
which in turn has ahighly disproportionateeffect on the
value of

P90
M=57 rai.

3. The value of eithera, b, c or d is incremented to reflect
the classification of an instance in the cellni.

For instance, ifi = 2 and all the counts in the contingency
table are greater than one thena = n1 � 1; b = n2; c =
n3 � 1; d = n4 � 1.

Note that Steps 1 and 2 assign the same prior probability
to each instance because the effect of each step is not depen-
dent upon which cell the current instance belongs to. There-
fore this method of estimating

P90
M=57 RA has the proper-

ties of a) producing identically distributed random variables
representing the outcome for each instance; b) having a sam-
ple mean which approaches the population mean in the limit
and c) having a relatively small sample variance.

The final step of our method for estimatingRA is to take
the mean of the summed values.

MeanRA =

P90
M=57 rai

90� (57� 1)
=

P90
M=57 rai
34

(9)

Assessing the Significance of the Difference
Between the RA of Two Models
We compare the performance of two recognition models,H1

andH2, by comparing their
P90

M=57 RA values. Letd be
difference in

P90
M=57RA values over the entire population,

i.e. for all the proteins in SWISS-PROT, and̂d be the ob-
served difference on the test set.

d =

90X
M=57

RAH1
�

90X
M=57

RAH2
(10)

d̂ =

90X
M=57

raH1
�

90X
M=57

raH2
(11)

d̂ is an unbiased estimator for the true difference because it
is calculated using an independent test set. To determine
whether the observed difference is statistically significant
we address the following question. What is the probability
that

P90
M=57RAH1

>
P90

M=57 RAH2
, given the observed

difference,d̂.
If D is a random variable representing the outcome of

estimating d by random sampling then, according to the
Central Limit Theorem,̂�D is normally distributed in the
limit. It has an estimated mean̂d and has an estimated vari-
ance of�̂2D=n. The variance of a random variable, X, is
�2X = E((X)2)� (E(X))2. Therefore, since D is a random
variable:

�̂2D = �̂D2 � �̂2D (12)

We calculatê�D2 as follows. Let testing the model on test
data yield the4� 4 contingency table shown in Table 4 with
the cellsni;j . (Note that only those cells shown in bold font
can have a count greater than zero because an instance can-
not be both an NPP and a Random.)



Table 4: 4 � 4 Contingency Table. The rows of the4 � 4
matrix are labelled by the cells of the2�2 contingency table
for H1. The columns of the4� 4 matrix are labelled by the
cells of the2� 2 contingency table forH2. The cells of the
4� 4 matrix represent the cardinalities of the corresponding
intersections of these sets.

P4
i=1

P4
j=1 ni;j = n, wheren

is the number of instances in the test set.

n1 n2 n3 n4
n1 n1;1 n1;2 n1;3 n1;4
n2 n2;1 n2;2 n2;3 n2;4

n3 n3;1 n3;2 n3;3 n3;4
n4 n4;1 n4;2 n4;3 n4;4

�̂D2 =
1

n

4X
i=1

4X
j=1

0
@ni;j

 
90X

M=57

rai �
90X

M=57

raj

!2
1
A
(13)

Given that p(
P90

M=57 RAH1
>

P90
M=57RAH2

) =

p(
P90

M=57RAH1
�P90

M=57 RAH2
> 0) we evaluate our

null hypothesis by estimatingp(d < 0) using the Central
Limit Theorem.Z 0

x=�1

Pr(d = x)dx =

Z 0

x=�1

1p
2��2

e�
1

2
( x��

�
)2dx

(14)
where� = �̂D and� = �̂D=

p
n.

Sequence Data in Biology
Research in the biological and medical sciences is being
transformed by the volume of data coming from projects
which will reveal the entire genetic code (genome sequence)
of Homo sapiens as well as other organisms that help us un-
derstand the genetic basis of human disease. A significant
challenge in the analysis and interpretation of genetic se-
quence data is the accurate recognition of patterns that are
diagnostic for known structural or functional features within
the protein. Although regular expressions can describe many
of these features they have some inherent limitations as a
representation of biological sequence patterns. In recent
years attention has shifted towards both the use of neural net-
work approaches (see (Baldi & Brunak 1998)) and to prob-
abilistic models, in particular hidden Markov models (see
(Durbin et al. 1998)). Unfortunately, due to the complex-
ity of the biological signals, considerable expertise is often
required to 1) select the optimal neural network architecture
or hidden Markov model prior to training and 2) understand
the biological relevance of detailed features of the model.

A general linguistic approach to representing the structure
and function of genes and proteins has intrinsic appeal as
an alternative approach to probabilistic methods because of
the declarative and hierarchical nature of grammars. While
linguistic methods have provided some interesting results in
the recognition of complex biological signals (Searls 1997)
general methods for learning new grammars from example
sentences are much less developed.

We considered it valuable to investigate the application
of Inductive Logic Programming methods to the discovery
of a language that would describe a particularly interesting
class of sequences – neuropeptide precursor proteins (NPP).
Unlike enzymes and other structural proteins, NPPs tend
to show a lower overall sequence similarity despite some
evidence of common ancestry within certain groups. This
confounds pattern discovery methods that rely on multiple
sequence alignment and recognition of biological conser-
vation. NPPs are highly variable in length and undergo
specific enzymatic degradation (proteolysis) before the bio-
logically active short peptides (neuropeptides) are released.
As a consequence NPPs pose a particular challenge in se-
quence pattern discovery and recognition. We addressed this
challenge by devising the context-free definite clause gram-
mar shown in Fig. 1. We represent protein sequences using
the alphabetfA, C, D, E, F, G, H, I, K, L,
M, N, P, Q, R, S, T, V, W, Y g, where each let-
ter represents a particular amino acid residue. The start and
end represent cleavage sites and the middle-section repre-
sents the mature neuropeptide i.e. what remains after cleav-
age has taken place. A HMM approach is not suitable for
NPP sequences because their length is highly variable, they
have low overall sequence similarity and they undergo spe-
cific enzymatic degradation.

The next section describes an experiment which tries to
refute the null hypothesis given in the Introduction. It de-
scribes the materials used in the experiment and the three
steps of the experimental method and presents the results.

Experiment
Materials
Data was taken from the annotated protein sequence
database SWISS-PROT. Our data set1 comprises a subset of
positives i.e. known NPPs and a subset of randomly-selected
sequences. It is not possible to identify a set of negative
examples of NPPs with certainty because there will be pro-
teins which have yet to be recognised scientifically as a NPP.
The subset of positives contains all of the44 known NPP se-
quences that were in SWISS-PROT at the time the data set
was prepared.10 of the44 precursors were reserved for the
test set. These sequences are unrelated by sequence similar-
ity to the remaining34. The subset of randoms contains all
of the 3910 full length human sequences in SWISS-PROT
at the time the data set was prepared.1000 of the3910 ran-
doms were reserved for the test set.

Method
The method may be summarised as follows:

1. A grammar is generated for NPP sequences using CPro-
gol (Muggleton 1995) version 4.4.

2. A group of features is derived from this grammar. Other
groups of features are derived using other learning strate-
gies.

1The data set is available at
ftp://ftp.cs.york.ac.uk/pub/aig/Datasets/neuropeps/ .



Table 5: Properties of sequences in SWISS-PROT at the
time the data set was prepared and in May, 1999.

Prep timea May ’99
Number of sequences 64,000 79,449
Number of known 44 57
human NPPs
Most probable maximum Not known 90
number of human NPPs

a At the time the data set was prepared

3. Amalgams of these groups are formed. A rule set is gen-
erated for each amalgam using C4.5 (Release 8) (Quin-
lan 1993) and C4.5rules2 and its performance is measured
usingMeanRA . The null-hypothesis is then tested by
comparing theMeanRA achieved from the various amal-
gams.

During both the generation of the grammar using CPro-
gol and the generation of propositional rule sets using C4.5
and C4.5rules we adopt the background information used in
Muggleton et al. (1992) to describe physical and chemical
properties of the amino acids.

Table 5 summarises how some of the properties SWISS-
PROT changed over the duration of the experiments de-
scribed in this paper and the subsequent preparation of this
paper. All theMeanRA measurements in this paper are
based on the properties as they stood in May, 1999; these
were the most up-to-date values available at the time the
measurements were made.3

Grammar Generation A NPP grammarcontains rules
that describe legal neuropeptide precursors. Fig. 1 shows
an example of such a grammar, written as a Prolog pro-
gram. This section describes how production rules for signal
peptides and neuropeptide starts, middle-sections and ends
were generated using CProgol. These were used to complete
the context-free definite clause grammar structure shown in
Fig. 1.

The grammar to be learnt by CProgol contains dyadic
non-terminals of the formp(X,Y), which denote that prop-
erty p began the sequenceX and is followed by a sequence
Y. To learn production rules for these non-terminals from the
training set, CProgol was provided with:

1. extensional definitions of these non-terminals.

2. definitions of the non-terminalsstar/2 and run/3.
star/2 represents some sequence of unnamed residues
whose length is not specified.run/3 represents a run of
residues which share a specified property.

3. production rules for various domain-specific subse-
quences and patterns. This natural inclusion of exist-
ing biochemical knowledge illustrates how the grammar-
based approach presents a powerful method for describing
NPPs.
2The default settings of C4.5 and C4.5rules were used.
3When measuring performance usingMeanRA there is no re-

quirement that the size of the test data set is equal to the number of
known human NPPs in SWISS-PROT.

npp(A,B):- signal(A,C),
star(C,D),
neuro_peptide(D,E),
star(E,B).

signal(A,C):- ...
neuro_peptide(D,E):- start(D,F),

middle(F,G),
end(G,E).

start(D,F):- ...
middle(F,G):- ...
end(G,E):- ...

m

B

k p i ... k r d a g k r ...

A

signal

star

C

D

start

middle

F

G

end E

star

Figure 1: Grammar rules describing legal NPP sequences.
The rules comply with Prolog syntax.npp(X;Y ) is true if
there is a precursor at the beginning of the sequenceX , and
it is followed by a sequenceY . The other dyadic predicates
are defined similarly.star(X;Y ) is true if, at the beginning
of the sequenceX , there is some sequence of residues whose
length is not specified and which is followed by another se-
quenceY . Definitions of the predicates denoted by ‘...’ are
to be learnt from data of known NPP sequences.



Certain restrictions were placed on the length of NPPs, sig-
nal peptides and neuropeptides because pilot experiments
had shown that they increased the accuracy of the grammar.
These constraints only affect the values of features derived
from the grammar. They do not constrain the value of the
sequence length feature described below.

Feature Groups 1) The grammar featuresEach feature
in this group is a prediction about a NPP sequence made by
parsing the sequence using the grammar generated by CPro-
gol. 2) The SIGNALP featuresEach feature in this group
is a summary of the result of using SIGNALP on a sequence.
SIGNALP (Nielsenet al. 1997) represents the pre-eminent
automated method for predicting the presence and location
of signal peptides.3) The proportions featuresEach fea-
ture in this group is a proportion of the number of residues
in a given sequence which either are a specific amino-acid
or which have a specific physicochemical property of an
amino-acid.4) The sequence length featureThis feature
is the number of residues in the sequence.

Propositional Learning The training and test data sets for
C4.5 were prepared as follows.
1. Recall that our data comprises44 positives and3910 ran-

doms.40 of the44 positives occur in the set of3910 ran-
doms. As C4.5 is designed to learn from a set of positives
and a set of negatives, these40 positives were removed
from the set of randoms. Of the40 positives which are in
the set of randoms,10 are in the test set. Hence the set
of (3910� 40) sequences were split into a training set of
(2910� 30=2880) and a test set of(1000� 10=990) .

2. Values of the features were generated for each training
and test sequence. Each sequence was represented by a
data vector comprised of these feature values and a class
value (‘1’ to denote a NPP and ‘0’ otherwise).

3. Finally to ensure that there were as many ‘1’ sequences as
‘0’ sequences atraining set of2880 NPPs was obtained
by sampling with replacement. Thus the training data set
input to C4.5 comprised(2 � 2880) examples. (No re-
adjusting was done on the test data.)

Amalgams of the feature groups described in the previous
section were formed. The amalgams are listed in Table 6.
The following procedure was followed for each one: (1)
training and test sets were prepared as described above; (2) a
decision tree was generated from the training set using C4.5;
(3) a rule set was generated from this tree using C4.5rules;
(4) a 2 � 2 contingency table was drawn-up based on the
predictions of this rule set on the test set; (5)MeanRA was
estimated from this contingency table.

The refutation of the null hypothesis was then attempted
as described in the Introduction.

Results and Analysis
Table 6 shows theMeanRA and predictive accuracy for
each amalgam of feature groups. The highestMeanRA
(107.7) was achieved by one of the grammar amalgams,
namely the ‘Proportions + Length + SignalP + Grammar’
amalgam. The bestMeanRA achieved by any of the amal-
gams which do not include the grammar-derived features

Table 6: Estimates ofMeanRA and predictive accuracy of
the amalgams of the feature groups.

Amalgam Mean Predictive
RA Accuracy (%)

Only props 0 96.7+
�

0.6
Only Length 1.6 91.8+

�

0.9
Only SignalP 11.7 98.1+

�

0.4
Only Grammar 10.8 97.0+

�

0.5
Props + Length 49.0 98.6+

�

0.4
Props + SignalP 15.0 98.3+

�

0.4
Props + Grammar 31.7 98.2+

�

0.4
SignalP + Grammar 0 98.6+

�

0.4
Length + Grammar 0 96.2+

�

0.6
Length + SignalP 34.4 98.7+

�

0.4
Length + SignalP + Grammar 0 98.0+

�

0.4
Props + Length + SignalP 29.2 98.7+

�

0.4
Props + Length + Grammar 33.2 98.5+

�

0.4
Props + SignalP + Grammar 15.0 98.3+

�

0.4
Props + Length + SignalP + 107.7 99.0+

�

0.3
Grammar

was the 49.0 attained by the ‘Proportions + Length’ amal-
gam. This difference is statistically significant:p(d < 0) is
well below 0.0001.

Table 6 shows that predictive accuracy is not a good mea-
sure of performance for this domain because it does not
discriminate well between the amalgams: despite covering
varying numbers of (the rare) positives, all the models are
awarded a similar (high) score by predictive accuracy be-
cause they all exclude most of the abundant negatives.

Discussion
This paper has shown that the most accurate comprehensi-
ble multi-strategy predictors of biological sequence families
employ Chomsky-like grammar representations.

The positive-only learning framework of the Inductive
Logic Programming (ILP) system CProgol was used to gen-
erate a grammar for recognising a class of proteins known
as human neuropeptide precursors (NPPs). As far as these
authors are aware, this is both the first biological grammar
learnt using ILP and the first real-world scientific application
of the positive-only learning framework of CProgol.

Figure 2 illustrates the advantage of using our best recog-
nition model to search for a novel NPP. If one searches for
a NPP by randomly selecting sequences from SWISS-PROT
for synthesis and subsequent biological testing then, at most,
only one in every 2408 sequences tested is expected to be
a novel NPP. Using our best recognition model as a filter
makes the search for a NPP far more efficient. Approxi-
mately one in every 22 of the randomly selected SWISS-
PROT sequences which pass through our filter is expected
to be a novel NPP.

The best ‘non-grammar’ recognition model does not pro-
vide any biological insight. However the best recognition
model which includes grammar-derived features is broadly
comprehensible and contains some intriguing associations



Testing with Recognition Model

Random Testing

Filter

SWISS-PROT

SWISS-PROT

Sample

Sample
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Figure 2: Finding novel NPPs in SWISS-PROT. Compari-
son of random testing and testing with our best recognition
model.

that may warrant further analysis. This model is being eval-
uated as an extension to existing methods used in SmithK-
line Beecham for the selection of potential neuropeptides for
use in experiments to help elucidate the biological functions
of G-protein coupled receptors.

The new cost function presented in this paper, Relative
Advantage (RA), may be used to measure performance of a
recognition model for any domain where:

1. the proportion of positives in the set of examples is very
small.

2. there is no guarantee that all positives can be identified as
such. In such domains, the proportion of positive exam-
ples in the population is not known and a set of negatives
cannot identified with complete confidence.

3. there is no benchmark recognition method.

We have developed a general method for assessing the sig-
nificance of the difference betweenRA values obtained in
comparative trials.RA is estimated by summing the esti-
mate of performance on each test set instance. The method
uses identically distributed random variables representing
the outcome for each instance; a sample mean which ap-
proaches the population mean in the limit and a relatively
small sample variance.
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