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Abstract

Though impressive classification accuracy is often ob-
tained via discrimination-based learning techniques
such as Multi-Layer Perceptrons (DMLP), these tech-
niques often assume that the underlying training sets
are optimally balanced (in terms of the number of posi-
tive and negative examples). Unfortunately, this is not
always the case. In this paper, we look at a recognition-
based approach whose accuracy in such environments is
superior to that obtained via more conventional mech-
anisms. At the heart of the new technique is a mod-
ified auto-encoder that allows for the incorporation of
a recognition component into the conventional MLP
mechanism. In short, rather than being associated with
an output value of "1", positive examples are fully re-
constructed at the network output layer while negative
examples, rather than being associated with an output
value of "0", have their inverse derived at the output
layer. The result is an auto-encoder able to recognize
positive examples while discriminating against negative
ones by virtue of the fact that negative cases generate
larger reconstruction errors. A simple technique is em-
ployed to exaggerate the impact of training with these
negative examples so that reconstruction errors can be
more reliably established. Preliminary testing on both
seismic and sonar data sets has demonstrated that the
new method produces lower error rates than standard
connectionist systems in imbalanced settings. Our ap-
proach thus suggests a simple and more robust alter-
native to commonly used classification mechanisms.

Introduction
Concept learning tasks represent a form of supervised
learning in which the goal is to determine whether or
not an instance belongs to a given class. As would be
expected, the greater the number of training examples,
the more reliable the results obtained during the train-
ing phase. In addition, however, we must also acknowl-
edge that the success of supervised learning algorithms
is at least partly determined by the balance of posi-
tive and negative training cases. For training purposes,
then, we would consider a data set optimal if, in addi-
tion to a certain minimal size, its instances were split
more or less evenly between positive and negative ex-
amples of the concept in question. This type of division

would ensure that our learning algorithms are not un-
duly skewed in favour of one case or the other.

Unfortunately, such optimality is often hard to guar-
antee in practice. In many domains, it is neither possi-
ble nor feasible to obtain equal numbers of positive and
negative instances. For example, the analysis of seismic
data in terms of its association with either naturally oc-
curring geological activity or man-made nuclear devices
is hampered by the fact that examples of the latter are
extremely uncommon (and rigidly controlled). Seismic
applications are not the only ones suffering from imbal-
anced conditions. The problem was also documented in
applications such as the detection of oil spills in satel-
lite radar images [Kubat et al., 1998], the detection of
faulty helicopter gearboxes [Japkowicz et al., 1995] and
the detection of fraudulent telephone calls [Fawcett &
Provost, 1997]. Thus, supervised learning algorithms
used in such environments must be amenable to these
inherent restrictions.

In practice, many algorithms do not perform well
when the training set is imbalanced (see [Kubat et al.
1998] for an illustration of this effect). Since a signif-
icant number of real-world domains can be described
in this manner, it seems logical to pursue mechanisms
whose performance suffers less drastically when counter
examples are relatively hard to come by. In this pa-
per, we present preliminary results obtained via the use
of a Connectionist Novelty Detection method known
as auto-encoder-based classification. Essentially, auto-
encoder-based classifiers learn how to recognize positive
instances of a concept by identifying their common pat-
terns. When later presented with novel instances, the
auto-encoder is able to recognize cases whose charac-
teristics are in some way similar to its positive training
examples. Negative instances, on the other hand, gen-
erally have little in common with the training input and
are therefore not associated with the concept under in-
vestigation.

Though the auto-encoder as just described has been
successful within a number of domains, it has become
clear that not all environments are equally receptive to
a training phase completely devoid of counter exam-
ples. More specifically, auto-encoders tend not to be as
effective when negative instances of the concept exist
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as a subset of the larger positive set. In such cases,
the network is likely to confuse counter examples with
the original training cases since it has had no opportu-
nity to learn those patterns which can serve to delin-
eate the two. Consequently, the method presented here
will incorporate a local discrimination phase within the
general recognition-based framework. The result is a
network that can successfully classify mixed instances
of the concept, despite having been given a decidedly
imbalanced training set.

Previous Work
Although the imbalanced data set problem is starting
to attract the attention of a number of researchers, at-
tempts at addressing it have remained uncoordinated.
Nevertheless, these research efforts can be organized
into four categories

¯ Methods in which the class represented by a small
data set gets over-sampled so as to match the size of
the opposing class.

¯ Methods in which the class represented by the large
data set can be down-sized so as to match the size of
the other class.

¯ Methods that internally bias the discrimination-
based process so as to compensate for the class im-
balance.

¯ Methods that ignore (or makes little use of) one 
the two small classes altogether.

The first method was used by [Ling &5 Li, 1998]. It
simply consists of augmenting the small data set by
re-sampling the instance multiple times. Other re-
lated schemes could diversify the augmented class by
injecting some noise into the repeated patterns. The
second method was investigated in [Kubat & Matwin,
1997] and consists of removing instances from the well-
represented class until it matches the size of the smaller
class. The challenge of this approach is to remove in-
stances that do not provide essential information to the
classification process. The third approach was studied
by [Pazzani et al., 1994] who assigns different weights
to examples of the different classes, [Fawcett & Provost,
1997] who remove rules likely to over-fit the imbalanced
data set, and [Ezawa et al., 1996] who bias the clas-
sifter in favour of certain attribute relationships. Fi-
nally, the fourth method was studied in its extreme
form (i.e., in a form that completely ignores one of
the classes during the concept-learning phase) by [Jap-
kowicz et al., 1995]. This method consisted of using
a recognition-based rather than a discrimination-based
inductive scheme. Less extreme implementations were
studied by [Riddle et al., 1994] and [Kubat et al., 1998]
who also employ a recognition-based approach but use
some counter-examples to bias the recognition process.
Our current study investigates a technique that falls
along the line of the work of [Riddle et al., 1994] and
[Kubat et al., 1998] and extends the auto-encoder ap-
proach of [Japkowicz et al., 1995] by allowing it to

consider counter examples. The method, however, dif-
fers from [Riddle et al., 1994] and [Kubat et al., 1998]
in its use of the connectionist rather than rule-based
paradigm.

Our method is also related to previous work in the
connectionist community. In the past, auto-encoders
have typically been used for data compression [e.g., Cot-
trell et al., 1987]. Nevertheless, their use in classifica-
tion tasks has recently been investigated by [Japkowicz
et al., 1995], [Schwenk ~ Milgram, 1995], [Gluck & My-
ers, 1993] and [Stainvas et al., 1999]. [Japkowicz et al.,
1995] and [Schwenk &5 Milgram, 1995] use it in similar
ways. As mentioned previously, [Japkowicz et al., 1995]
use the auto-encoder to recognize data of one class and
reject data of the other class. [Schwenk & Milgram,
1995], on the other hand, use it on multi-class problems
by training one auto-encoder per class and assigning
a test example to the class corresponding to the auto-
encoder which recognized it best. Both [Gluck & Myers,
1993] and [Stainvas et al., 1999] use the auto-encoder
in conjunction with a regular discrimination-based net-
work. They let their multi-task learner simultaneously
learn a clustering of the full training set (including con-
ceptual and counter-conceptual data) and discriminate
between the two classes. The discrimination step acts
as both a labelling step (in which the clusters uncovered
by the auto-encoder get labelled as conceptual or not)
and a fine-tuning step (in which the class information
helps refine the auto-encoder clustering). Our method
is similar to [Gluck &5 Myers, 1993] and [Stainvas et al.,
1999] in that it too uses class information about the two
classes and lets this information act both as a labelling
and a fine-tuning step. However, it differs in that the
auto-encoder is used in a different way for each class.

Implementation
Auto-encoder. As stated, an auto-encoder learns by
determining the patterns common to a set of positive
examples (in the standard case). It then uses this infor-
mation to generalize to examples it has not seen before.
In terms of the training itself, the key component is a
supervised learning phase in which input samples (in
the form of a multi-featured vector) are associated with
an appropriate target vector. The target, in fact, is
simply a duplicate of the input itself. In other words,
the network is trained so as to reproduce the input at
the output layer. This, of course, stands in contrast to
the conventional neural network concept learner which
is trained to associate positive instances with a target
value of "1" and negative examples with a "0". The
architectures of the auto-encoder (with 6 input/output
units and 3 hidden units) versus that of the conven-
tional neural network (with 6 input units, 3 hidden
units and 1 output unit) are illustrated in Figure 1.

Once an auto-encoder has been trained, it is neces-
sary to provide a means by which new examples can be
accurately classified. Since we no longer have a simple
binary output upon which to make the prediction, we
must turn to what is called the "reconstruction error".
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(a) DMLP (b) RMLP

Figure 1: Examples of Feedforward Neural Networks:
(a)discrimination-based DMLP; (b) recognition-based
RMLP

The reconstruction error is defined as

k

- o(i)]2 (1)
i=1

where I(i) and O(i) are the corresponding input 
output nodes at position i and k represents the number
of features in the vector. In other words, we ascertain
the degree to which the output vector -- as determined
by the trained network -- matches the individual values
of the original input. Of course, in order to apply the
reconstruction error concept, we must establish some
constraint on the allowable error for instances that will
be deemed to be positive examples of the given con-
cept. To do so, we include a threshold determination
component in the training phase. Since we would like
the threshold T to be closely associated with the mean
of the full set R of individual reconstruction errors, we
define the threshold as follows

T = mean(R) + Z(std(R)) (2)

We use the Z parameter as a means of controlling
the range of acceptable reconstruction error valUes. In
essence, it represents the desired confidence interval for
the mean reconstruction error and, as such, corresponds
to the standard Z value commonly used in statistical
analysis. By combining the Z value with the mean and
standard deviation of the error distribution, we may
efficiently tune our boundary to suit the input at hand.

Extended auto-encoder. In the current study the
auto-encoder has been extended to allow for what we
call local discrimination. In other words, a small num-
ber of negative examples are included in the training
set so that the network has the opportunity to deter-
mine those features that differentiate clusters of nega-
tive instances from the larger set of positive instances.
In cases where there is considerable overlap between
concept and non-concept instances, it is expected that
this additional step may significantly lower classifica-
tion error. The extension to the new model is relatively
straight-forward. As before, target values for positive
input are represented as a duplication of the input vec-
tors. In contrast, however, the target vector for nega-

tive instances is constructed as an inversion of the in-
put. For example, the three-tuple <0.5, 0.6, 0.2> would
become <-0.5, -0.6, -0.2> at the output layer. During
the threshold determination phase, the network output
vectors for these negative examples are assessed relative
to the vectors that would have been expected had the
input actually been a positive example. In other words,
the negative reconstruction error is the "distance" be-
tween the inverted output and the original input.

Armed with this new information, we are now able
to establish both positive and negative reconstruction
error ranges. A definitive classification boundary is de-
termined by finding the specific point that offers the
minimal amount of overlap. Though this might at first
appear to be a trivial task, in practice it is somewhat
more complicated than expected. Typically, due to the
underlying data imbalance, the range of positive recon-
struction errors is much more tightly defined than the
range of negative errors (i.e., more compactly clustered
around the mean). For this reason, it is necessary to
skew the boundary towards the mean of the positive
reconstruction error. In our study, this extra step was
not required since we employed a "target shifting" tech-
nique (see below) that significantly reduced the likeli-
hood of boundary overlap. As a result, we were sim-
ply able to utilize the positive reconstruction boundary
as described in the preceding section. Once the final
boundary condition has been established, classification
of novel examples is relatively simple. Instances are
passed to the trained network and reconstruction er-
rors calculated. Errors below the boundary are associ-
ated with positive examples of the concept, while those
above signify non-concept input.

Target Shifting. In theory, the local discrimination
technique as just described should produce distinctive
error patterns for both positive and negative train-
ing input. Unfortunately, initial testing using this ba-
sic scheme was quite disappointing. In particular, it
proved almost impossible to produce non-overlapping
error ranges. An analysis of the raw network output
showed that the auto-encoder was indeed inverting the
negative training cases. However, it was clear that the
negative reconstruction was simply much smaller than
expected. The problem was two-fold. First, the inclu-
sion of empty or zeroed feature values effectively re-
duced the number of vector elements that could con-
tribute to the reconstruction error. For example, if
a domain provides twenty distinctive features for each
instance, but individual cases rarely have more than
five or six non-zero feature values, then the ability of
the network to produce distinguishable error ranges is
severely curtailed. Second, and perhaps more impor-
tantly, the normalization of input prior to training can
have a deleterious effect upon threshold determination.
In particular, the existence of out-liers in the original
input set has a tendency to squash many feature val-
ues down towards zero. If these near-zero features be-
long to negative training examples, then the inverted



features will be deceptively close to the non-inverted
input, l?or example, a normalized input value of 0.001
would become -0.001 in a perfectly trained network.
Consequently, it is likely that the reconstruction error
for many negative training cases will be no greater than
their positive counterparts.

To combat this problem, it was necessary to utilize
some mechanism that could exaggerate the error associ-
ated with negative examples while leaving the positive
reconstruction error unchanged. We chose to employ a
simple technique by which the entire normalized range
of input values was shifted in order to create target
output. Positive instances are modified simply by in-
crementing each element of the input vector by one.
Negative input is also incremented but, in this case,
the sign of each element is also inverted. For exam-
ple, the positive input vector <0.2, 0.3, 0.4> becomes
<1.2, 1.3, 1.4> while the negative vector <0.2, 0.5, 0.9>
becomes <-1.2, -1.5, -1.9>. This approach to tar-
get vector generation has two fundamental advantages.
First, it maintains the normalized input patterns so
that features with large absolute values do not domi-
nate the training phase. Second, and more significantly
in the current context, we can ensure that properly rec-
ognized negative instances will result in the generation
of significantly exaggerated reconstruction errors. Typ-
ically, negative instances produce values greater than
two for each component of the vector while positive
instances contribute errors of less than one per compo-
nent. (Note: We say "typically" since the network is
unlikely to perfectly transform all features into the ex-
pected ranges). In the initial implementation, only non-
zero vector elements were actually inverted, the belief
being that transforming these "empty" features might
hamper the network’s ability to properly recognize the
original input. However, in practice, the primary result
of not shifting the zero values was to distribute more
evenly target output and, in the process, to bring posi-
tive and negative boundaries much closer together. As
a result, all values were inverted in subsequent experi-
ments.

Target shifting has proven to be a simple but effec-
tive technique for establishing appropriate reconstruc-
tion error constraints. As should be obvious, domains
exhibiting a higher number of features generally pro-
duce more striking differences between positive and neg-
ative boundaries. Nevertheless, even for feature-poor
domains, it is generally quite easy to define the appro-
priate ranges.

Seismic Data
Description. We applied our technique to the prob-
lem of learning how to discriminate between seismo-
grams representing earthquakes and seismograms repre-
senting nuclear explosions. The database contains data
from the Little Skull Mountain Earthquakes 6/29/92
and its largest aftershocks, as well as nuclear explosions
that took place between 1978 and 1992 at a nuclear test-
ing site near the Lawrence Livermore Labs. The long-

range motivation for this application is to create reliable
tools for the automatic detection of nuclear explosions
throughout the world1 in an attempt to monitor the
Comprehensive Test Ban Treaty. This discrimination
problem is extremely complex given the fact that seis-
mograms recorded for both types of events are closely
related and thus not easily distinguishable. In addi-
tion, due to the rarity of nuclear explosions and earth-
quakes occurring under closely related general condi-
tions (such as similar terrain) that can actually allow
for fair discrimination between the two types of events,
significant imbalances in the data sets can be expected.2

Specifically, our database contains more nuclear explo-
sion than earthquake data since the chances of natural
seismic activity taking place near the nuclear testing
ground are very slim. Nevertheless, there is a strong
appeal in automating the discrimination task since, if
such a computer-based procedure could reach accept-
able levels of accuracy, it would be more time-efficient,
less prone to human-errors, and less biased than the
current human-based approaches.

The seismic data set used in the study is made up of
49 samples, 31 representing nuclear explosions and 18
representing naturally occurring seismic activity. Each
event is represented by 6 signals which correspond to
the broadband (or long period) components BB Z, 
N and BB E and the high frequency (or short period)
components HF Z, HF N and HF E. Z, N, and E corre-
spond to the Vertical, North and East components that
refer to projections of the seismograms onto the Ver-
tical, North and East directions, respectively. All the
signals were recorded in the same locale although the
earthquake data is divided into three different classes of
events that took place at different locations within that
area and at different points in time. Because the broad-
band recordings were not specific enough, we worked
instead with the short period records.

The signal onset was selected manually by inspection
of each signal. Since the exact onset could not always
be determined, the starting point was uniformly cho-
sen so as to be slightly past the actual onset for all
signals. Clipping was done after 4096 recording. This
number was chosen because it includes the most infor-
mative part of the signals and it is also a power of 2.
(Because of the second feature, application of the Fast
Fourier transform using the MATLAB Statistical pack-
age is faster.) Although the overall files did contain
spikes, the parts of the signals selected for this study
were not spiky, so no additional procedure needed to be
applied in order to deal with this issue. The signals were

1 Relevant seismic data can be recorded in a station lo-
cated thousands of kilometers away from the site of the
event.

2In the more useful setting where seismograms can be
transformed so that the surrounding conditions do not need
to be constant, large imbalances in the data sets would re-
main, though this time they would be caused by the scarcity
of nuclear explosions and the ubiquity of earthquakes of var-
ious types around the world.
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then de-trended, transforming them so that the collec-
tive set exhibited a zero mean. Next, the signals were
normalized between 0 and i in order to make them suit-
able for classification. Finally, the signal representation
was changed by converting the time-series representa-
tion to a frequency representation using MATLAB’s
Fast Fourier transform procedure. Although some of
the earthquake files seemed to contain several events,
we only kept the first one of these events in each case.

Experimental Details. All training and testing was
conducted within MATLAB’s Neural Network Toolbox.
As mentioned, data was normalized into a 0-1 range
(before target shifting) and features made up of zero
values across all input vectors were removed. Network
training was performed using the Resilient Backprop
(Rprop) algorithm which offered extren~ely rapid train-
ing times in our study (for a more complete description
of Rprop, see [Riedmiller ~ Braun, 1993]).

To assess the impact of the auto-encoding with local
discrimination, we chose a pair of comparative tests.
In the first case, each of three relevant network archi-
tectures -- DMLP (conventional discrimination-based
MLP), RMLP (basic recognition-based auto-encoder),
and XRMLP (auto-encoder with local discrimination)
-- was trained on a "set" number of seismic records
(RMLP, of course, relied only upon positive training in-
stances). We must note, here, that the relatively small
size of the data sample made network training and test-
ing somewhat difficult. Splitting the input set into two
equal subsets for training/testing and cross-validation
would have left too few cases in each of the partitions;
results would likely have been too inconsistent to have
been of much value. Instead, network parameters were
established by using the entire set as a training/testing
set. Two thirds of the positive and negative cases were
chosen at random and were used for training, while the
remaining third went into a test set. Hidden unit counts
of 16 for DMLP and 64 for both auto-encoders were es-
tablished in this manner (Rprop does not use a learn-
ing rate or momentum constant). The data set was
then re-divided into five folds and, using the hidden
unit parameters established in the previous step, three
separate test cycles of 5-fold cross-validation were per-
formed. On the full (i.e, relatively balanced) data set,
the XRMLP network produced a cross-validated error
of 0.161, while the DMLP and RMLP generated 0.212
and 0.387 respectively.

In the second - and more significant - phase of testing,
our goal was to directly compare the impact of reducing
the number of negative training units upon the error
rate of both DMLP and XRMLP. In this phase, we used
from 1 to 10 negative training samples and performed
5 network training cycles at each level. (Here, final
testing was performed on the full data set since there
were simply not enough negative examples to use the
previous 5-fold cross-validation technique) Figure 77 is
a graphical representation of the results, while Table 77
lists both the mean and standard deviation for each of

Variation on Negative Cases (Seismic)
0,45

0.4
0.35

0.3

~ 0,25

~0,2
0.15

0,1

0.05

2 5 10
Negative Training Cases

Figure 2: DMLP vs. XRMLP

Table 1: Negative sample variation
Architecture

Negative Samples DMLP XRMLP
1 .421 ±0.0 .378 4-.068
2 .336 4-.029 .294 4-.047
5 .199 4-.086 .178 +.029

10 .147 4-.125 .188 4-.047

the separate tests.
There are two points of interest with respect to Table

77. First, the auto-encoder provides a lower error rate
when small numbers of negative samples are used; only
at ten instances does the DMLP show improved accu-
racy. Second, even though the mean error rate of the
DMLP diminishes as the number of negative samples
increases, its standard deviation is much higher than
that of the auto-encoder in the last two recordings (i.e.,
5 and 10 cases). The implication, of course, is that
DMLP is much more dependent upon the specific set of
negative training samples with which it is supplied.

Sonar Data

Description. The sonar detection problem takes as
input the signals returned by a sonar system in those
cases where mines and rocks were used as targets.
Transmitted sonar signals take the form of a frequency-
modulated chirp, rising in frequency. In the current
context, signals were obtained from a variety of differ-
ent aspect angles. Each instance of the data is repre-
sented as a 60-bit long vector spanning 90 degrees for
the mine and 180 degrees for the rock. Samples are
represented as a set of 60 numbers in the range 0.0 to
1.0, where each number represents the energy within
a particular frequency band, integrated over a certain
period of time. The data itself was obtained from the
U.C. Irvine Repository of Machine Learning. In total,
there were 111 mine samples (positive class) and 97 rock
samples (negative class).

Eperimental Details. As before, experimental re-
suits were obtained using MATLAB’s Neural Net Tool-
box. Though Rprop again provided good performance
for the DMLP network, it was not as effective in the
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XRMLP environment. More specifically, even while us-
ing the target shifting technique, we found significant
overlap between the positive and negative reconstruc-
tion boundaries, so much so that Rprop results proved
unreliable at best. Experimentation with a variety of
other training functions3 eventually demonstrated that
One Step Secant (OSS) was most appropriate for this
particular data set. (Note: DMLP accuracy did not im-
prove with any of these other training functions.) What
was most interesting about OSS was the definitive na-
ture of its classification decisions (for further informa-
tion regarding OSS, see [Batti, 1992]). Though it did
not always classify correctly, there was generally little
question as to how to assess the output vectors; positive
reconstruction errors were typically very small (i.e., less
than 5) while negative reconstruction errors were quite
large (i.e., greater than 100).

The decisive classification of OSS, however, necessi-
tated some minor changes in the boundary determina-
tion phase. Because of the marked difference in the
absolute values of the individual positive and negative
reconstruction errors, it was possible for a small num-
ber of network classification errors to grossly inflate the
mean reconstruction error. As such, subsequent testing
would be adversely affected in that a number of negative
test cases would likely fall inside the inflated boundary
and be classified incorrectly. Our solution, therefore,
was to prune the original set of reconstruction errors
by removing all error values that clearly represented
classification errors. In this case the heuristic used was
to exclude those values which were more than five times
greater than the median value in the reconstruction set.

In terms of the tests themselves, we chose to focus
exclusively on the comparison of DMLP and XRMLP.
Data was randomly divided into a training set of 108
samples (61 positive, 47 negative) and a cross-validation
testing set of 100 samples (50 positive, 50 negative). For
both networks, training produced an optimal hidden
unit count of 32, though the OSS mechanism proved to
be relatively robust at a variety of hidden unit counts.
As was the case during the seismic testing, we were
interested in the impact upon classification accuracy
as the number of negative training samples decreased.
Therefore, we compared the two architectures by train-
ing the networks on a small number of negative sam-
ples randomly selected from the available training set.
Figure ?? graphically displays the results for negative
training samples in the range one to ten (using five-
fold cross-validation), while Table ?? depicts the same
results in the form of a 95% confidence interval.

As before, the results clearly demonstrate the benefit
of the XRMLP mechanism within dramatically imbal-
anced settings. Inside the approximately 5:1 ratio rep-
resented by these tests (47 positive cases versus a max-
imum of 10 negative training cases), the recognition-

aOne Step Secant, Gradient Descent backpropagation,
Bayesian Regulation backpropagation, and One-vector-at-
a-time training

Variation on Negative Cases (Sonar)
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Figure 3: DMLP vs. XRMLP

Table 2: Negative sample variation
Architecture

Negative Samples DMLP XRMLP
1 .50 ±.08 .40 ±.06
2 .48 ±.03 .39 ±.14
3 .46 ±.03 .38 ±.11
4 .38 ±.07 .39 ±.14
5 .35 ±.08 .30 ±.15
6 .43 ±.07 .29 ±.18
7 .42 ±.13 .34 ±.05
8 .37 ±.11 .33 +.14
9 .39 ±.07 .37±.16

10 .29 ±.09 .25 ±.09

based approach extracted more information from the
training samples than did the discrimination-based al-
ternative. We should also note that when the two net-
works were trained in a balanced environment, DMLP
performance was superior to the XRMLP (0.22 error
versus 0.29), perhaps suggesting XRMLP accuracy does
not necessarily benefit from the unlimited addition of
negative training cases. Even so, however, we must
recognize that the accuracy of XRMLP on a limited
training set is relatively close to that of DMLP of a
fully-balanced data set.

Conclusions and Future Work
In this paper, we have discussed an extension to the
auto-encoder model which allows for a measure of lo-
cal discrimination via a small number of negative train-
ing examples. Comparisons with the more conventional
DMLP model suggest that not only does the new tech-
nique provide greater accuracy on imbalanced data sets,
but that its effectiveness relative to DMLP grows as
the ratio of positive to negative training cases becomes
more exaggerated. In addition, we have noted that the
auto-encoder appears to be much more stable in this
type of environment, in that its error rates tend to fluc-
tuate relatively little from one iteration of the network
to the next.

The lack of success shown by the basic auto-encoder
(i.e., without negative training samples) also demon-
strates that some form of local discrimination is impor-
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tant in certain environments. Though such an architec-
ture has proven very effective in other settings, it seems
clear that the underlying characteristics of concept and
non-concept instances may sometimes be too similar to
distinguish without prior discriminatory training.

There are many possible extensions of this work.
First, it will be important to assess the accuracy of
XRMLP on larger data sets; doing so will allow us to ex-
periment with a wide range of imbalance ratios. (Note:
preliminary work in this regard has been promising).
Second, a possible approach to the seismic problem that
appears promising involves the use of radial basis func-
tions. Third, it would be interesting to compare our
method to that of [Stainvas et al., 1999], though our
technique should be implemented within an ensemble
framework in order for the comparison to be fair. Fi-
nally, it could be useful to extend the auto-encoder-
based technique described in this paper to multi-class
learning (by assigning different goals for the reconstruc-
tion error of each class) and to compare this method to
the stalidard multi-class neural network technique.
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