Learning From Imbalanced Data: Rank Metrics and Extra Tasks

Rich Caruana
Departments of Computer Science and Radiology, UCLA
Center for Automated Learning and Discovery, CMU
5000 Forbes Avenue, Pittsburgh, PA 15213

caruana@cs.cmu.edu

From: AAAI Technical Report WS-00-05. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Abstract

Imbalanced data creates two problems for ma-
chine learning. First, even if the training set is
large, the sample size of smaller classes may be
small. Learning accurate models from small sam-
ples is hard. Multitask learning is one way to learn
more accurate models from small samples that is
particularly well suited to imbalanced data. A sec-
ond problem when learning from imbalanced data
is that the usual error metrics (e.g., accuracy or
squared error) cause learning to pay more atten-
tion to large classes than to small classes. This
problem can be mitigated by careful selection of
the error metric. We find rank based error metrics
often perform better when an important class is
under-represented.

INTRODUCTION

Consider a data set with 10,000 cases. Many would
consider this a large data set. Suppose, however, that
this data set is imbalanced: the positive class occurs
only 1% of the time. This large dataset contains only
100 positive cases.

Consider a second dataset with only 200 cases, 50%
of which are positive. Most would consider this a small
dataset. But this small dataset also contains 100 pos-
itive cases. If a large dataset and a small dataset con-
tain the same number of positive instances, is the large
dataset really larger than the small data set? Perhaps a
better measure of dataset size is the size of the smallest
important class.

So one problem of learning from imbalanced data is
the problem of learning from small data. Learning good
models from small samples is difficult, and care must
be taken to avoid overfitting. The problem is further
amplified with imbalanced data because the model se-
lection criteria managing the bias/variance tradeoff of-
ten are more sensitive to larger classes than to smaller
classes.

Imbalanced data poses additional problems beyond
those arising from small data. Because cases from
smaller classes are surrounded by a sea of cases from

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

51

larger classes, most learning methods typically spend
most of their effort learning about the predominant
classes. For example, a small increase in the false pos-
itive rate on a large class easily swamps changes made
in predictions for smaller classes. Most learners focus
most of their effort on getting the larger classes right
before learning much about smaller classes. One reason
for this is that most error metrics favor small improve-
ments in accuracy on predominat classes over the ability
to differentiate between classes, small or large.

Imbalanced data gives us two problems to address:

e how to re-focus learning and model selection so that
they pay as much attention to small classes as they
do to large classes.

e how to learn models that generalize well from small
samples

We discuss two approaches to these problems. One
is to use rank metrics instead of accuracy metrics for
training and model selection. Rank metrics are more
concerned with the relative ordering of cases than with
making absolute predictions for cases. This yields two
advantages for dealing with imbalanced data. First, rel-
ative models ofen are simpler (i.e., less nonlinear) than
absolute models, and thus usually are easier to learn
from small data sets, and imbalanced data sets often
effectively are small. Second, and perhaps more im-
portantly, rank metrics place more emphasis on learn-
ing to distinguish classes than on learning the internal
structure of classes, and thus place more emphasis on
learning how small classes differ from large classes than
learning internal structure about the larger classes.

The second approach to dealing with imbalanced
data is to use inductive transfer to maximize what can
be learned from small data sets. The approach we follow
is multitask learning (MTL). MTL trains the model on
extra tasks related to the important main task while us-
ing a shared representation. If what is learned for these
extra tasks is useful to the main task, the main task
will be learned better. MTL allows us to amplify the
effective size of the under-represented class by adding
extra training signals to the data set.



RANK METRICS

Consider a data set with two classes, pos and neg. Sup-
pose the data set has 10,000 instances, with 1/data set
suffers from data imbalance: it contains 9,900 neg in-
stances but only 100 pos instances.

The Standard Approach

Suppose we train an artifical neural net on this problem,
with an output coding of 0 for neg and 1 for pos. The
first thing the net learns is to adjust the bias weight on
the output unit so that it predicts values near zero for
all cases. The net predicts small values for all cases,
including the few pos cases in the training set.

This net has two qualitatively different directions
learning can go: it can learn to predict larger values
for pos cases, or it can learn to predict values closer to
zero for neg cases. Given that there are 100 times as
many neg cases, a backprop net usually will learn more
about driving neg cases towards zero than driving pos
cases towards one. This disparity in what the net learns
about the two classes continues for a long time. Eventu-
ally, the net is so good at learning to drive neg cases to
values near zero that it places more emphasis on learn-
ing to drive pos cases to larger values. Unfortunately,
most of what the net learned to drive neg values near
zero probably is not relevant to distinguishing pos and
neg cases. Even worse, if the net can learn something
useful for the pos cases, but even slightly harmful to the
near-zero predictions for the neg cases, gradient descent
on squared error will not learn it. Things learned for
pos cases must not hurt neg cases.

One way to avoid this is to artificially reduce the dis-
parity between the sizes of the two classes by subsam-
pling the larger class. But it is unfortunate to throw
away so much data. (A better approach would be to
subsample from the larger class many times, learn many
models, and combine those models by averaging.) An-
other way to avoid this problem is to increase the weight
applied to errors on the less frequent pos cases. This
forces learning to pay more attention to errors on the
pos cases early in learning. This is a good approach.
Unfortunately, it has a problem: if the number of pos
cases is small (e.g., only 100 pos cases), learning al-
most certainly will overfit the pos cases as it tries to
learn models that makes small errors on these few, but
highly weighted, cases.

Benevolent Spirits

Can we force learning to pay similar attention to both
classes at all stages of learning without provoking mas-
sive overfiting to the smaller class? Often we can. The
real source of the problem is that we used an output
coding of 0 for neg cases and 1 for pos cases. Moreover,
we trained the net using squared error. This is very
unfortunate output coding and error metric for imbal-
anced data.

Most real-world problems exhibit a range of neg
cascs. Many of the neg cases will be very different from

the pos cases. Many more will be moderately different
from the pos cases. And some of the neg cases will be
very similar to the pos cases. (Some neg cases may be
indistinguishable from pos cases, and vice-versa.)

When we use an output encoding of 0/1 squared er-
ror, we force learning to treat all the neg cases the same
way. It is penalized for allowing some neg cases to have
predicted values near the value coding for pos cases.
This is not so serious a problem when the number of
pos and neg cases are balanced, because the penalty
is similar for pos cases with predicted values near the
value coding for neg cases. The two penalties roughly
balance each other as the net learns models that dis-
criminate between the pos and neg cases.

But when the data is imbalanced, these two penalties
no longer balance each other. The net becomes far more
concerned about making the predictions for neg cases
be near the target value for neg cases (0) because there
are so many more neg cases than pos cases. It is far
less concerned about pos cases predicted to be the neg
target value. The real source of this problem is that
the net is not allowed to treat some neg cases differ-
ently from other neg cases — it needs to drive all kinds
of neg cases near the zero coding because there are so
many neg cases, that even the small proportion of neg
cases that are similar to the pos cases will outnumber
the pos cases. The net spends more effort learning to
predict the same coded value for all neg cases than it
does learning to predict different values for pos and neg
cases.

One solution to this problem is to introduce interme-
diate codings for some neg cases that allow neg cases
similar to pos cases to have target values closer to the
target values for pos cases. Ideally, some benevolent
spirit would take all the neg cases, and label them with
values between 0 and 0.99 indicating how similar they
are to the pos cases, which are still labelled as 1.0.
Given this benevolent relabelling, many of the problems
of learning from imbalanced data go away. Of course
the real world rarely is this benevolent. Rank metrics,
however, allow us to create intermediate valuations for
the neg cases. And as a bonus, the models that have to
be learned typically are simpler (i.e., less non-linear),
and thus are easier to learn from small data sets.

Benevolent Ranks: Rankprop

Several years ago we introduced a method called
rankprop that learns to predict the target values for the
neg cases at the same time it learns a model to discrim-
inate bwetween the pos and neg cases (Caruana, Baluja
and Mitchell 1994). Rankprop uses a rank metric in-
stead of the absolute 0/1-based metric above. The basic
approach in rankprop is as follows: rank the training set
by the true class, neg and pos. This ranks all neg cases
below all pos cases. Assign to each training case a tar-
get value between 0 and 1 based on its position in this
ranking. (Note that because all neg cases get the same
rank, they all get assigned a value of 0.495. Similarly,
the pos cases all get assigned 0.995.)

52



Train the backprop net on these target values for one
epoch. So far there is little to distinguish rankprop from
training on 0/1 targets except that the targets are not
0 and 1 (which isn’t significant). Here’s where a differ-
ence arises: After performing one epoch of backprop,
re-rank the training cases using the net’s predictions
as secondary keys in the ranking. All neg cases are
still ranked below all pos cases (the class is the pri-
mary key), but the predictions for each case allow ties
between neg cases to be split (and similarly for ties be-
tween pos cases, but this is less important since their
values will always fall between 0.99 and 1.0). Using this
new ranking, re-assign the target values for the train-
ing cases. Now some neg cases have target values near
0.0, and others have target values near 0.99. Using the
new target values, perform a second epoch of backprop.
After this epoch, once again use the net’s predictions
to re-rank the pos and neg cases, and assign new target
values to the training cases based on the new rankings.
Do another epoch. Repeat.

Rankprop allows neg cases to acquire target values
that place them nearer or farther from the few pos cases.
In fact, almost 50% of the neg cases will have target val-
ues above 0.5! Moreover, there is no pressure for the
net to assign any particular value to any particular neg
case. The net is allowed to discover an ordering of the
neg cases that is most compatible with the discrimina-
tion model it is trying to learn to distinguish beteen the
pos and neg cases. This means that the rankprop net
is not driven to spend most of its effort driving the neg
cases towards an unrealistic target value of zero, elim-
inating the pressure caused by imbalanced data that
had caused the net to learn more about neg cases than
about pos cases.

A second benefit of this approach is that for many
problems, the target values that correspond to the
ranked data form a smoother function than the 0/1
targets. Since it is easier to learn smoother, less non-
linear functions from limited data, rankprop models of-
ten overfit the pos samples less. The combination of
these two effects can yield dramatic improvements. For
example, on a medical problem where training sets con-
tained 1000 cases, and where the pos class occurred only
10/performance. (Much of this benefit would disappear
if the data sets were very large, and if the data were bal-
anced.)

Soft Ranks

Rankprop is a complex method that learns soft target
values for the neg cases while it is learning a model to
discriminate between the pos and neg cases. Many error
metrics based on rankings (instead of absolute target
values) confer similar advantages when learning from
imbalanced data, even if they don’t explicitly train on
iteratively reassigned target values. For example, if you
learn to optimize the ROC area for imbalanced data,
the imbalance problems that rankprop sidesteps also
will be sidestepped. We take advantage of this obser-
vation to introduce a more general rank-based learning

53

procedure.

Rankprop is effective, but it is not clear how to adapt
Rankprop to learning algorithms other than backprop.
We developed a new ranking mathod called Soft Ranks
that is more flexible than rankprop and can be adapted
for most learning methods. More importantly, soft
ranks allow us to use any rank metric as an error metric
for learning.

Ranking takes continuous data and converts it to a
discrete ordering. Small changes in the predicted value
of a case usually do not affect the ranking unless they
are large enough to cause that case to be ranked to a
different palce. This makes it difficult to use metrics
defined on ranks with learning methods such as gradi-
ent descent: the large number of plateaus in the error
surface cripples gradient descent. For example, if the
predicted value of B changes from 0.13 to 0.14 in the
data set shown below, it still ranks 2nd in the set.

ITEMS TRADITIONAL RANKS
A: 0.26 E: 0.08 -> 1
B: 0.13 B: 0.13 -> 2
C: 0.54 => A: 0.26 -> 3
D: 0.27 D: 0.27 ~> 4
E: 0.08 C: 0.64 -> b

Soft Ranks is a generalization of standard discrete
ranks that gives ranks a continuous flavor, making it
casier to create differentiable error metrics based on
ranks. The main problem solved by soft ranks is to
make small changes to the predicted value of a case
have a small affect on the ranking of that case. This
eliminates the plateaus that can hinder learning. A
small modification to the traditional rank procedure
eliminates the plateau problem while preserving rank
semantics. Order the data as usual and temporarily
assign to each item the traditional rank. Then, post-
process the traditional ranks as follows:

V(¢) = V(Prev(i))
V{(Post(i) — V(Prev(i))
where T'R(3) is the traditional rank of ¢, SR(7) is its con-
tinuous rank, V(i) is ¢’s value, and Prev(i) and Post(s)

denote the items that rank just before and just after ¢,
respectively.

SR(i) = TR(Prev(i)) + 0.5+

TRADITIONAL RANKS SOFT RANKS

E: 0.08 -=> 1 E: 0.08 > 1 -> 1

B: 0.13 -> 2 B: 0.13 -=> 2 -> 2,088
A: 0.26 -> 3 => A: 0.26 -> 3 -> 3.300
D: 0.27 -> 4 D: 0.27 -> 4 -> 3.669
C: 0.64 -> b C: 0.64 -> 6 -> 6

Item A’s value is closer to item D’s value than to item
B’s value. The soft rank reflects this by assigning to
A a soft rank closer to the soft rank of D than to the
soft rank of B. Moreover, if changes in the values cause
neighbors to swap, the soft ranks reflect this in a smooth
way.



Qualitatively, soft ranks behave like traditional
ranks, but are continuous: small changes to item val-
ues yields small changes in the soft ranks. It is possible
to use soft ranks in most error metrics that use tradi-
tional ranks. Most error metrics defined on soft ranks
are similar to those defined on traditional ranks, except
that soft ranks will not make the error metric discon-
tinuous like traditional. This means it is easier to apply
gradient descent to error metrics based on soft ranks.

As we shall see in the next section on multitask learn-
ing, soft ranks allow rank-based error metrics to be op-
timized using gradient descent for learning.

FOCUSSING LEARNING WITH
EXTRA TASKS

Multitask Learning (MTL) is an inductive transfer
method that uses the information contained in the
training signals of related tasks to improve the general-
ization performance of the main task. It does this by
learning the extra tasks in parallel with the main task
while using a shared representation — what is learned
for the extra tasks can help the main task be learned
better. In artificial neural nets, multitask learning is
done by training all the tasks on one neural net us-
ing a single hidden layer shared by the tasks. The
shared hidden units allow some of the features learned
for the extra tasks to be used by the outputs for the
main task.(Abu-Mostafa 1989)(Suddarth and Holden
1991)(Caruana 1993)(Baxter 1994)

MTL helps learning from imbalanced data in two
ways:

1. Because MTL improves generalization performance
when learning from small data sets, and imbalanced
data sets effectively often are small data sets, MTL
makes learning from them more effective.

2. The extra tasks used in MTL can be used to focus
the learner’s attention towards the under-represented
classes.

MTL is equally effective with case-based methods
such as kernel regression and k-nearest neighbor. Since
these methods do not have a hidden layer to share be-
tween tasks, we use an error metric that combines the
performance on the main task with the performance of
the extra tasks. This causes models to be learned that
perform well on both the main task and the extra tasks.

Weighted Euclidean Distance

The distance metric most commonly used for kernal
regression and k-nearest neighbor is weightedEuclidean
distance:

D
DIST(c1,c2) = \| Y Wi (Fir - Fie2)?

i=1

where cl and ¢2 are two cases, D is the number of fea-
ture dimensions, F; . is feature ¢ for case ¢, and W; is a

54

weight for each feature dimension that controls how im-
portant that dimension is to the distance computation.
In simple unweighted Euclidean distance, Vi, W; = 1.0.

Kernel Regression

Kernel regression (also known as locally weighted aver-
aging) uses the distance metric to weight the contribu-
tion of each training case to the prediction:

Z:\;l VAL; % e~ PI5T(circtent) (KW
ZJ.V e—DIST(c;ictest) | KW

=1

PRED =

where N is the number of cases in the case base,
DIST(c;, enew) is the distance between case ¢; and the
test (probe) case, and KW is the kernel width that de-
termines the scale of the neighborhood that has most
effect. See (Atkeson, Moore and Schaal 1997) for more
detail about locally weighted averaging.

Feature Weights and the Distance Metric

The performance of case-based methods like kernel re-
gression depends on the quality of the distance metric.
Finding good feature weights is essential to optimal per-
formance. The search for good feature weights can be
cast as an optimization problem. Gradient descent is
used with leave-one-out cross validation (CV) to search
for good feature weights. Feature weights are initialized
to a starting value such as 1.0, and the CV performance
of the initial weights is calculated. The gradient of the
CV performance with respect to the feature weights is
calculated, and a step is taken down the gradient. If the
updated feature weights improve performance as mea-
sured by CV, the step is accepted. If not, the step is
rejected and the step size is reduced. This process is
repeated until a local minimum in CV performance is
found.

Unfortunately, if this process is applied to imbalanced
data using 0/1 codings and a squared error (or accu-
racy) error metric, the same problem arises as when
backprop nets were trained this way: gradient descent
spends more time learning feature weights that are good
at pushing neg cases towards their target coding than
at learning weights that distinguish between pos and
neg cases. Instead of rankprop (which isn’t applicable
to case-based methods), we use the soft ranks to force
learning to pay more equal attention to the pos and
neg cases. We also use extra tasks to force learning to
learn models that pay more attention to the less fre-
quent class.

Multitask Learning in Kernel Regression

The goal is to find feature weights that yield good per-
formance on both the main task and on the related
extra tasks. We do this by using an error metric that
combines the performance on the main task with the
performance on the extra tasks. This causes gradient
descent to learn feature weights that perform well on
both the main task and the extra tasks. If the extra
tasks are selected to help the model better learn distinc-
tions between the imbalanced classes, it will help focus



the model on characteristics of the under-represented
classes.

We weight the contribution of the extra task perfor-
mances because it is possible for many extra tasks to
swamp the error signal of the main task if the extra
tasks are too dissimilar. The contribution of the extra
tasks to the combined error metric is controlled by a
single weight \:

TASKS
MTL.ERF = (1-\)MAIN_ERF+X Y. ERF(t)
t=1

where MTL_ERF is the multitask learning criterion
being minimized by gradient descent on feature weights,
MAIN_ERF is the performance on the main task,
ERF(t) is the performance on extra task ¢, and A is
defined on [0.0,1.0]. When A = 0, all weight is given
to the main task and the extra tasks are ignored. This
is traditional learning of a single task. When A = 0.5,
equal weight is given to the main task and to each ex-
tra task. When A = 1.0, all weight is given to the extra
tasks and the main task is ignored.

Pneumonia Risk Prediction

Here we apply MTL to a pneumonia problem that has
imbalanced data. The goal is to predict which patients
have the least risk of dying from pneumonia (all pa-
tients have already been diagnosed with pneumonia).
Approximately 11% of the hospitalized patients in the
database died of pneumonia. The measurements avail-
able for most patients include 30 basic measurements
acquired prior to hospitalization such as age, pulse,
blood pressure, and 33 lab tests such as blood counts or
gases usually will not available until after hospitaliza-
tion. The database also indicates whether each patient
lived or died.

The most useful medical tests for predicting pneumo-
nia risk usually require hospitalization. But we’d like
to predict risk before patients are hospitalized so that
those at low risk can be considered for outpatient care.
Before hospitalization, we have available just 30 basic
measurements such as age, gender, and blood pressure.
Because all patients in our database were hospitalized,
however, we also have in the database the results of the
33 lab tests that usually are only available for hospi-
talized patients. We can use these extra tests to help
mitigate some fo the effects of imbalanced data. Al-
though the lab test results will not be available when
the model is used (before patients are admitted), mul-
titask learning can be used to improve performance on
the main task by using the extra lab test results avail-
able in the training set.

Learning these extra tests help mitigate the imbal-
anced data problem by forcing learning to learn more
complete models. Some of these tasks are particularly
useful because they are designed to present normal val-
ues for most well patients, and to show more unusual
values for more seriously ill patients. By learning to pre-
dict these results, the model has to learn to differntiate

55

between patients of different risk, even if the aditional
risk did not cause the patient to die. Because high risk
is more common than death, the extra tasks mitigate
some of the problems of imbalanced data by creating
extra tasks that are less imbalanced, but related to the
main task that unfortunately is imbalanced.

Loss Functions

The main prediction task is mortality risk. Kernel re-
gression predicts mortality risk by examining whether
the close neighbors in the case-base to the new probe
case lived or died. The optimization error metric we
adopt for this task is the sum of the soft ranks for all
patients in the sample who live. Successfully ordering
all patients who live before all patients who die mini-
mizes this sum. We scale the sum of soft ranks so that
0 indicates this ideal performance. Random ordering of
the patients yields soft rank sums around 0.5.

The extra tasks include predicting the white blood
cell count, hematocrit, albumin level, or partial pres-
sure of oxygen in the blood. The error metric we use
for the extra tasks is the standard sum-of-squares loss.
Predictions for the extra tasks are not used to predict
patient risk. Learning to minimize the sum-of-squares
error of the extra tasks is useful only if it helps the
model learn feature weights that improve performance
on the main risk task.

Empirical Results

Feature weights for the 30 input features are initialized
to 1.0. Gradient descent with line searches is done us-
ing CV on the training set. We use KW = 1.0, a value
preliminary experiments indicate performs well on this
problem. The value KW is not trained via gradient de-
scent because training the feature weights can provide
a similar effect.

The original dataset is randomly subsampled to cre-
ate training, halt, and test sets. Because the search for
feature weights repeatedly uses the same training set,
overtraining is likely. A halt set is used to prevent this.
Because halt set performance is often not monotonic,
premature early stopping can be a problem. To pre-
vent this, gradient descent is run for a large number
of steps, and the feature weights yielding best perfor-
mance on the halt set is found by examining the entire
training curve. The weights learned at this point are
then tested on the independent test set.

This first experiment examines how much attention
learning should pay to the extra tasks. Is it better to
ignore the extra tasks and optimize performance only
on the main task, or is better performance on the main
task achieved by optimizing performance on all tasks?

Figure 1 shows the mean rank sum error of 50 trials
of learning as a function of A for training and halt sets
containing 500 patterns each. Each data point has er-
ror bars indicating the standard errors. The horizontal
line at the top of the graph is the performance of ker-
nel regression when all feature weights are 1.0, before
any training has been done. Because no learning has



0.061 T T
= 006 =
&b
B
= 0.059 |}
=
5 { .
§ 0.058 |- 1
g o057} %{
i N\
4 A
ﬂﬁ; 0.056 |

0.055 . 1

I -
!
!
i
{
h
/
/
I
EI
\
\
i
\
\
1
1
1
!
\
\
1
\
\
——
1

0.2 0.4 0.6 0.8
Woeight of Extra Tasks Compared with Main Task

Figure 1: Rank Sum Error as a Function of A

occurred, and because performance is measured only
on the main mortality risk prediction task, this perfor-
mance is independent of A and thus forms a horizontal
line on the graph.

The curve in Figure 1 below the horizontal line shows
how varying A affects performance on the main risk pre-
diction task. As expected, training feature weights with
gradient descent improves performance. The point at
A = 0 is the performance of learning with traditional
single task learning; the extra tasks are completely ig-
nored by gradient descent when A = 0. Training the
feature weights on the single main risk task reduces
rank sum error about 2.5% compared with weights ini-
tialized to 1.0 and not trained.

The points for A > 0 are multitask learning. Larger
values of )\ give more weight to the extra tasks.! From
the graph it is clear that learning yields better perfor-
mance on the main task if it searches for feature weights
that are good for both the main task and for the extra
tasks. Note that multitask learning is not using any ex-
tra training patterns, it just has more training signals
in each pattern. Multitask learning is training and test-
ing on the same training patterns used to train feature
weights on the main task by itself.

The optimal value of X is between 0.2-0.8. Interest-
ingly, these As place near equal weight on the main task
and on each extra task. At A = 0.5 all tasks — including
the main task — are given equal weight. At A ~ 0.5,
multitask learning reduces error about 5-10%.

'The vertical axis shows performance on only the main
risk prediction task. The contribution of the extra tasks
to the error metric is not shown - though its effect on the
error for the main task is apparent. In this problem we
are not concerned with how accurately the extra tasks are
predicted. The reason for including the extra tasks is so
that they will help better feature weights be learned and
thus improve performance on the main task.

56

How Much Does MTL Help?

Multitask kernel regression outperforms traditional sin-
gle task kernel regression about 5% on this domain
when trained with 1000 cases (500 train plus 500 halt).
How many more training examples would be needed to
yield this much improvement without multitask learn-
ing? We ran experiments using training sets containing
200, 400, 800, 1600, and 3200 training patterns, using
single task learning (A = 0.0) and multitask learning
with A = 0.5.

0.075 T T T T T T

"STL--lambda=0.0" -o—
*MTL--lambda=0.5" ~+--:

0.07 |

0.085

o
8

0.055 |

Rank Sum Ervor (Independent Test Set)

500 1000 1500 2000 2500
Total Patterns Used for Training (Train+Halt)

Figure 2: Rank Sum Error of STL (A = 0) and MTL
(A = 0.5) vs. Training+Halt Set Size

Figure 2 shows the performance of 25 trials of single
task kernel regression (A = 0) and multitask kernel re-
gression with A = 0.5 as a function of training set size.
Between 200 and 1000 cases, the improvement due to
multitask learning is equivalent to a 50-100% increase
in the number of training patterns. The benefit of mul-
titask learning, however, decreases when the sample size
is large. With training sets larger than 3200, the per-
formance with A = 0.5 may be worse than with A = 0.
The extra tasks are not helpful if the sample size is large
enough to insure excellent performance from optimizing
the main task alone. 0 < A < 0.5 however, may yield



better performance than single task learning (A = 0)
even with training sets this large.

SUMMARY

Imbalanced data creates several problems for machine
learning. One problem is that imbalanced data sets of-
ten act is if they are small data sets because some classes
often have few cases. The second problem is that learn-
ing often places more emphasis on learning about the
predominant classes than about learning to distinguish
between large and small classes. This paper discussed
two approaches to these problems. One of these is to use
rank metrics such as rankprop or soft ranks to prevent
learning from placing too much focus on learning about
the larger classes at the expense of learning to differn-
tiate all classes, both large and small. The other is to
use extra tasks that are related to the class distinctions
that must be learned, but which suffer from less imbal-
ance. This multitask learning approach focuses learning
towards more complete models that better capture fea-
tures related to important inter-class distinctions. We
combine both of these methods (soft ranks and MTL)
and test them on a pneumonia risk prediction problem
that has imbalanced data. Earlier results (not included
in this paper), show that rank methods improve perfor-
mance over the standard non-rank methods 30-50% on
this problem. MTL improves this performance an ad-
ditional 5-10%. Some of the problems of learning from
imbalanced data can be mitigated by careful choice of
error metric and by forcing learning to learn more com-
plete models.

References

Y. Abu-Mostafa, “Learning From Hints in Neural Net-
works,” Journal of Complexity 6:2, pp. 192-198, 1989.

C. Atkeson, A. Moore, and S. Schaal, “Locally
Weighted Learning,” Artificial Intelligence Review, (in
press).

Baxter, J., “Learning Internal Representations”, Ph.D.
Thesis, The Flinders Univeristy of South Australia,
Dec. 1994.

R. Caruana, “Multitask Learning: A Knowledge-Based
Source of Inductive Bias,” Proceedings of the 10th Inter-
national Conference on Machine Learning, pp. 41-48,
1993.

R. Caruana, “Using the Future to “Sort Out” the
Present: Rankprop and Multitask Learning for Med-
ical Risk Prediction,” Advances in Neural Information
Processing Systems 8, 1996.

G. Cooper, et al., “An Evaluation of Machine Learning
Methods for Predicting Pneumonia Mortality,” Al in
Medicine, 1997.

M. Fine, D. Singer, B. Hanusa, J. Lave, and W. Kapoor,
“Validation of a Pneumonia Prognostic Index Using the

57

MedisGroups Comparative Hospital Database,” Amer-
ican Journal of Medicine, 94 1993.

Pratt, L. Y., Mostow, J. & Kamm, C. A. (1991) Direct
Transfer of Learned Information Among Neural Net-
works. Proceedings of AAAI-91.

S. C. Suddarth and A. D. C. Holden, “Symbolic-neural
Systems and the Use of Hints for Developing Complex
Systems,” International Journal of Man-Machine Stud-
tes 35:3, pp. 291-311, 1991.

S. Thrun and T. Mitchell, “Learning One More Thing,”
CMU TR: CS-94-184, 1994.





