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Abstract

This paper describes experiments with a challenging
data set describing preterm births.  The data set,
collected at the Duke University Medical Center, was
large and, at the same time, many attribute values were
missing.  However, the main problem was that only
20.7% of the total number of cases represented the
important preterm birth class.  Thus the data set was
imbalanced.  For comparison, we include results of
experiments on another imbalanced data set, the well-
known breast cancer data set.  Our approach to dealing
with this imbalanced data set was to induce a rule set
using our standard procedure: the LEM2 algorithm of
the LERS rule induction system and then increase the
rule strength for all rules describing preterm births by
multiplying all such rule strengths by the same number
called a strength multiplier.  The rules strength for any
rule describing the majority class, fullterm birth,
remained unchanged.  The optimal strength multiplier
was determined experimentally using our optimality
criterion: the maximum of the sum of sensitivity and
specificity.

Introduction
Approximately one of every ten infants is born preterm
(premature).  Preterm birth is the leading cause of death in
infants, and those who survive frequently suffer from
lifelong handicaps and require health care that costs about
one million dollars in the first year of life.  (Creasy and
Herron, 1981) developed a manual preterm risk scoring tool
that was widely used for nearly a decade, but later evaluated
as ineffective for accurate identification of most preterm
births (Creasy, 1993).  A decade of manual preterm risk
scoring tools yielded only 17–38% positive predictive
values (McLean and Walters, 1993), thus data-driven
decision support tools are needed to improve diagnosis in
this complex domain.

This paper describes a series of experiments with preterm
birth data provided by the Duke University Medical Center.
Duke's data set includes a sample of 19,970 women that is
ethnically diverse and includes 1,229 variables.  Duke's data
subset was partitioned into two parts: training (14,977
cases) and testing (4,993 cases).  The prenatal data set
collected at the Duke University Medical Center is
associated with many technical challenges.  First of all, it
is large.

Secondly, the data set contains many missing attribute
values.  For example, an average attribute of the training
data set is not specified for 32.7% of cases.  Even worse,
for the two mutually disjoint subsets of the main set
(1,229 attributes), identified by experts from the Duke
University Medical Center as important, the first set
containing 52 attributes and the second set containing 54
attributes, named Duke-1 and Duke-2, respectively, have
even more missing attribute values.  The Duke-1 data set
contains laboratory test results.  The Duke-2 data set
represents the most essential remaining attributes that,
according to experts, should be used in diagnosis of preterm
birth.  Duke-1 has 64.8%  missing attribute values, Duke-
2 has 36.1% missing attribute values.

There are many approaches to handle missing attribute
values in data mining (Grzymala-Busse 1991; Grzymala-
Busse et al. 1999b; Michalski et al. 1986; Quinlan 1993).
So far we experimented with the closest fit algorithm for
missing attribute values, based on replacing a missing
attribute value by an existing value of the same attribute in
another case that resembles as much as possible the case
with the missing attribute values (Grzymala-Busse et al.
1999b).

Furthermore, both data sets, Duke-1 and Duke-2, are
imbalanced because only 3,103 training cases are preterm,
all remaining 11,874 cases are fullterm.  Similarly, in the
testing data set, there are only 1,023 preterm cases while
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the number of fullterm cases is 3,970.  Since both data
sets, Duke-1 and Duke-2, yield similar results, for brevity
we will present results only for Duke-1.

The data sets are further complicated by numerical
attributes.  Usually data with numerical attributes are
consistent, i.e., for any two cases with the same vectors of
attribute values, the outcome is the same.  This is not the
case with Duke's data set.  Even with all 1,229 attributes
the training data set is inconsistent.  Thus, discretization,
the process of converting numerical attributes into
symbolic attributes, is a difficult problem for this preterm-
birth data.  Our solution is based on preserving the existing
rate of conflicting cases (i.e., keeping the same
inconsistency level).  Following this approach, the
numerical attribute values of the training data set were
sorted for every attribute.  Every value v was replaced by
the interval [v, w), where w was the next bigger values
than v in the sorted list.  This approach to discretization is
very cautious since, in the training data set, we put only
one attribute value in each interval.  For testing data sets,
values were replaced by the corresponding intervals taken
from the training data set.  It is possible that a few values
come into the same interval.  This method was selected to
keep the same inconsistency level of the data.

Rule Induction
In our research, the main data mining tool was LERS
(Learning from Examples based on Rough Sets), developed
at the University of Kansas (Grzymala-Busse, 1992).
LERS has proven its applicability having been used for
years by NASA Johnson Space Center (Automation and
Robotics Division), as a tool to develop expert systems of
the type most likely to be used in medical decision-making
on board the International Space Station.  LERS was also
used to enhance facility compliance under Sections 311,
312, and 313 of Title III, the Emergency Planning and
Community Right to Know.  The project was funded by
the U. S. Environmental Protection Agency.  System
LERS was used in other areas as well, e.g., in the medical
field to compare the effects of warming devices for
postoperative patients and to assess preterm birth (Woolery
and Grzymala-Busse, 1994).

LERS handles inconsistencies using rough set theory.
The main advantage of rough set theory, introduced by Z.
Pawlak in 1982 (Pawlak 1982, 1991; Pawlak et al. 1995),
is that it does not need any preliminary or additional
information about data (like probability in probability
theory, grade of membership in fuzzy set theory, etc.).  In
rough set theory approach inconsistencies are not removed
from consideration.  Instead, lower and upper
approximations of the concept are computed.  On the basis
of these approximations, LERS computes two

corresponding sets of rules: certain and possible, using
algorithm LEM2 (Grzymala-Busse, 1992).

Classification
For classification of unseen cases system LERS uses a
modified "bucket brigade algorithm" (Booker et al. 1990;
Holland et al. 1986).  In this approach, the decision to
which concept an example belongs is made using two
factors: strength and support.  They are defined as follows:
Strength factor is a measure of how well the rule has
performed during training.  The second factor, support, is
related to a concept and is defined as the sum of scores of
all matching rules from the concept.  The concept getting
the largest support wins the contest.

In LERS, the strength factor is adjusted to be the
strength of a rule, i.e., the total number of examples
correctly classified by the rule during training.  The concept
C for which support, i.e., the following expression

Σ
matching rules R describing C

 Strength factor(R)

is the largest is a winner and the example is classified as
being a member of C.

If an example is not completely matched by any rule,
some classification systems use partial matching.  System
AQ15, during partial matching, uses a probabilistic sum of
all measures of fit for rules [(Michalski et al. 1986).

In the original bucket brigade algorithm, partial
matching is not considered as a viable alternative of
complete matching.  Bucket brigade algorithm depends on
default hierarchy instead (Holland et al. 1986).

In LERS partial matching does not rely on the user's
input.  If complete matching is impossible, all partially
matching rules are identified.  These are rules with at least
one attribute-value pair matching the corresponding
attribute-value pair of an example.

For any partially matching rule R, the additional factor,
called Matching factor (R), is computed.  Matching
factor(R) is defined as the ratio of the number of matched
attribute-value pairs of a rule R with the case to the total
number of attribute-value pairs of the rule R.  In partial
matching, the concept C  for which the following
expression is the largest

Σ
partially matching rules R describing C

 Matching factor(R) ∗

Strength factor(R)

is the winner and the example is classified as being a
member of C.



Table 1
Duke- Duke- Breast-
TR ALL Cancer

Error rate in % 21.19 3.18 24.0
Initial Sensitivity in % 0.59 85.54 33.33

Specificity in % 98.97 99.67 93.01
Average rule strength:
Basic class 29.42 23.85 2.46
Complementary class104.67 77.53 5.20

Strength multiplier 5.55244.0 4.0
Error rate in % 44.98 2.90 35.0

Optimal Sensitivity in % 53.40 96.73 61.40
Specificity in % 61.29 97.19 66.43

- 0 . 1

- 0 . 0 5

0

0.05

0 .1

0 .15

0 5 1 0 1 5

Strength Multiplier

S
en

s.
 +

 S
pe

c.
 -

 1

Figure 1.  Duke-TR data

0.84

0.86

0.88

0 .9

0 .92

0.94

0 2 0 4 0 6 0
Strength Multiplier

S
en

s.
 +

 S
pe

c.
 -

 1

Figure 2.  Duke-ALL data
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Figure 3.  Breast-Cancer data

Sensitivity and Specificity
In many applications, e.g., medical area, we distinguish
between two classes: basic and complementary.  The basic
class is more important, e.g., in medical area, it is defined
as the class of all cases that should be diagnosed as affected
by a disease or other medical condition, e.g., preterm birth.

The set of all correctly classified (preterm) cases from the
basic class are called true-positives, incorrectly classified
basic cases (i.e., classified as fullterm) are called false-
negatives, correctly classified complementary (fullterm)
cases are called true-negatives, and incorrectly classified
complementary (fullterm) cases are called false-positives.

Sensitivity is the conditional probability of true-
positives given basic class, i.e., the ratio of the number of
true-positives to the sum of the number of true-positives
and false-negatives.  Specificity is the conditional
probability of true-negatives given complementary class,
i.e., the ratio of the number of true-negatives to the sum of
the number of true-negatives and false-positives.

Data Sets
In this paper we present results of experiments on three
data sets.  The first two data sets were collected at the Duke
University Medical Center.  The only difference between
these two data sets is the approach used to guess missing
attribute values.  The first data set, Duke-TR, was obtained
from the original data set Duke-1 by splitting Duke-1 into
training (75%) and testing (25%) data sets, then the
training data set was pre-processed using a closest fit
approach to missing attribute values.

In the closest fit algorithm for missing attribute values a
missing attribute value is replaced by an existing value of
the same attribute in another case that resembles as much
as possible the case with the missing attribute values.  To
search for the closest fit case, we need to compare two
vectors of attribute values of the given case with missing
attribute values and of a searched case.  There are many
possible variations of the closest fit idea.  In this paper we
will restrict our attention to the closest fitting cases within
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Figure 4.  Duke-TR data
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Figure 5.  Duke-ALL data

the same class.  This algorithm is a part of the system
OOMIS.  During the search, the entire training set within
the same class is scanned, for each case a proximity
measure is computed, the case for which the proximity
measure is the largest is the closest fitting case that is used
to determine the missing attribute values.

The testing data set of Duke-TR contained 64.5% of
missing attribute values.  During matching of testing cases

against rules, in the classification process, missing
attribute values are ignored for matching.

On the other hand, another data set, Duke-ALL, was
obtained from the original data set Duke-1 by—first—
preprocessing using a closest fit approach to missing
attribute values and—then—by splitting for training (75%)
and testing (25%) data sets.
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Figure 6.  Breast-Cancer data

The quality of the first data set, Duke-TR, is poor, while
the quality of the second set, Duke-ALL, is high, therefore
we experimented on a third data set, of medium quality,
also imbalanced (with 29.7% of cases in the basic class),
called Breast-Cancer.  This is a well-known data set
accessible from the Data Repository of the University of
California at Irvine.  It contains only 0.35% of missing
attribute values.

Results of our experiment are cited in the Table 1 and
presented on Figures 1–6.  In charts on Figures 4–6, series
1 represents sensitivity, series 2 represents specificity, and
series 3 represents the error rate (the ratio of the total
number of incorrectly classified cases from both classes to
the total number of cases).

Strength Multipliers
In imbalanced data sets with two classes (concepts) one
class is represented by the majority of cases while the other
class is a minority.  Unfortunately, in medical data the
smaller class—as a rule—is more important.

In Duke's perinatal training data, only 20.7% of the
cases represent the basic class, preterm birth.  During rule
induction, the average of all rule strengths for the bigger
class is also greater than the average of all rule strengths
for the more important but smaller basic class.  During
classification of unseen cases, rules matching a case and
voting for the basic class are outvoted by rules voting for
the bigger, complementary class.  Thus the sensitivity is
poor and the resulting classification system would be
rejected by diagnosticians.

Therefore it is necessary to increase sensitivity.  The
simplest idea is to add cases to the basic class in the data
set, e.g., by adding duplicates of the available cases.  The
total number of training cases will increase, hence the total
running time of the rule induction system will also
increase.  However, adding duplicates will not change the
knowledge hidden in the original data set, but it may create
a balanced data set so that the average rule set strength for
both classes will be approximately equal.  The same effect
may be accomplished by increasing the average rule
strength for the basic class.  In our research we selected the
optimal rule set by multiplying the rule strength for all
rules describing the basic class by the same real number
called a strength multiplier (Grzymala-Busse et al., 1999a).

In general, the sensitivity increases with the increase of
the strength multiplier.  At the same time, the specificity
decreases.  It is difficult to estimate what is the optimal
value of the strength multiplier.  In our experiments the
choice of the optimal value of the strength multiplier was
based on an analysis presented by Bairagi and Suchindran
(1989).  Let p be a probability of the correct prediction,
i.e., the ratio of all true positives and all false positives to
the total number of all cases.  Let P be the probability of
an actual basic class, i.e., the ratio of all true positives and
all false negatives to the total number of all cases.  Then

p = Sensitivity ∗  P + (1 – Specificity) ∗  (1 – P).

As Bairagi and Suchindran observed (1989), we would
like to see the change in p as large as possible with a
change in P, i.e., we would like to maximize



dp
dP

 = Sensitivity + Specificity – 1.

Thus the optimal value of the strength multiplier is the
value that corresponds to the maximal value of Sensitivity
+ Specificity – 1.

Conclusions
Results of our experiments show that an increase in
specificity may be accomplished by changing strength
multipliers for rules describing the basic class and by using
the LERS classification system.

For poor quality data (Duke-TR), by increasing the
strength multiplier (until it reaches an optimal value), a
large increase in sensitivity (by 52.81%) is achieved but
specificity decreases significantly (by 37.68%), thus the
total error rate raises (by 23.79%).

For high quality data (Duke-ALL), under the same
circumstances, a significant increase in sensitivity (by
11.19%) and a small decrease in specificity (2.48%)
resulted in a decrease of the total error rate (by 0.28%).

And, finally, medium quality data (Breast-Cancer) are
characterized by a large increase in sensitivity (by 28.07%)
with a decrease in specificity (26.58%), and, at the same
time, an increase in the total error rate (by 11%).

For many important applications, e.g., medical area, an
increase in sensitivity is crucial, even if it is achieved at
the cost of specificity.  Thus, the suggested method of
increasing the strength multiplier may be successfully
applied for machine learning from imbalanced data.
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