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Abstract

To build a data-integration system, the application de-
signer must specify a mediated schema and supply the
descriptions of data sources. A source description con-
tains a source schema that describes the content of the
source, and a mapping between the corresponding ele-
ments of the source schema and the mediated schema.
Manually constructing these mappings is both labor-
intensive and error-prone, and has proven to be a major
bottleneck in deploying large-scale data integration sys-
tems in practice. In this paper we report on our initial
work toward automatically learning mappings between
source schemas and the mediated schema. Specifically,
we investigate finding one-to-one mappings for the leaf
elements of source schemas. We describe LSD, a sys-
tem that automatically finds such mappings. LSD con-
sults a set of learner modules – where each module
looks at the problem from a different perspective, then
combines the predictions of the modules using a meta-
learner. Learner modules draw knowledge from the
World-Wide Web, as well as on ideas from machine
learning and information retrieval. We report on ex-
perimental results of applying LSD to five sources in
the real-estate domain.

Introduction
The rapid growth of information available online has

spurred numerous research activities on developing data
integration systems (e.g., (Garcia-Molina et al. 1997;
Levy, Rajaraman, & Ordille 1996; Ives et al. 1999;
Lambrecht, Kambhampati, & Gnanaprakasam 1999;
Knoblock et al. 1998)). A data integration system pro-
vides a uniform interface to a multitude of data sources:
given a user query formulated in this interface, the sys-
tem accesses and combines data from the sources to
produce answers to the query.

To build a data integration system, the application
designer begins by developing a mediated schema that
captures the relevant aspects of the domain of interest.
Along with the mediated schema, the application de-
signer needs to supply descriptions of the data sources.
A source description specifies the semantic mapping be-
tween the schema of the data source and the mediated
schema.

Constructing source descriptions is one of the key
bottlenecks in creating data integration applications
that query a large number of sources. Currently, source

descriptions are created manually in a very labor-
intensive and error-prone process. As data sharing
on the WWW becomes pervasive with the adoption of
XML, the problem of reconciling schemas (DTDs, XML
schemas) is only exacerbated.

In this paper we report the first results of our work
on using machine learning to (semi-)automatically com-
pute semantic mappings between schemas. The idea
underlying our approach is that after a set of data
sources have been manually mapped to a mediated
schema, the system should be able to glean significant
information from these mappings and to successfully
propose mappings for subsequent data sources.

Example 1: Consider a data integration system that
helps users find houses on the real-estate market. A
mediated schema for this domain may contain elements
house address, price, and contact phone, listing the ad-
dress of a house, the price, and the phone of the contact
person, respectively (see Figure 1).

Suppose we have a source realestate.com, for which
we provide the source description manually. Specif-
ically, suppose the source contains the elements
house location, listed price, and agent phone (Figure 1),
and the mapping specificies that these elements match
the elements house address, price, and contact phone of
the mediated schema, respectively.

There are several things that a machine learning pro-
gram can glean from such a mapping. First, if it looks
at the data in the source, it now has many examples of
home addresses, home prices and phone numbers, and
it can therefore create recognizers for these elements.
Second, the system can learn by looking at the names
of the elements. For example, knowing that source el-
ement agent phone matches contact phone, it may hy-
pothesize that the word “agent” (as well as “phone”) in
an element name is indicative of that element being con-
tact phone. The system can also learn from the prop-
erties of the data. For example, small numbers tend
to indicate numbers of rooms, not prices of houses. As
another example, when the phone numbers of a given
element have significant commonalities, the phone num-
bers are more likely to be the office phones of employ-
ees, rather than home phones. Finally, the program can
learn from the proximity of elements. For example, in
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realestate.com

  ...
<house>
      < house_location/> 235 Fairview Ave.
      <listed_price/> $ 250,000
      <agent_phone/> (206) 729 0831
</house>
       ...

house_location           listed_price    agent_phone

235 Fairview Ave.      $ 250,000      (206) 729 0831
...                                  ...                   ...

house_address     price     contact_phone

the global schema

Figure 1: Source realestate.com returns data that is in its local schema, which then needs to be mapped to the
mediated schema of the data integration system.

the real-estate domain it often happens that a long text
field at the beginning of the house entry is the house
description, or that agent phones tend to appear next
to the name of the real-estate agency.2

In general, there are many different types of informa-
tion that a learner can exploit, such as names, formats,
word frequencies, positions, and characteristics of value
distribution. Clearly, no single learner will be able to
exploit effectively all such types of information. Hence,
our work takes a multi-strategy learning approach. We
apply a set of learners, each of which learns well certain
kinds of patterns, and then the predictions of the learn-
ers are combined using a meta-learner. In addition to
providing accuracy superior to any single learner, this
technique has the advantage of being extensible when
new learners are developed.

We describe the LSD (Learning Source Descriptions)
system that we built for testing this approach, and our
initial experimental results. The results show that with
the current set of three learners, we already obtain pre-
dictive accuracy of 62-75% prediction in a fairly com-
plex domain of real-estate data sources. Our work cur-
rently focuses on finding one-to-one mappings for the
leaf elements of source schemas. One of the important
extensions we are considering is mappings that capture
nested structures of elements.

We emphasize that the learning problem we consider
here is different from the problem of learning wrappers.
Wrappers are programs that convert data coming from
a source (say, in HTML format) into some structured
representation that a data integration system can ma-
nipulate (e.g., XML). In wrapper learning, the focus
is on extracting the structure from the HTML pages.
By contrast, here the focus is on finding the semantic
mapping between the tags/attributes in the data source
and those in the mediated schema. Hence, throughout
the discussion we assume that the data in the source is
already given to us in XML.

The Schema-Matching Problem

Schema Definition: We model a schema with a tree
the nodes of which are XML tag names1. Figure 2
shows a fragment of a mediated schema G and a frag-
ment of a source schema M. We also refer to the nodes
of the schema tree as schema elements. Each schema
element has a name and values (also called instances).
In a schema tree, element B being a child of element
A simply means that an instance of A may contain
an instance of B. For example, in G the name of the
schema element corresponding to the address of a house
is house address, and its instances are text strings spec-
ifying the address, such as “123 Fairview Ave., Seattle,
WA 98105” or “4028 13th Str.”. The former string con-
tains an instance of element city (“Seattle”), while the
latter does not.

The Schema-Matching Problem: Given a
mediated-schema tree G and a source-schema tree M,
both expressed in the above schema language, in gen-
eral the schema-matching problem is to find some map-
pings between the two schemas. The simplest type of
mapping is 1-1 mapping between a node in the source-
schema tree and a node in the mediated-schema tree,
such as the mappings shown in Figure 1 and mentioned
in Example 1. More complex types of mapping in-
clude for example mappings from a node in a tree into
several nodes in the other tree (e.g., num bathrooms
in one schema is the sum of num full bathrooms and
num half bathrooms in the other), and mappings be-
tween a node in a schema and the values of another node
in the other schema (e.g., handicap equipped with values
“yes/no” in one schema maps into the value “handicap
equipment available” of amenities in another schema).

As the first step, we focus on finding all 1-1 mappings
between the nodes (elements) of the two schema trees.
Specifically, in this paper, we limit our investigations
to finding 1-1 mappings for the leaf elements of source
schemas. Matching source-schema elements at higher

1We do not consider recursive DTDs.



house

house_location        listed_price       contact_info

house

house_address           price       contact_phone

house_number   street   city   state  zip_code agent_name    agent_phone

(b)(a)

Figure 2: Schema fragments for the real-estate domain: (a) mediated schema, (b) source schema.

Source schema P

house

a b

Mediated schema G

HOUSE

A B

a

b

A

B

<house>
        <a/> a1
        <b/> b1
</house>
<house>
         <a/> a2
         <b/> b2
</house>

L1 <a1,A>
<b1,B>
<a2,A>
<b2,B>

L2 <a,A>
<b,B>

L3

Extracted data Training data for
 each learner

Matchings

(a) (b) (c)

(d) (e)

Figure 3: The learning phase for LSD.

levels requires developing learning methods that deal
with structures, a topic we are currently exploring.

The LSD Approach
We now explain in detail how our machine-learning

approach works. For the ease of exposition, sometimes
we shall use labels to refer to mediated-schema ele-
ments. We consider the process of matching a source-
schema element as classifying the element and assigning
to it a proper label.

The Learning Phase: Suppose we start with the me-
diated schema G shown in Figure 3.a. To create data
for learning, we take a source P (Figure 3.b) and match
its schema with the mediated schema. Figure 3.c shows
that source element a has been matched with mediated-
schema element A, and b matched with B.

Next, we extract from source P a set of house objects.
Figure 3.d shows two extracted house objects in XML.
We train the learners using the extracted data. Each
learner tries to learn the mediated-schema elements A
and B, so that when presented with an element from a
new source, the learner can predict whether it is A, B,
or neither.

Even though the goal of all learners is the same, each
of them learns from a different type of information avail-
able in the extracted data. So each learner processes the
extracted data into a different set of training examples.
For example, learner L1 may deal only with instances,
so it extracts the instances a1, a2, b1, b2 and forms the
training examples shown in Figure 3.e. Example 〈a1, A〉
means that if a source element contains an instance a1,

then that source element matches A. L1 can form this
example because a1 is an instance of source element a,
and we have told it that a matches A.

As another example, suppose learner L2 deals only
with element names. Then it forms two training exam-
ples as shown in Figure 3.e. Example 〈a, A〉 means that
if element name is a, then it matches A.

The Classification Phase: Once the learners have
been trained, we are ready to perform schema match-
ing on new sources. Suppose we would like to classify
schema element m of source Q (Figure 4.a). We begin
by extracting a set of house objects from Q. Figure 4.b
shows three extracted house objects. Next, we consider
each house object in turn. Take the first house object in
Figure 4.b. From this house object we extract and send
each learner appropriate information about schema el-
ement m (Figure 4.c). Since learner L1 can only deal
with instances, we send it instance m1; since learner L2

can only deal with names, we send it the name m, and
so on.

Each learner will return a prediction list
{〈A, s1〉, 〈B, s2〉}, which says that based on the data of
the first house object, it predicts that schema element
m matches A with confidence score s1, and matches
B1 with score s2. The higher the confidence score, the
more certain the learner is in its prediction.

A meta learner then combines the predictions of all
learners to form a final prediction (Figure 4.d). For
example, the meta learner may predict A, which means
that based only on data of the first house object, the
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Figure 4: The classification phase for LSD.

learners, combined, think that m matches A.

We proceed in a similar manner for subsequent house
objects. At the end of this process, we have obtained
a prediction list for m that contain one prediction per
house object (Figure 4.e). A prediction combiner then
uses the list to predict a final matching result for ele-
ment m. For example, the list shown in Figure 4.e is
{A, A, B}. Based on this list, the prediction combiner
may decide that m best matches A (Figure 4.f).

The Learners: In principle, any learner that can is-
sue label predictions weighted by confidence score can
be used. The current implementation of LSD has four
modules: a nearest neighbor Whirl learner, a Naive
Bayesian learner, a name matcher, and a county-name
recognizer.

The Whirl Learner classifies an input instance based
on the labels of its nearest neighbors in the training
set (Cohen & Hirsh 1998). It uses the TF/IDF simi-
larity measure commonly employed in information re-
trieval. Whirl performs best on schema elements whose
values are verbose and textual , such as house descrip-
tions (free-text paragraphs), or limited but uniquely in-
dicative of the type of the element, such as color (red,
green, yellow, etc).

The Naive Bayesian Learner exploits word fre-
quencies (Domingos & Pazzani 1996), and works best
when there are words that are strongly indicative of
the correct label, by the virtue of their frequencies.
For example, it works for house descriptions which fre-
quently contain words such as “beautiful” and “fantas-
tic” – words that seldom appear in other elements. It
also works well when there are only weakly suggestive
words, but many of them. It does not work well for
short or numeric fields, such as color, zip code, or num-

ber of bathrooms.

The Name Matcher matches schema elements based
on the similarity of their names, allowing synonyms.
It also uses the TF/IDF similarity measure. This
learner works well on unambiguous names (e.g., price
or house location), and fails on names that are either
ambiguous (e.g., office to indicate office phone) or too
general (e.g., item).

The County-Name Recognizer searches a database
pulled from the Web to verify if an instance is a county
name. This module illustrates how recognizers with a
narrow and specific area of expertise can be incorpo-
rated into our system.

The Meta Learner: The meta learner combines
the predictions of the base-level learners using a ma-
chine learning method called stacking (Wolpert 1992;
Ting & Witten 1999). In LSD, the meta learner is a
linear discriminant machine. It uses the training data
to learn for each combination of label and base-level
learner a weight that indicates the relative importance
of that learner for that label. Details of this learning
process can be found in (Ting & Witten 1999).

Then given an input instance, for each label the meta
learner computes the weighted sum of the confidence
scores that the base-level learners give for that label. It
assigns the label with the highest weighted sum to the
input instance.

The Prediction Combiner: This module uses the
following simple heuristic to assign label to a source-
schema element Q: Let T be the set of instances of Q
that have been labeled. Suppose the label associated
with the highest number of instances in T is L1, and
the label with the next highest number of instances is
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realestate.yahoo national 31 31 31 1 – 152 3 6 10 0 24/31 77%

homeseekers.
com

national 33 31 31 1 – 138 2 5 8 0 20/31 64%

nkymls.com
Northern
Kentucky

82 64 28 1 – 56 2 6 6 0 21/28 75%

texasproperties.
com

Texas 56 52 42 1 – 110 2 10 14 4 26/42 62%

windermere.com Northwest 39 35 35 1 – 87 3 4 8 1 22/35 63%

Figure 5: The characteristics and average classification accuracies of the five real-estate sources: # elems: number of source-schema elements;

# leaf elems: number of leaf elements; # class. elems: number of leaf elements that are classifiable, i.e., having matching mediated-schema

elements; Min-max: the minimal and maximal length of element instances, measured in words; Heavy textual: number of classifiable elements

that are heavily textual; Numeric: number of classifiable elements that are numeric; Special: number of classifiable elements that have special

format (such as phone number); Domain Know.: number of classifiable elements that require domain knowledge to be successfully classified; Avg.

Accuracy: number of correctly classified leaf elements/number of classifiable leaf elements; Percent: average accuracy, in terms of percentage.

L2. If L1 is the label of at least p% of instances in
T, and |L1 − L2| ≥ q, where p and q are prespecified
thresholds, then assign label L1 to Q. Otherwise, report
failure to assign label to Q. This heuristic is similar to
the heuristic used in (Perkowitz & Etzioni 1995) for the
same purpose.

Experiments
We have carried out preliminary experiments to eval-

uate the feasibility of our approach. We tested LSD on
five real-estate sources that list houses for sale. Fig-
ure 5 shows the sources and their characteristics. These
sources have a broad range of schema elements, from
short ones such as num bathrooms (numeric values) to
very long ones such as house description (free-text para-
graphs). They contain elements of special formats,
such as phone number and email, as well as elements
whose successful classification requires knowledge be-
yond what is available in the schema and data. Fi-
nally, they also contain elements that do not have 1-1
matchings in the mediated schema. In short, these five
real-estate sources present a challenging test domain for
schema-matching algorithms.

We started by extracting 300 house objects from each
source. Next we performed ten experiments, in each
of which we picked three sources for training and two
sources for testing. The system is trained on data from
the training sources, and tested on data from the re-
maining sources.

The last two columns of Figure 5 show the average
accuracy rate for each source. For example the numbers
24/31 in the first row means that on average the system
correctly classified 24 out of 31 classifiable leaf elements
of source realestate.yahoo. (An element is classifiable if
it has an 1-1 matching in the mediated schema.) This
corresponds to a 77% classification accuracy.

The results show that LSD performed quite well on
the five sources, with accuracies ranging from low 60%
to high 70%. It is important to emphasize that 100%
accuracy is unlikely to be reached, simply because it is

difficult even for humans to reach that accuracy level.
So the question we consider now is “how much better
we can do, and what do we need to do to get there?”.

To answer these questions, we are currently identify-
ing reasons that prevent LSD from correctly matching
the remaining 30-40% of the elements, and considering
extensions to help obtain higher accuracy. A major rea-
son that causes LSD to fail on some elements is unfamil-
iarity with that element type. For example, LSD could
not match element suburb because it has never seen the
word “suburb” in the name of an element before, nor
did it recognize the instances of this element to be the
names of the suburbs. This problem could be handled
by adding more recognizers. LSD also did not do very
well where there are only subtle or subjective distinc-
tions, or no clear boundary among elements. For exam-
ple, it failed to distinguish between lot description and
house description (both free-text paragraphs). A quick
fix to this is to concatenate all the instances of an ele-
ment together to form a mega document, then classify
mega documents instead of individual instances. We
believe that concatenating instances may amplify the
subtle distinction among elements to the extent that
the current learners can distinguish them.

Related Work
Work on (partially) automating the schema matching

process can be classified into rule-based and learner-
based approaches. A representative work of the rule-
based approach is the Transcm system (Milo & Zohar
1998). Roughly speaking, Transcm performs matching
based on the name and structure of schema elements.
Both schemas M and G are represented with tree struc-
tures with labeled nodes, a node X in M matches a node
Y in G if X label matches Y label (allowing synonymous
labels) and/or certain child nodes of X also match cer-
tain child nodes of Y. Therefore, in the case node X of
M is a leaf element, Transcm’s work amounts to using
only the name matcher to match X.

Works in the learner-based approach include (Li &



Clifton 1994; Perkowitz & Etzioni 1995). The ILA sys-
tem (Perkowitz & Etzioni 1995) matches schemas based
on comparing objects that it knows to be the same in
both the source and the mediated schema. The Semint
system (Li & Clifton 1994) uses a neural-net learner.
Both ILA and Semint employ a single type of learner
and therefore have limited applicability. For example,
ILA works only if the same objects across sources can
be identified. This cannot be done in the real-estate
domain, where many brokerage firms go to great length
to conceal house identity (by giving only a partial house
address) to avoid being left out of the process. Another
example is that the neural net of Semint cannot deal ef-
fectively with textual elements. However, we note that
learners that have been studied by works in this ap-
proach can be easily incorporated into our system. In
fact, in the next version of LSD we intend to add the
object-based learner of ILA.

Conclusions and Future Work
We aim to build data integration systems that can

explore the Web, find relevant sources, add them to
the systems, and automatically learn their descriptions.
Towards this end, we have built LSD, a prototype sys-
tem that uses machine learning to automatically match
source schemas with the mediated schema. LSD em-
ploys a diverse range of learners each of which draws
knowledge from a different source. As such, LSD can
easily incorporate the previous approaches, and pro-
vides a broader range of applicability. We applied LSD
to five sources in the real-estate domain. The experi-
mental results demonstrate the feasibility and promise
of our approach.

In this paper we have focused on finding 1-1 map-
pings for the leaf elements of source schemas. In the
near future we would like to explore a range of learning
issues. First, we plan to continue working on improv-
ing LSD’s classification accuracy. We want to add more
learners to LSD, develop new methods to combine the
learners effectively, and test LSD on many domains. We
are also interested in learning recognizers with narrow
and specific areas of expertise, which can be applied to
many domains. We plan to investigate the impact of
such recognizers on classification accuracy.

Second, we plan to work on incorporating domain
knowledge into the learning process. Data-integration
domains usually contain considerable amount of nested
structure among elements. It is very important that we
develop techniques to exploit such structure, so that
we can effectively match elements higher up in source-
schema trees. We are currently considering using gen-
erative models for this learning problem. To classify
an element, we would also like to exploit domain con-
straints and functional dependencies among elements,
as well as partial classification results of elements in its
neighborhood.

While working on the first and second issues, we shall
keep a simple, flat mediated schema – which is essen-
tially a set of concepts – in order to focus on the issues

at hand. In the next step, we shall focus on the medi-
ated schema itself, and consider questions such as what
should be its components, how should it be represented
to facilitate learning the mappings, how should it re-
late to source schemas, and how should it change over
time. In particular, mediated-schema elements usually
form a natural hierarchy of concepts. We would like to
investigate how to exploit such hierarchies to improve
learning.

Further down the road, we shall look at learning
matchings that are more complex than 1-1 matchings,
and learning source scopes and capabilities.
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