
Rule induction from noisy examples

Laura Firoiu
Computer Science Department

University of Massachusetts Amherst
lfiroiu @cs.umass.edu

Abstract

This work addresses the problem of rule learning from
simple robot experiences like approaching or passing an
object. An experience is a sequence of predicates com-
puted by a perceptual system. A difficult problem en-
countered in this domain by rule induction algorithms
is that of noise, not only in the classification of the ex-
amples, but also in the facts describing them. Due to
perceptual limitations and environment complexity, the
descriptions of experiences may have either missing or
spurious predicates. I propose a rule induction method
based on generalization of clauses under subsumption
which takes into consideration the frequency of pred-
icates across examples. Preliminary results show that
this method can handle noise effectively.

Motivation
This work is a part of an effort aimed at creating an intelli-
gent agent embodied in a robot (Pioneer), which learns
interacting with its environment. The specific problem ad-
dressed here is rule induction from a relational representa-
tion of robot experiences. The rules are expected to capture
the definitions of types of experiences. Perceptual relations
describing the robot’s interaction with the environment are
computed by hand-coded functions from the stream of val-
ues returned by the robot’s sensors. In this work it is as-
sumed that experiences have been correctly 1 labeled with
relations denoting their types. The goal is to organize the ex-
periences’ perceptual relations into rules that define their re-
lational labels, i.e. to learn their intensional definition. Rules
are desirable because they represent in a compact way the
robot’s interaction with the environment and can be further
used for planning.

Rule learning is the subject of inductive logic program-
ming (ILP) and in this work the application of the basic ILP
technique of least general generalization under subsump-
tion(Iggs) is investigated. Given a set of positive examples,
Iggs creates a rule that logically entails each example, by
selecting only what these examples have in common. The
problem is that in our domain the examples represent robot

Copyright @ 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1For now, the experience labels are assigned by the person run-
ning the experiment.

experiences and as such are subject to noise generated by
both sensor and perceptual limitations. Specifically, while
the classification of examples is correct, there may be ei-
ther missing or extraneous relations in the description of
examples. This is complementary to the usual ILP setting,
where examples may be missclassified, but the background
knowledge of facts pertaining to them is assumed correct.
ILP algorithms usually deal with noise by finding a hypoth-
esis which covers a subset of the positive examples and few
or no negative examples. But the robot’s experiences may
yield too few or no correct positive examples and a classi-
cal ILP technique may be unable to generalize. The solution
presented here is to replace the strong requirement that the
induced rule entail every covered example, with the soft re-
quirement that the rule literals be supported by enough ev-
idence in the data. The result is a new induction technique
applicable in very noisy domains.

Perceptual Relations and Example Clauses
The perceptual features are atomic propositions computed
by specialized hand-coded functions from the stream of sen-
sor values. At each time step a proposition is either true or
false. The atomic propositions encode:

¯ features of external objects; for example is_red_A means
that an object is perceived on visual channel A which de-
tects red objects

¯ robot features: moving_forward_R is true when the robot’s
translational velocity sensor returns a value greater than a
positive threshold

¯ relations involving the robot and external objects; exam-
ples are:

- approach_R_A holds when the visual distance sensor
associated with channel A returns decreasing values.

- left_of_A_C holds when the object in the visual field of
channel A is positioned to the left of the object ob-
served on channel C (blue colors); it is computed from
the (x, y) coordinates of the two objects in the visual
fields of channels A and C.

Relations are easily derived from these atomic propositions.
For example, if proposition approach_R_A is true at all times
between ti and tf during experience e, then it becomes re-

From: AAAI Technical Report WS-00-06. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

lation approach(e, ti, tf, r, a). There are no function terms
in the resulting first order language.

Figure 1 shows the computed atomic propositions for a
pass_right experience- the robot r moves forward past a red
object a on its right. The perceptual relations that hold dur-

To Tx T2 T3 T4 ~
0 3 4 5 14 18

I st°p-RJ I moving_forward_R I
move_to_the_le f t_R_A

approach_R_A I
is_red_A

I pass_right_R_n]

Figure 1: The atomic propositions and their temporal exten-
sions for a pass_right experience.

ing an experience are grouped into an example clause. The
resulting clause for the experience in figure 1 is a positive
example of a pass_right concept:

stop(eo, To, T1, r), moving_f orward(eo, T2, T5,
approach(eo, T3, Ta, a, r),
move_to_the_le ft(eo, T3, T4, r, a),
is_red(a)
To < TI < T2 < T3 < Ta < T5

--+ pass_right(eo, To, Ts, r, a).

In the example clauses the time constants 2 are replaced by
time variables, because we do not want event occurrence at
the same time steps during different experiences to be con-
sidered meaningful for induction. As a result, a learned rule
will not state that the robot must start moving at the 5th time
step, but at some unspecified time Tk.

ILl’, Subsumption and Merging
The general problem inductive logic programming tries to
solve is that of finding a hypothesis that together with back-
ground knowledge explains a set of positive examples and
does not contradict a set of negative examples. Usually the
background knowledge, the examples and the hypothesis are
sets of first order clauses.

In this work we deal with a restricted setting of the induc-
tion problem: the language is function free, neither back-
ground knowledge, nor negative examples are given and the
concepts to be learned are assumed non-recursive. Also,
the positive examples are definite clauses, meaning that no
constraints are imposed on the learned rules. In this simpli-
fied setting, the hypothesis can be found among the clauses
that subsume the set of positive examples. Specifically,
the hypothesis is taken to be the least general generaliza-
tion under subsumption (lggs) of the set of examples. Sub-
sumption and lggs are basic ILP concepts due to Plotkin
and will be presented only informally here. Formal defi-
nitions and properties regarding subsumption and the sub-

2As in PROLOG, the variables are capitalized and the constants
are written in lowercase.

sumption ordering of clauses can be found an ILP book such
as (Nienhuys-Cheng & de Wolf 1997).

A clause C subsumes a clause D if there exists a substitu-
tion 0 such that C0 C_ D. C -< D denotes "C subsumes D".
If C ___ D then clause C is considered more general than D.
If both C _-_< D and D ___ C then C and D are equivalent
under subsumption, denoted C ,,~ D. It is immediate that if
C -< D then C ~ D. So if we are looking for a clause that
entails D, we may find it among the clauses that subsume

D.
Muggleton in (Muggleton 1992) showed that if C ~

D is not a tautology and C is not recursive, then C ~ D.
This means that if we do not want to learn recursive con-
cepts, as is the case, then looking for rules in the set of
clauses that subsume the examples is an appropriate method,
since the set covers the entire hypothesis space.

A generalization under subsumption of a set of clauses
{C1,... Cn} is a clause D that subsumes every clause Ci in
the set. Finding a generalization under subsumption of two
clauses C1 and C2 means finding two substitutions 01 and
02 and a clause D such that D01 C_ C1 and D02 C_ C2. It
can be noticed that D C_ C10~1 fq C20~1.

The least general generalization under subsumption
(lggs) of a set of clauses C = {C1,... Cn} is a clause D
that is a generalization of this set and is subsumed by any
other generalization of C.

-~p(Z, Y)

01 = {Z/a,~/’~{Z/x, Y/b}
//

,’p(a, b) --> q(b,c) : p(X, b), rld) -->

{Y/b}i

p(Z, b)"--> q(b,

01 = {Z/a,~/ ~{Z/x, Y/d}

p(a, b) --> q(b,c) p(X, b), r(d) --> q(b,d)

Figure 2: -~p(Z, Y) is a generalization under subsumption
of clauses p(a, b) ~ q(b, andp(X,b), r (d) --+ q(b,
p(Z, b) --+ q(b, is theIggsof the two clauses.

Both generalization and least general generalization under
subsumption are illustrated in figure 2. Because the Iggs of a
set of example clauses is the least general clause that entails
all the examples, it makes a good hypothesis.

In order to understand why the lggs of a set of clauses
does not always yield an adequate rule in our domain, let us
look at three "push" experiences:

stop(e27, To, T1, r), moving_forward(e27, T2, Ts,
approach(e27, T3, T4, r, c), contact (e27, Ts, Ts, r),
is_blue(c)

-+ push(e27, To, T5, r, c)

stop(e2s , To, T1, r), moving_f orward(e2s , T2, T6, r),
approach(e28, T3, T4, r, c), contact (e27, Ws, T6,
is_blue(c)

--+ push(e2s, To, T6, r, c)

8top(e29, To, T1, r), moving_forward(e29, T2, T5, r),
approach(e29, T3, T4, r, c),
is_blue(c)

-4 push(e29, To, T5, r, c)

The lggs of the three clauses is:

stop(E, To, T1, r) , moving_forward(E, T2 , T5, r
approach(E, 7"3, T4, r, c),
is_blue(c)

-4 push(E, To, To, r, c)

It can be noticed that the literal contact(.) does not occur
in the third example and therefore it does not occur in the
induced 3 rule. But we know that contact is a defining pred-
icate for a "push" experience. Its absence from the third
clause is due to sensor limitations not recovered by the per-
ceptual system. If negative examples or constraints would be
present, a classical ILP method might discard the third ex-
ample as noisy and create a rule based only on the first two
examples. The problem is that in this domain the noise level
is high and there may be only a few or no correct examples.

The solution adopted here is to create a merged clause
that keeps all literals present in the examples, but remembers
for each literal the number of times it was encountered in
examples. The algorithm that creates this clause is called
the merging algorithm and is described in the next section.
The merged clause of the three examples above is:

stop(E, To, 7"1, r), moving_forward(E, T2,7"6, r),
approach(E, T3, T4, r, c),
contact(E, To, T6, r), contact(E, T6, T6, r),
is_blue(c)

-+ push(E, To, 7"6, r, c)

A merged clause for a kind of experiences is not the defining
rule for that kind, but an accumulation of evidence. After
a number of examples, the rule can be extracted from the
merged clause by selecting only the literals whose strength
is above a certain threshold denoted by concept_threshold.
For example, notice that in the above merged clause there
are two contact literals, with distinct time structures. Future
examples will decide which one will appear in the rule.

3No substitution can make a rule with contact(.) in its body be
included in the third clause.

The merging algorithm
The algorithm is incremental. For each concept it finds a
generalization under subsumption of two clauses: the new
example and the merged clause of the previous examples.

Algorithm 1 merging({E})
input: a set of example clauses {E} for a concept
output: the merged clause for the concept

* M+--0
¯ for each example clause E:

1. size(p) +- 1, strength(l) +-- 1 for each literal I E E
size(E) ~-- #literals I E E + #terms t E E

then M ~ E2. if M = 0 else
M +-- match_clauses(M, E)

Algorithm match_clauses, invoked at step 2 of algorithm
merging, finds a generalization under subsumption of two
clauses, M and E such that the size of the resulting merged
clause is minimized heuristically - the size of a clause is
the sum of the sizes of its distinct literals and terms. For
the merged clause the size of a literal is initialized with its
strength, so algorithm match_clauses will first match M’s
strongest literals. The algorithm does not backtrack, so the
search for a generalization is mostly influenced by these lit-
erals.

Algorithm 2 match_clauses(M, E)
input: a merged clause M and a clause E
output: a merged clause M~

1. size(l) +-- strength(1) for each literal ! E M, M’ +- 0
2. while there exists a pair of compatible literals (1,p), l

M, pEE
(a) find the pair of compatible 4 literals (1,p) whose

matching with substitutions a and fl yields the clause
Ma-1 U E/~-1 with the smallest size

(b) M +-- Ma-1, E +-- E~-1

(c) for every I E M identical with a p E

¯ M+--M-{I},E+--E-{p}
¯ strength(l) +-- strength(l) + strength(p)
¯ M’+--M’U{I}

(d) mark the new terms in a and/~ as non-replaceable dur-
ing future literal matchings

3. M’ ~ M’UMUE

Algorithm 2 computes a generalization of clauses M and
E subject to two restrictions: (1) each term in M or E
replaced (i.e. matched with another term) at most once and
(2) each literal in M or E is matched at most once. Due
to the first restriction the non-matched literals in the exam-
ple clause are added to the merged clause with their terms
properly replaced. The second restriction avoids the even-
tual match of a literal representing an event in the experi-
ence clause with distinct events of the same type - literals
with the same predicate symbol - in the merged clause. It
can be noticed that if we consider a graph representation of

4Two literals I and p are compatible if they have the same pred-
icate symbol and sign and there exist two substitutions c~ and/3 that
match/withp: lc~-1 = p/3-1.

clauses, where each distinct literal and each distinct term is
a vertex, then algorithm match_clauses implements a heuris-
tic search for the largest isomorphic subgraphs of the graphs
associated with M and E.

Preliminary results
Experiment 1

Our data set has forty two experiences grouped in nine types.
The experiences are very simple and involve either one ob-
ject - approaching, passing, or pushing the object, or two
objects - passing both objects or first passing one object and
then pushing the other one. These types of experiences rep-
resent the concepts whose definitions must be learned. Be-
cause very few examples are present for each concept, the
threshold for including literals was set very low, at 55 per-
cent of the maximum strength of the literals in the merged
clause.

The learned definitions of the 9 concepts are shown in
table 1. Time relations were removed for clarity, but the
indices of the time variables observe the temporal order.

It can be noticed that in general, the rules cap-
ture the meaningful events for each experience type,
with the exception of "pass_right", "pass_left" and
"pass_left_then_pass_right" which have the same rule. This
might eventually be avoided by lowering the threshold for
extracting rules from their merged clauses until distinguish-
ing literals are promoted in the rule.

For comparison, table 2 lists some of the rules learned
by CProgol4.4 (Muggleton 1995) from the same data set,
with the constraint that rules for different concepts must
be distinct. Because Progol tries to find short hypotheses,
the rules it induces have few literals, and important fea-
tures may be ignored in some cases. For example, it can
be noticed in table 2 that contact is missing from the rule for
pass_left_then_push.

Experiment 2
The problem of applying ILP to learning relational concepts
from robot sensor data has been previously studied by Klin-
spor et. al. in (Klingspor, Morik, & Rieger 1996). GRDT,
their ILP system uses grammars to describe the hypothe-
sis space and looks for rules with high coverage of posi-
tive examples and low coverage of negative examples. Table
3 shows the results obtained by applying the merging algo-
rithm to one of their data sets, "basic feature set 2", available
on mlnet.org. The learned concept "s_jump" is at the bottom
of their concept hierarchy, and as such it is defined in terms
of perceptual features. I assume that their features are also
noisy, since they are computed directly from sensor values.
These perceptual features are similar with our perceptual re-
lations in that they also have time extents. I created an ex-
ample clause for each concept instance in the training data
set by considering all the perceptual features whose time ex-
tents overlap with the extent of the concept instance. As in
the experiments reported in their paper, the induced rules are
evaluated on a test data set twice as large as the training set.

Because concepts in their data set cannot be defined by
single rules, the merging algorithm was modified as follows:

stop (E, to, tl, r), moving_forward (E, t2, t3, r),
approach(E, t3, t4, r, V)

-~ approach_exp (E, to, t4, r, V)

stop(E, to, tl, r), moving_forward(E, t2, t6, r),
approach(E, t3, t4, r, V),
contact (E , tb , t6, r)

--+ push(E, to, t6, r, V)

stop (E, to, tl, r), moving_forward (E, t2, ts, r)
--+ pass_right(E, to, ta, r, V)

stop(E, to, tl, r), moving_forward(E, t2, t3, r)
pass_left(E, to, t3, r, V)

stop(E, to, tl, r), moving_forward(E, t2 , t6 , r)
move_to_the_right(E, t3, t4, r, a),
is_red(a), is_blue(c),
contact(E, tb, t6, r)

--+ pass_left_then_push(E, to, t6, r, a, c)

stop(E, to, t2, r), moving_forward(E, t4, tg, r),
approach(E, tb, tT, r, a),
move_to_the_left(E, t6, tT, r, a),
right_of(E, tl, t3, a, c), front_of(E, tl, t3, a,
is_red(a), is_blue(c),
contact(E, ts, tg, r)

-~ pass_right_then_push(E, to, tg, r, a, c)

stop(E, to, tl, r), moving_forward(E, t2, t6, r),
approach(E, t4, tb, r, a),
move_to_the_right (E, t3, tb, r, a),
is_red(a), is_blue(c),
left_of(E, tb, tb, a, c), front_of(E, tb, t~, a,

--~ pass_left_then_pass_left(E, to, t6, r, a, c)

stop(E, to, tl, r), moving_forward(E, t2, t3, r)
-+ pass_left_then_pass_right(E, to, t3, r, Vo, Vx)

stop(E, to, h, r), moving_forward(E, t2, t8, r),
approach(E, t3, tb, r, c),
move_to_the_left(E, t4, tb, r, c),
approach(E, t3, t6, r, a),
move_to_the_left(E, tb , t T , r, a),
is_red(a), is_blue(c),
behind(E, to, tb, a, c), left_of(E, tb, tb, a, c)

---r pass_right_then_pass_right(E, to, ts, r, c, a)

Table 1: Rules learned by merging for the nine types of ex-
periences in the data set.

¯ a new example E may be merged with a previous clause
M only if their literals are well matched:

fit = strength(Ma-1 fq E/~-I) > merging_threshold
strength(Ma-1 U E~-1)

where a-a and ~-1 are the same as in algorithm 2; for
the result in table 3 the merging_threshold was set to .55

¯ example E is merged with the clause M for which the
bestfit is obtained

10

approach(A, E, C, r, D) --~ approach_exp(A, B, C, r, D
push(e29, O, 19, r, c).
contact(A, E, C, r) --~ push(A, B, C, r, D
moving_forward(A, E, C, r) --~ pass_right(A, B, C, r,
move_to_the_right(A, E, F, r, D) --~ pass_left(A, B, C, r, D
move_to_the_right(A, F, G, r, D), is_red(D)

-+ pass_left_then_push(A, B, C, r, D, E).
left_of(A, F, G, D, E)

--+ pass-le ft_then_pass_le f t(A, B, C, r, D, E).

Table 2: Rules learned by CProgol4.4 for six of the nine
types of experiences in the data set.

¯ because strength(M) increases through merging and
may preclude future merges, the weakest literals of M
are dropped, provided their total strength is below a
drop_threshold (.05 in the experiment)

The threshold values were chosen as follows:

¯ the merging_threshold is low, to allow initial merges to
take place

¯ the drop_threshold is low, so that only the least frequent
occurring literals are dropped; experiments showed that
for values greater than .15, the merged clauses become
too general

¯ the concept_threshold which selects the literals retained
in the final rule was .55; because they already lost liter-
als during merging, the resulting merged clauses are not
very specialized, so a higher value of this threshold would
make them too general

#rules recall precision
GRDT 12.8 28.1% 53.4%

GRENDEL 3.5 10.1% 21.6%
Merging 43 14.5% 57.9%

Table 3: Results reported in (Klingspor, Morik, & Rieger
1996) and obtained by merging for the "basic feature set
2" data set: recall = correct precision

- correct
given ’ derived ’

where correct is the number of correctly derived exam-
ples, derived is the total number of derived examples and
given is the actual number of positive examples. GREN-
DEL is another grammar-based ILP system, taken as base-
line. The derived examples were obtained by a PROLOG in-
terpreter from the test data and the induced rules. The results
for GRDT and GRENDEL are averaged over four concepts:
"s_jump" and three others at the same level in the hierarchy.
The results for merging are only for "s_jump".

The results in table 3 indicate how the merging algorithm
performs: it has lower recall and slightly higher precision
than their system (though it performs better than the base-
line), and induces a much larger number of rules. This is
expected, since by retaining literals which may appear in
the assumed covered example clauses, merging creates more

specialized rules. Because the derived test examples were
obtained through crisp logical inference by PROLOG, the
rules fail to recognize the examples with missing literals.
Experiments with various threshold values showed that ei-
ther precision can be increased at the expense of recall, or
recall be increased at the expense of precision. Because they
affect the entire induction process, these parameters are very
important, so a better method for selecting and eventually
adapting their values must be found.

Discussion

In order to deal with noise in the factual description of ex-
amples, the method investigated in this work gives up the re-
quirement that the hypothesis be consistent with every cov-
ered example. The resulting rule may contain literals that do
not occur in a particular example, but their presence is sup-
ported by other examples. Preliminary results show that in a
very noisy domain, where a method following crisp logic
may lead to rules based on irrelevant predicates, this ap-
proach leads to rules that intuitively make sense to a human
observer. This technique can be extended to deal with miss-
classified or unclassified examples: a new example can be
assigned to one of the previous clusters based on how well
it fits the merged clause of that cluster.

Alternative approaches for induction either from noiseless
positive data (Muggleton 1996), or from noisy positive and
negative examples, (McCreath & Sharma 1997) maximize
an estimate of P(HIE), the probability of the hypothesis
given the data. While these methods are more principled be-
cause error bounds are guaranteed for the induced hypothe-
ses, they do not deal explicitly with the case of erroneous
background facts, but with that of missclassified examples.
Techniques mentioned in these two papers for estimating
probability distributions over the hypotheses and examples
spaces may help to devise a more principled method for dy-
namically computing the thresholds that affect the merging
process.

Future work also involves extending merging to per-
form "soft" inferences, i.e. inferences where a rule fires
when enough, but not necessarily all literals in its body are
matched.

Another direction of work is to use the rules induced by
merging to guide an adaptive perceptual system: the miss-
ing literals from the merged example clauses can become
additional training examples for the perceptual learner.

Acknowledgements

This research is supported by DARPA/AFOSR contract No.
F49620-97-1-0485 and DARPA No. DASG60-99-C-0074.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwithstanding
any copyright notation hereon.The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements either expressed or implied, of the or the U.S.
Government.

11

References
Klingspor, V.; Morik, K. J.; and Rieger, A. D. 1996. Learn-
ing concepts from sensor data of a mobile robot. Machine
Learning 23:305-332.

McCreath, E., and Sharma, A. 1997. ILP with noise and
fixed example size: A Bayesian approach. In Proceedings
of the 15th International Joint Conference on Artificial In-
telligence (1JCA1-97), 1310-1315. San Francisco: Morgan
Kaufmann Publishers.
Muggleton, S. 1992. Inverting implication. In Proceed-
ings of the Second Inductive Logic Programming Work-
shop, 19-39.

Muggleton, S. 1995. Inverse entailment and Progol. New
Generation Computing, Special issue on Inductive Logic
Programming 13(3-4):245-286.
Muggleton, S. 1996. Learning from positive data. In Mug-
gleton, S., ed., Proceedings of the 6th International Work-
shop on Inductive Logic Programming, volume 1314 of
Lecture Notes in Artificial Intelligence, 358-376. Springer-
Verlag.

Nienhuys-Cheng, S.-H., and de Wolf, R. 1997. Founda-
tions of Inductive Logic Programming. Springer.

12

