
Learning Probabilistic Relational Models with Structural Uncertainty

Lise Getoor
Computer Science Dept.

Stanford University
Stanford, CA 94305

getoor@cs.stanford.edu

Daphne Koller
Computer Science Dept.

Stanford University
Stanford, CA 94305

koller@cs.stanford.edu

Benjamin Taskar
Computer Science Dept.

Stanford University
Stanford, CA 94305-9010
btaskar@cs.stanford.edu

Nir Friedman
School of Computer Sci. & Eng.

Hebrew University
Jerusalem, 91904, Israel

nir@cs.huji.ac.il

Abstract

Most real-world data is stored in relational form. In con-
trast, most statistical learning methods, e.g., Bayesian net-
work learning, work only with “flat” data representations,
forcing us to convert our data into a form that loses much
of the relational structure. The recently introduced frame-
work of probabilistic relational models(PRMs) allow us to
represent much richer dependency structures, involving mul-
tiple entities and the relations between them; they allow the
properties of an entity to depend probabilistically on prop-
erties ofrelated entities. Friedmanet al. showed how to
learn PRMs that model the attribute uncertainty in relational
data, and presented techniques for learning both parameters
and probabilistic dependency structure for the attributes in
a relational model. In this work, we propose methods for
handlingstructural uncertaintyin PRMs. Structural uncer-
tainty is uncertainty over which entities are related in our do-
main. We propose two mechanisms for modeling structural
uncertainty:reference uncertaintyandexistence uncertainty.
We describe the appropriate conditions for using each model
and present learning algorithms for each. We conclude with
some preliminary experimental results comparing and con-
trasting the use of these mechanism for learning PRMs in
domains with structural uncertainty.

Introduction
Relational models are the most common representation of
structured data. Enterprise business information, market-
ing and sales data, medical records, and scientific datasets
are all stored in relational databases. Efforts to extract
knowledge from partially structured (e.g., XML) or even
raw text data also aim to extract relational information. Re-
cently, there has been growing interest in extracting inter-
esting statistical patterns from these huge amounts of data.
These patterns give us a deeper understanding of our do-
main and the relationships in it. A model can also be used
for reaching conclusions about important attributes whose
values may be unobserved.

Probabilistic graphical models, and particularly Bayesian
networks, have been shown to be a useful way of repre-
senting statistical patterns in real-world domains. Recent
work (Cooper and Herskovits 1992; Heckerman 1998) de-
velops techniques for learning these models directly from
data, and shows that interesting patterns often emerge in

this learning process. However, all of these learning tech-
niques apply only to flat-file representations of the data, and
not to the richer relational data encountered in many appli-
cations.

Probabilistic relational modelsare a recent develop-
ment (Koller and Pfeffer 1998; Poole 1993; Ngo and
Haddawy 1996) that extend the standard attribute-based
Bayesian network representation to incorporate a much
richer relational structure. These models allow the speci-
fication of a probability model forclassesof objects rather
than simple attributes; they also allow properties of an en-
tity to depend probabilistically on properties of otherre-
latedentities. The model represents a generic dependence,
which is then instantiated for specific circumstances, i.e.,
for particular sets of entities and relations between them.

Friedmanet al.(Friedmanet al. 1999) adapt the machin-
ery for learning Bayesian networks from flat data to the task
of learning PRMs from structured data. This machinery al-
lows a PRM to be learned from a relational database, an
object-oriented database or a frame-based system. This pre-
vious work assumes that the relational structure of the do-
main is determined outside the probabilistic model. Thus,
it does not consider the problem of learning a model of the
relational structure. This assumption has two main impli-
cations. Most obviously, it implies that the model can only
be used in settings where the relational structure is known.
Thus, for example, we cannot use it to conclude that there
exists a money-laundering relation between a bank and a
drug cartel. A more subtle point is that it can diminish
the quality of our model even in cases where the relational
structureis given, because it ignores interesting correla-
tions between attributes of entities and the relations be-
tween them. For example, a “serious” actor is unlikely to
appear in many horror movies; hence, we can infer infor-
mation about an actor’s (unknown) attributes based on the
Role relation between actors and movies.

In this paper, we examine the problem of learning a prob-
abilistic model of the relational structure. This concept,
calledstructural uncertainty, was first introduced by Koller
and Pfeffer in (Koller and Pfeffer 1998). They introduced
two types of structural uncertainty:number uncertainty—
uncertainty about the number of individuals to which a par-
ticular individualx is related andreference uncertainty—

From: AAAI Technical Report WS-00-06. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

uncertainty about the identity of the individuals to which
x is related. In this paper, we provide a substantial exten-
sion of reference uncertainty, which makes it suitable for a
learning framework; we also introduce a new type of struc-
tural uncertainty, calledexistence uncertainty. We present
a framework for learning these models from a relational
database.

We begin by reviewing the definition of a probabilistic
relational model. We then describe two ways of extending
the definition to accommodate structural uncertainty. Next
we describe learning methods for these models. We con-
clude with some experimental results, comparing the mod-
els learned under the alternate methods.

Probabilistic Relational Models
A probabilistic relational model (PRM)specifies a template
for a probability distribution over a database. The tem-
plate includes a relational component, that describes the re-
lational schema for our domain, and a probabilistic compo-
nent, that describes the probabilistic dependencies that hold
in our domain. A PRM, together with a particular database
of objects and relations, defines a probability distribution
over the attributes of the objects and the relations.

Relational Schema
A schema for a relational model describes a set ofclasses,
X = X1; : : : ; Xn. Each class is associated with a set of
descriptive attributesand a set ofreference slots1.

The set of descriptive attributes of a classX is denoted
A(X). AttributeA of classX is denotedX:A, and its do-
main of values is denotedV (X:A). We assume here that
domains are finite. For example, thePerson class might
have the descriptive attributesSex, Age, Height, Income-
Level, etc. The domain forPerson.Agemight befchild,
young-adult, middle-aged, seniorg.

The set of reference slots of a classX is denotedR(X).
We use similar notation,X:�, to denote the reference slot�
of X . Each reference slot� is typed, i.e., the schema spec-
ifies the range type of object that may be referenced. More
formally, for each� in X , the domain type ofDom[�] = X
and the range typeRange[�] = Y , whereY is some class
in X . A slot � denotes a function fromDom[�] = X to
Range[�] = Y . For example, we might have a classMovie

with the reference slotActorwhose range is the classActor.
Or, the classPerson might have reference slotsFatherand
Motherwhose range type is also thePerson class. In cer-
tain cases, if we want to explicitly specify the domain class
of a particular slot, we will use the notationActorRole.

For each reference slot�, we can define aninverse slot
��1, which is interpreted as the inverse function of�. Fi-
nally, we define the notion of aslot chain, which allows us
to compose slots, defining functions from objects to other

1We note that there is a direct mapping between our notion of
class and the tables used in a relational database. Our descriptive
attributes correspond to standard attributes in the table, and our
reference slots correspond to attributes that are foreign keys (key
attributes of another table).

objects to which they are not directly related. More pre-
cisely, we define aslot chain�1; : : : ; �k be a sequence of
slots (inverse or otherwise) such that for alli, Range[�i] =
Dom[�i+1]. For example,Person:Mother:Mother can
be used to denote a person’s maternal grandmother, and
Person:ActorRole

�1 can be used to denote the set of roles
that an actor has had.

It is often useful to distinguish between anentity and a
relationship, as in entity-relationship diagrams. In our lan-
guage, classes are used to represent both entities and rela-
tionships. Thus, entities such as actors and movies are rep-
resented by classes, but a relationship such asRole, which
relates actors to movies, is also be represented as a class,
with reference slots to the classActor and the classMovie.
This approach, which blurs the distinction between entities
and relationships, is common, and allows us to accommo-
date descriptive attributes that are associated with the rela-
tion, such asRole-Type(which might describe the type of
role, such as villain, heroine or extra). We useXE to denote
the set of classes that represent entities, andXR to denote
those that represent relationships. (We note that the distinc-
tions are prior knowledge about the domain, and are there-
fore part of the domain specification.) We use the generic
termobjectto refer both to entities and to relationships.

The semantics of this language is straightforward. In
an instantiationI, eachX is associated with a set of ob-
jectsOI(X). For each attributeA 2 A(X) and each
x 2 OI(X), I specifies a valuex:A 2 V (X:A). For
each reference slot� 2 R(X) I specifies a valuex:� 2
OI(Range[�]). For y 2 OI(Range[�]), we usey:��1 to
denote the set of entitiesfx 2 OI(X) : x:� = yg. The
semantics of a slot chain� = �1: : : : :�k are defined via
straightforward composition. ForA 2 A(Range[�k]) and
x 2 OI(X), we definex:�:A to be themultisetof values
y:A for y in the setx:� .

Thus, an instantiationI is a set of objects with no miss-
ing values and no dangling references. It describes the set
of objects, the relationships that hold between the objects
and all the values of the attributes of the objects. For ex-
ample, we might have a database containing movie infor-
mation, with entitiesMovie, Actor and Role, which in-
cludes the information for all the Movies produced in a
particular year by some studio. In a very small studio, we
might encounter the instantiation shown in Figure 1. For
a particular actora, the set of movies the actor has ap-
peared in would be denoteda:ActorRole

�1:Movie; for ex-
ample,ginger:ActorRole

�1:Movie= fm1;m2g.
As discussed in the introduction, our goal in this pa-

per is to construct probabilistic models over instantiations.
We shall consider various classes of probabilistic models,
which vary in the amount of “prior” specification on which
the model is based. This specification, a form of “skeleton”
of the domain, defines a set of possible instantiations. Our
model then defines a probability distribution over this set.
Thus, we now define the necessary building blocks which
we use to describe such sets of possible instantiations.

An entity skeleton, �e, specifies a set of entitiesO�e(X)
for each classX 2 XE . Our possible instantiations are

ACTOR
name gender
fred male
ginger female
bing male

MOVIE
name genre
m1 drama
m2 comedy

ROLE
role movie actor role-type
r1 m1 fred hero
r2 m1 ginger heroine
r3 m1 bing villain
r4 m2 bing hero
r5 m2 ginger love-interest

Figure 1: An instantiation of the relational schema for a
simple movie domain.

then only thoseI for whichO�e(X) = OI(X) for each
such classX . In our example above, the associated en-
tity skeleton would specify the set of movies and actors
in the database:O�e(Actor) = ffred; ginger; bingg and
O�e(Movie) = fm1;m2g. Theobject skeletonis a richer
structure; it specifies a set of objectsO�o(X) for each class
X 2 X . In our example, the object skeleton consistent with
I would specify the same information as the entity skeleton,
as well as the fact thatO�o (Role) = fr1; r2; r3; r4; r5g.
Note that this information tells us only the unique identi-
fier, orkey, of the different objects, but not how they relate.
In effect, in both the entity and object skeletons, we are
told only the cardinality of the various classes. Finally, the
relational skeleton, �r, contains substantially more infor-
mation. It specifies the set of objects in all classes, as well
as all the relationships that hold between them. In other
words, it specifiesO�(X) for eachX , and for each object
x 2 O�(X), it specifies the values of all of the reference
slotsx:�. In our example above, it would provide the values
for the actor and movie slots ofRole.

Probabilistic Model for Attributes
A probabilistic relational model� specifies a probabil-
ity distributions over all instantiationsI of the relational
schema. It consists of two components: the qualitative de-
pendency structure,S, and the parameters associated with
it, �S . The dependency structure is defined by associating
with each attributeX:A a set ofparentsPa(X:A).

A parent ofX:A can have the formX:�:B, for some
(possibly empty) slot chain� . To understand the seman-
tics of this dependence, recall thatx:�:A is a multiset of
valuesS in V (X:�:A). We use the notion ofaggregation
from database theory to define the dependence on a mul-
tiset; thus,x:A will depend probabilistically on some ag-
gregate property(S). There are many natural and useful
notions of aggregation; in this paper, we simplify our pre-
sentation by focusing on particular notions of aggregation:
themedianfor ordinal attributes, and themode(most com-
mon value) for others. We allowX:A to have as a parent
(X:�:B); for anyx 2 X , x:A will depend on the value of

(x:�:B).
The quantitative part of the PRM specifies the parameter-

ization of the model. Given a set of parents for an attribute,
we can define a local probability model by associating with
it a conditional probability distribution (CPD). For each at-
tribute we have a CPD that specifiesP (X:A j Pa(X:A)).

Definition 1: A probabilistic relational model (PRM)� for
a relational schemaS is defined as follows. For each class
X 2 X and each descriptive attributeA 2 A(X), we have:

� a set ofparentsPa(X:A) = fU1; : : : ; Ulg, where each
Ui has the formX:B orX:�:B, where� is a slot chain;

� a conditional probability distribution (CPD)that repre-
sentsP�(X:A j Pa(X:A)).

Given a relational skeleton�r, a PRM� specifies a prob-
ability distribution over a set of instantiationsI consistent
with �r:

P (I j �r ;�) =
Y

X

Y

x2O�r (X)

Y

A2A(X)

P (x:A j Pa(x:A))

(1)

For this definition to specify a coherent probability dis-
tribution over instantiations, we must ensure that our proba-
bilistic dependencies are acyclic, so that a random variable
does not depend, directly or indirectly, on its own value. To
verify acyclicity, we construct anobject dependency graph
G�r . Nodes in this graph correspond to descriptive at-
tributes of entities. LetX:�:B be a parent ofX:A in our
probabilistic dependency schema; for eachy 2 x:� , we de-
fine an edge inG�r : y:B !�r x:A. We say that a depen-
dency structureS is acyclic relative to a relational skele-
ton �r if the directed graphG�r is acyclic. WhenG�r is
acyclic, we can use the chain rule to ensure that Eq. (1) de-
fines a legal probability distribution (as done, for example,
in Bayesian networks).

The definition of the object dependency graph is specific
to the particular skeleton at hand: the existence of an edge
fromy:B tox:A depends on whethery 2 x:� , which in turn
depends on the interpretation of the reference slots. Thus,
it allows us to determine the coherence of a PRM only rel-
ative to a particular relational skeleton. When we are eval-
uating different possible PRMs as part of our learning al-
gorithm, we want to ensure that the dependency structure
S we choose results in coherent probability models forany
skeleton. We provide such a guarantee using aclass de-
pendency graph, which describes all possible dependencies
among attributes. In this graph, we have an (intra-object)
edgeX:B ! X:A if X:B is a parent ofX:A. If (X:�:B)
is a parent ofX:A, andY = Range[�], we have an (inter-
object) edgeY:B ! X:A. A dependency graph isstrati-
fied if it contains no cycles. If the dependency graph ofS
is stratified, then it defines a legal model for any relational
skeleton�r (Friedmanet al. 1999).

Structural Uncertainty
In the model described in the previous section, all relations
between attributes are determined by the relational skele-
ton �r; only the descriptive attributes are uncertain. Thus,
Eq. (1) determines the likelihood of the attributes of objects,
but does not capture the likelihood of the relations between
objects. In this section, we extend our probabilistic model
to allow for structural uncertainty. In this scenario, we do
not treat the relational structural as fixed. Rather, we treat
the relations between objects as an uncertain aspect of the
domain. Thus, we will describe a probability distribution
over different relational structures. We describe two differ-
ent dependency models that can represent structural uncer-
tainty: Reference UncertaintyandExistence Uncertainty.
Each is useful in different contexts, and we note that these
two models do not exhaust the space of possible models.

Reference Uncertainty
In this model, we assume that the objects are prespecified,
but relations among them, i.e., slot chains, are subject to
random choices. More precisely, we are given an object
skeleton�o, which specifies the objects in each class. Now,
we need to specify a probabilistic model not only over the
descriptive attributes (as above), but also about the value of
the reference slotsX:�. The domain of a reference slotX:�
is the set of keys (unique identifiers) of the objects in class
Y = Range[�]. Thus, we need to specify a probability
distribution over the set of all objects in a class.

A naive approach is to simply have the PRM specify a
probability distribution directly as a multinomial distribu-
tion overO�o(Y). This approach has two major flaws.
Most obviously, this multinomial would be infeasibly large,
with a parameter for each object inY . More importantly,
we want our dependency model to be general enough to ap-
ply over all possible object skeletons�o; a distribution de-
fined in terms of the objects within a specific object skeleton
would not apply to others.

We achieve a representation which is both general and
compact as follows. Roughly speaking, we partition the
classY into subsets according to the values of some of its
attributes. For example, we can partition the classMovie by
Genre. We then assume that the value ofX:� is chosen by
first selecting a partition, and then selecting an object within
that partition uniformly. For example, we might assume
that a movie theater first selects which genre of movie it
wants to show, with a possible bias depending (for example)
on the type of theater; it then selects uniformly among the
movies with the selected genre.

We formalize this intuition by defining, for each slot�,
a set ofpartition attributes	[�] � A(Y). In the above
example,	[�] = fGenreg. Essentially, we would like to
specify the distribution that the reference value of� falls
into one partition versus another. We accomplish this within
the framework of our current model by introducingS� as
a new attribute ofX , called aselector attribute; it takes
on values in the space of possible instantiationsV ([�]).
Each of its possible values determines a subset ofY from
which the value of� (the referent) will be selected. More

precisely, each values of S� defines a subsetY of the set
of objectsO�o(Y): those for which the attributes in	[�]
take the values [�]. We useY	[�] to represent the resulting
partition ofO�o(Y).

We now represent a probabilistic model over the values
of � by specifying how likely it is to reference objects in one
subset in the partition versus another. For example, a movie
theater may be more likely to show an action film rather
than a documentary film. We accomplish this by introduc-
ing a probabilistic model for the selector attributeS�. This
model is the same as that of any other attribute: it has a set
of parents and a CPD. Thus, the CPD forS� would specify a
probability distribution over possible instantiationss . As
for descriptive attributes, we want to allow the distribution
of the slot to depend on other aspects of the domain. For ex-
ample an independent movie theater may be more likely to
show foreign movies while a megaplex may be more likely
to show action films. We accomplish this effect by hav-
ing parents; in our example, the CPD ofSTheater:Current-Movie
might have as a parentTheater:Type.2 The choice of value
for S� determines the partitionY from which the reference
value of� is chosen; as discussed above, we assume that the
choice of reference value for� is uniform distributed within
this set.

Definition 2: A probabilistic relational model� with ref-
erence uncertaintyhas the same components as in Defini-
tion 1. In addition, for each reference slot� 2 R(X) with
Range[�] = Y , we have:

� a set of attributes	[�] � A(Y);

� a new selector attributeS� within X which takes on val-
ues in the cross-product spaceV ([�]);

� a set of parents and a CPD for the new selector attribute,
as usual.

To define the semantics of this extension, we must de-
fine the probability of reference slots as well as descriptive
attributes:

P (I j �o;�) =Y

X

Y

x2O�o (X)

Y

A2A(X)

P (x:A j Pa(x:A))

Y

�2R(X)

P (x:S� = [x:�] j Pa(X:S�))
jY j

(2)

2The random variableS� takes on values that are joint assign-
ments to	[�]. In the current work, we treat this variable as a
multinomial random variable over this cross-product space. In
general, however, we can represent such a distribution more com-
pactly, e.g., using a Bayesian network. For example, the genre
of movies shown by a movie theater might depend on its type
(as above). However, the language of the movie can depend on
the location of the theater. Thus, the partition will be defined
by	 = fMovie:Genre;Movie:Languageg, and its parents would
be Theater:TypeandTheater:Location. We can represent this
conditional distribution more compactly by introducing a sepa-
rate variableSMovie:Genre, with a parentTheater:Type, and another
SMovie:Language, with a parentTheater:Location.

where we take [x:�] to refer to the instantiation of the
attributes	[�] for the objectx:� in the instantiationI. Note
that the last term in Eq. (2) depends onI in three ways: the
interpretation ofx:�, the values of the attributes	[�]within
the objectx:�, and the size ofY .

This model gives rise to fairly complex dependencies.
Consider a dependency ofX:A onX:�:B. First, note that
x:A can depend ony:B for anyy 2 Range[�], depending
on the choice of value forx:�. Thus, the domain depen-
dency graph has a very large number of edges. Second, note
thatx:A cannot be a parent (or ancestor) ofx:�; otherwise,
the value ofx:A is used to determine the object referenced
by x:�, and this object in turn affects the value ofx:A.

As above, we must guarantee that this complex depen-
dency graph is acyclic for every object skeleton. We ac-
complish this goal by extending our definition of class de-
pendency graph. The graph has a node for each descriptive
or selector attributeX:A. The graph contains the following
edges:

� For any descriptive or selector attributeC, and any of
its parents(X:�:B), we introduce an edge fromY:B to
X:G, whereY = Range[�].

� For any descriptive or selector attributeC, and any of
its parents(X:�:B), we add the following edges: for
any slot�i along the chain� , we introduce an edge from
Z:S�i toX:C, forZ = Dom[�i].

� For each slotX:�, and eachY:B 2 	[�] (for Y =
Range[�]), we add an edgeY:B ! X:S�. This repre-
sents the dependence of� on the attributes used to parti-
tion its range.

The first class of edges in this definition is identical to our
the definition of dependency graph above, except that it
is extended to deal with selector as well as descriptive at-
tributes. Edges of the second type reflect the fact that the
specific value of parent for a node depends on the reference
values of the slots in the chain. The third type of edges rep-
resent the dependency of a slot on the attributes of the as-
sociated partition. To see why this is required, we observe
that our choice of reference value forx:� depends on the
values of the partition attributes	[X:�] of all of the differ-
ent objects inY . Thus, these attributes must be determined
beforex:� is determined.

Once again, we can show that if this dependency graph
is stratified, it defines a coherent probabilistic model.

Theorem 3: Let � be a PRM with relational uncertainty
and stratified dependency graph. Let�o be an object skele-
ton. Then the PRM and�o uniquely define a probability
distribution over instantiationsI that extend�o via Eq. (2).

Existence Uncertainty
The reference uncertainty model of the previous section as-
sumes that the number of objects is known. Thus, if we
consider a division of objects into entities and relations, the
number of objects in classes of both types are fixed. Thus,
we might need to describe the possible ways of relating 5
movies, 15 actors and 30 roles. The predetermined number

of roles might seem a bit artificial, since in some domains
it puts an artificial constraint on the relationships between
movies and actors. If one movie is a big production and
involves many actors, this reduces the number of roles that
can be used by other movies.3

In this section we consider models where the number of
relationship objects is not fixed in advance. Thus, in our
example, we will consider all5� 15 possible roles, and de-
termine for each whether it exists in the instantiation. In this
case, we are given only the schema and an entity skeleton
�e. We are not given the set of objects associated with rela-
tionship classes. We call the entity classesdeterminedand
the othersundetermined. We note that relationship classes
typically represent many-many relationships; they have at
least two reference slots, which refer to determined classes.
For example, ourRole class would have reference slotsAc-
tor to Person andIn-Movieto Movie. While we know the
set of actors and the set of movies, we may be uncertain
about which actors have a role in which movie, and thus we
have uncertainty over the existence of theRole objects.

Our basic approach in this model is that we allow ob-
jects whose existence is uncertain. These are the objects
in the undetermined classes. One way of achieving this
effect is by introducing into the model all of the entities
that canpotentiallyexist in it; with each of them we as-
sociate a special binary variable that that tells us whether
the entity actually exists or not. Note that this construc-
tion is purely conceptual; we never explicitly construct a
model containing non-existent objects. In our example
above, the domain of theRole class in a given instantiation
I is OI(Person) � OI(Movie). Each “potential” object
x = Role(yp; ym) in this domain is associated with a bi-
nary attributex:E that specifies whether the personyp did
or did not see movieym.

Definition 4: We define anundeterminedclassX as fol-
lows. Let �1; : : : ; �k be the set of reference slots ofX ,
and letYi = Range[�i]. In any instantiationI, we require
thatOI(X) = OI(Y1) � � � �OI(Yk): For (y1; : : : ; yk) 2
OI(Y1)� � � �OI(Yk), we useX [y1; : : : ; yk] to denote the
corresponding object inX . EachX has a specialexistence
attributeX:E whose values areV (E) = ftrue; falseg. For
uniformity of notation, we introduce anE attribute for all
classes; for classes that are determined, theE value is de-
fined to be alwaystrue. We require that all of the reference
slots of a determined classX have a range type which is
also a determined class.

The existence attribute for an undetermined class is treated
in the same way as a descriptive attribute in our dependency
model, in that it can have parents and children, and is asso-
ciated with a CPD.

3We note that in many real life applications, we use models to
compute conditional probabilities. In such cases we compute the
probability given a partial skeleton that determines some of the
references and attributes in the domain and queries the conditional
probability over the remaining aspects of the instance. In such a
situation, fixing the number of objects might not seem artificial.

Somewhat surprisingly, our definitions are such that the
semantics of the model does not change. More precisely, by
defining the existence events to be attributes, and incorpo-
rating them appropriately into the probabilistic model, we
have set things up so that the semantics of Eq. (1) applies
unchanged.

Of course, we must place some restrictions on our model
to ensure that our definitions lead to a coherent probabil-
ity model. First, a problem can arise if the range type
of a slot of an undetermined class refers to itself, i.e.,
Range[X:�] = X . In this case, the setOI(X) is defined
circularly, in terms of itself. To ensure semantic coherence,
we impose the following restrictions on our models: Let
X be an undetermined class. An attributeX:A cannot be
an ancestor ofX:E. In addition, an object can only ex-
ist if all the objects it refers to exist, i.e., for every slot
� 2 R(X), P (x:E = false j x:�:E = false) = 1. We
also require that dependencies can only “pass through” ob-
jects that exist. For any slotY:� of range-typeX , we define
theusable slot� as follows: for anyy 2 OI(Y), we define
y:� = fx 2 y:� : x:E = trueg. We allow only� to be
used in defining parent slot chains in the dependency model
S.

It is easy to capture these requirements in our class de-
pendency graph. For every slot� 2 R(X) whose range
type isY , we have an edge fromY:E toX:E. For every at-
tributeX:A, everyX:�1: : : : :�k:B 2 Pa(X:A), and every
i = 1; : : : ; k, we have an edge fromRange[�i]:E toX:A.
As before, we require that the attribute dependency graph
is stratified.

It turns out that our requirements are sufficient to guar-
antee that the entity set of every undetermined entity type is
well-defined, and allow our extended language to be viewed
as a standard PRM. Hence, it follows easily that our ex-
tended PRM defines a coherent probability distribution:

Theorem 5: Let � be a PRM with undetermined classes
and a stratified class dependency graph. Let�e be an entity
skeleton. Then the PRM and�e uniquely define a relational
skeleton�r over all classes, and a probability distribution
over instantiationsI that extends�e via Eq. (1).

Note that a full instantiationI also determines the existence
attributes for undetermined classes. Hence, the probability
distribution induced by the PRM also specifies the proba-
bility that a certain entity will exist in the model.

We note that real-world databases do not specify the de-
scriptive attributes of entities that do not exist. Thus, these
attributes are unseen variables in the probability model.
Since we only allow dependencies on objects that exist (for
which x:E = true), then nonexistent objects areleavesin
the model. Hence, they can be ignored in the computation
of P (I j �e;�). The only contribution of a nonexistent en-
tity x to the probability of an instantiation is the probability
thatx:E = false.

Learning PRMs
In the previous sections we discussed three variants of PRM
models that differ in their expressive power. Our aim is to

learn such models from data. Thus, the task is as follows:
given an instance and a schema, construct a PRM that de-
scribes the dependencies between objects in the schema.
We stress that, when learning, all three variants we de-
scribed use the same form of training data: a complete
instantiation that describes a set of objects, their attribute
values and their reference slots. However, in each variant,
we attempt to learn somewhat different structure from this
data. In the basic PRM learning of (Friedmanet al. 1999),
we learn the probability of attributes given other attributes;
in learning PRMs with reference uncertainty, we also at-
tempt to learn the rules that govern the choice of slot refer-
ences; and in learning PRMs with existence uncertainty, we
attempt to learn the probability of existence of relationship
objects.

We start by reviewing the approach of (Friedmanet al.
1999) for learning PRMs with attribute uncertainty and
then describe new algorithms for learning PRMs with struc-
tural uncertainty. Conceptually, we can separate the learn-
ing problem into two basic questions: how to evaluate the
“goodness” of a candidate structure, and how to search the
space of legal candidate structures. We consider each ques-
tion separately.

Model Scoring
For scoring candidate structures, we adapt Bayesianmodel
selection(Heckerman 1998). We compute the posterior
probability of a structureS given an instantiationI. Using
Bayes rule we have thatP (S j I; �) / P (I j S; �)P (S j
�). This score is composed of two main parts: the prior
probability of�, and the probability of the instantiation as-
suming the structure is�. By making fairly reasonable as-
sumptions about the prior probability of structures and pa-
rameters, this term can bedecomposedinto a product of
terms. Each term in the decomposed form measures how
well we predict the values ofX:A given the values of its
parents. Moreover, the term forP (X:A j u) depends only
on thesufficient statistics CX:A[v;u], that count the num-
ber of entities withx:A = v and Pa(x:A) = u. These suf-
ficient statistics can be computed using standard relational
database queries.

The extension of the Bayesian score to PRMs with ex-
istence uncertainty is straightforward. The only new is-
sue is how to compute sufficient statistics that include ex-
istence attributesx:E without explicitly adding all non-
existent entity into our database. This, however, can be
done in a straightforward manner. Letu be a particular
instantiation of Pa(X:E). To computeCX:E [true;u], we
can use standard database query to compute how many
objectsx 2 O�(X) have Pa(x:E) = u. To compute
CX:E [false;u], we need to compute the number ofpoten-
tial entities. We can do this without explicitly considering
each(x1; : : : ; xk) 2 OI(Y1) � � � �OI(Yk) by decompos-
ing the computation as follows: Let� be a reference slot
of X with Range[�] = Y . Let Pa�(X:E) be the subset
of parents ofX:E along slot� and letu� be the corre-
sponding instantiation. We count the number ofy consis-
tent withu�. If Pa�(X:E) is empty, this count is simply

the jOI(Y)j. The product of these counts is the number
of potential entities. To computeCX:E [false;u], we simply
subtractCX:E [true;u] from this number.

The extension required to deal with reference uncertainty
is also not a difficult one. Once we fix the set partition at-
tributes	[�], we can treat the variableS� as any other at-
tribute in the PRM. Thus, scoring the success in predicting
the value of this attribute given the value of its parents is
done using the standard Bayesian methods we use of at-
tribute uncertainty (e.g., using a standard conjugate Dirich-
let prior).

Model Search
To find a high-scoring structure, we use a heuristic search
procedure that iteratively broadens the search space to con-
sider longer slot chains in directions with promising depen-
dencies. At each iteration, we use a search procedure that
considers operators! such as adding, deleting, or reversing
edges in the dependency modelS. The search procedure
performs greedy hill-climbing search in this space, using
the Bayesian score to evaluate models.

No extensions to the search algorithm are required to
handle existence uncertainty. We simply introduce the new
attributesX:E, and integrate them into the search space,
as usual. The only difference is that we must enforce the
constraints on the model, by properly maintaining the class
dependency graph described earlier.

The extension for incorporating reference uncertainty is
more subtle. Initially, the partition of the range class for a
slotX:� is not given in the model. Therefore, we must also
search for the appropriate set of attributes	[�]. We intro-
duce two new operatorsrefine andabstract, which modify
the partition by adding and deleting attributes from	[�].
Initially, 	[�] is empty for each�. Therefine operator adds
an attribute into	[�]; theabstract operator deletes one.

These newly introduced operators are treated as any other
operator in our greedy hill-climbing search algorithm. They
are considered by the search algorithm at the same time as
the standard operators that manipulate edges in the depen-
dency modelS; the change in the score is evaluated for each
possible operator; and the algorithm selects the best one to
execute.

We note that, as usual, the decomposition of the score
can be exploited to substantially speed up the search. In
general, the score change resulting from an operator! is re-
evaluated only after applying an operator!0 that modifies
the parent set of an attribute that! modifies. This is true
also when we consider operators that modify the parent of
selector attributes and existence attributes.

Results
We have tested our algorithms on a number of domains. In
many cases, the two methods we have introduced for mod-
eling structural uncertainty are not comparable, as they are
applicable under different circumstances. However, here
we present results for a domain in which both models are
applicable, so that we have some basis for comparison.
We present results for a dataset that we have constructed

Education
Age

Personal_income

Household_income

Gender
VOTE
Movie
Person

Ranking
Action
Art_foreign

Classic
Comedy

Drama
Family

Horror
Romance

Thriller

ACTOR

GenderROLE

Movie

Actor

MOVIE PERSON

Video-status
Theater-status

Animation

Figure 2: The schema for our movie domain

from information about movies and actors from the Internet
Movie Database4 and information about people’s ratings of
movies from the Each Movie dataset5. We extended the
demographic information we had for the people by includ-
ing census information available for a person’s zip-code.
From these, we constructed five classes (each of the size
shown): Movie (1628), Actor (37,284); Role (52,563),
Person (27,550), andVotes (320,751). Figure 2 shows the
classes and their attributes.

We learned a PRM for this domain using our two differ-
ent methods for modeling structural uncertainty. For ref-
erence uncertainty, the model we learn (�RU) allows un-
certainty over theMovieandActor reference slots ofRole,
and theMovieandPersonreference slots ofVotes. For ex-
istence uncertainty, the model we learn (�EU) allows un-
certainty over the existence ofRole, and the existence of
Votes.

Figure 3(a) shows�RU . The edges indicate the parents
of attributes in the dependency model. The dashed lines
between a reference slot� and a descriptive attribute of the
range class indicate attributes used in the partitioning	[�].
Figure 3(b) shows�EU .

To evaluate the predictive performance of the two models
(�EU , �RU), we learned PRMs using a training portion of
the data and computed the log likelihood score of the held-
out test subset of the data. The training set contained tables
of the following sizes: Movie(1467), Vote(243333), Per-
son(5210), Actor(34054), Role(46794). The test set con-
tained the remaining data: Movie(161), Vote(5052), Per-
son(585), Actor(5415), Role(5769). Note that the scores
on the test set according to the two models are not directly
comparable, since the space of instantiations they permit is
different. Hence we compare the score of each model to
the score of the model with uniform distribution over the
existence of objects and values of reference slots (�EUU ,
�RUU). We also separately evaluated log-likelihood of the
Person-Vote-Movie and Actor-Role-Movie portions of the
test dataset.

Table 1 shows the results. Both models perform signifi-
cantly better than their uniform counter parts. In particular,
both models achieved better score gain on the Vote part of
the data, but reference uncertainty model performed only

4 c1990-2000 Internet Movie Database Limited
5http://www.research.digital.com/SRC/EachMovie

(a) (b)

Figure 3: (a)�RU , the PRM learned using reference uncertainty. Shaded nodes indicate reference slots. Dashed lines indicate
attributes used in defining the partition. (b)�EU , the PRM learned using existence uncertainty. Shaded nodes indicate exist
attributes.

�EU �EUU � �RU �RUU �

All -210044 -213798 3754 -149705 -152280 2575
Vote -87965 -89950 1985 -67641 -70079 2438
Role -122836 -123999 1163 -82827 -82963 136

Table 1: Evaluation of�EU and�RU on test set.

marginally better on the Role portion of the data. This may
be due to the relative sparseness of the Role table, as few
actors have more than one role.

Conclusion
In this paper, we present two representations for struc-
tural uncertainty: reference uncertainty and existence un-
certainty. Reference uncertainty is relevant when we have
cardinality information for our uncertain relations. Exis-
tence uncertainty is applicable for modeling uncertainty
over many-many relations. We have shown how to integrate
them with our learning framework, and presented results
showing that they allow interesting patterns to be learned.

The ability to represent uncertainty over relational struc-
ture is a unique feature of our more expressive language.
Our treatment here only scratches the surface of this ca-
pability. In particular, we note that neither of these repre-
sentations for structural uncertainty is particularly satisfy-
ing when viewed as a generative model, although we have
found each of them to be useful in a variety of domains. It
is clear that there are many other possible ways to represent
uncertainty over relational structure. We hope to provide
a unified framework for this type of uncertainty in future
work.

References
G. F. Cooper and E. Herskovits. A Bayesian method for
the induction of probabilistic networks from data.Ma-
chine Learning, 9:309–347, 1992.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learn-
ing probabilistic relational models. InProc. IJCAI, 1999.

D. Heckerman. A tutorial on learning with Bayesian net-
works. In M. I. Jordan, editor,Learning in Graphical
Models. MIT Press, Cambridge, MA, 1998.

D. Koller and A. Pfeffer. Probabilistic frame-based sys-
tems. InProc. AAAI, 1998.

L. Ngo and P. Haddawy. Answering queries from context-
sensitive probabilistic knowledge bases.Theoretical Com-
puter Science, 1996.

D. Poole. Probabilistic Horn abduction and Bayesian net-
works. Artificial Intelligence, 64:81–129, 1993.

