From: AAAI Technical Report WS-00-06. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Interpreting Bayesian Logic Programs

Kristian Kersting and Luc De Raedt and Stefan Kramer
Institute for Computer Science, Machine Learning Lab
University Freiburg, Am Flughafen 17, D-79110 Freiburg/Brg., Germany
{kersting, deraedt, skramer }@informatik.uni-freiburg.de

Abstract

Various proposals for combining first order logic with
Bayesian nets exist. We introduce the formalism of
Bayesian logic programs, which is basically a simplifi-
cation and reformulation of Ngo and Haddawys prob-
abilistic logic programs. However, Bayesian logic pro-
grams are sufficiently powerful to represent essentially
the same knowledge in a more elegant manner. The el-
egance is illustrated by the fact that they can represent
both Bayesian nets and definite clause programs (as in
“pure” Prolog) and that their kernel in Prolog is actu-
ally an adaptation of an usual Prolog meta-interpreter.

Introduction

A Bayesian net (Pearl 1991) specifies a probability dis-
tribution over a fixed set of random variables. As such,
Bayesian nets essentially provide an elegant probabilis-
tic extension of propositional logic. However, the lim-
itations of propositional logic, which Bayesian nets in-
herit, are well-known. These limitations motivated the
development of knowledge representation mechanisms
employing first order logic, such as e.g. in logic pro-
gramming and Prolog. In this context, it is no surprise
that various researchers have proposed various first or-
der extensions of Bayesian nets: e.g. probabilistic logic
programs (Ngo & Haddawy 1997), relational Bayesian
nets (Jaeger 1997) and probabilistic relational mod-
els (Koller 1999). Many of these techniques employ the
notion of Knowledge-Based Model Construction (Had-
dawy 1999) (KBMC), where first-order rules with as-
sociated uncertainty parameters are used as a basis for
generating Bayesian nets for particular queries.

We tried to identify a formalism that is as simple as
possible. While introducing Bayesian logic program-
ming we employed one key design principle. The prin-
ciple states that the resulting formalism should be as
close as possible to both Bayesian nets and to some
well-founded first order logic knowledge representation
mechanism, in our case, “pure” Prolog programs. Any
formalism designed according to this principle should
be easily accessible and usable by researchers in both
communities.

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

29

This paper is laid out as follows. The next three
sections present the authors’ solution: Bayesian logic
programs. Section 5 shows a kernel implementation of
them in Prolog. In the following section we give sug-
gestions for learning Bayesian logic programs.

We assume some familiarity with Prolog or logic pro-
gramming (see e.g. (Sterling & Shapiro 1986)) as well as
with Bayesian nets (see e.g. (Russell & Norvig 1995)).

Bayesian logic programs

Bayesian logic programs consist of two components.
The first component is the logical one. It consists of
a set of Bayesian clauses (cf. below) which captures
the qualitative structure of the domain and is based
on“pure” Prolog. The second component is the quan-
titative one. It encodes the quantitative information
about the domain and employs — as in Bayesian nets
— the notions of a conditional probability table (CPT)
and a combining rule.

A Bayesian predicate is a predicate r to which a finite
domain D, is associated. We define a Bayesian defi-
nite clause as an expression of the form A | 4,,..., A,
where the A, A4,,...,A, are atoms and all variables
are (implicitly) universally quantified. When writing
down Bayesian definite clauses, we will closely fol-
low Prolog notation (with the exception that Prolog’s
:- is replaced by |). So, variables start with a cap-
ital, constant and functor symbols start with a lower-
case character. The main difference between Bayesian
and classical clauses is that Bayesian atoms represent
classes of similar random variables. More precisely,
each ground atom in a Bayesian logic program repre-
sents a random variable. Each random variable can
take on various possible values from the (finite) do-
main D, of the corresponding Bayesian predicate r.
In any state of the world, a random variable takes
exactly one value. E.g., we paraphrase that James’
house is not burglarized with burglary(james) = false.
Therefore, a logical predicate r is a special case of a
Bayesian one with D, = {true, false}. An example of a
Bayesian definite clause inspired on (Ngo & Haddawy
1997) is burglary(X) | neighborhood(X). where the
domains are Dyymiary = {true, false} and D,.insourhood =
{bad, average, good}. Roughly speaking, a Bayesian def-

inite clause specifies that for each substitution 8 that
grounds the clause the random variable A8 depends on
Aib,... ,An0. For instance, let § = {X <« james},
then the random variable burglary(james) depends on
neighbourhood(james).

As for Bayesian nets there is a table of condi-
tional probabilities associated to each Bayesian definite
clause!.

neighbourhood(X) || burglary(X) T burglary(X)
true false
bad 0.6 04
average 0.4 0.6
good 0.3 0.7

The CPT specifies our knowledge about the condi-
tional probability distribution? P(A460 | A,6,... ,A,0)
for every ground instance 8 of the clause. We assume
total CPTs, i.e. for each tuple of values u € Dy, x...x
D,4, the CPT specifies a distribution P(Dy4 | u). For
this reason we write P(A | Ay,...,A,) to denote the
CPT associated to the Bayesian clause A | Ay, ..., Ap.
For instance, the above Bayesian definite clause and
CPT together imply that P(burglary(james) = true |
neighbourhood(james) = bad) = 0.6. Each Bayesian
predicate is defined by a set of definite Bayesian clauses,

e.g.

alarm(X) | burglary(X).
alarm(X) | tornado(X).

If a ground atom A is influenced directly (see be-
low) only by the ground atoms of the body of one
ground instance of one clause, then the associated
CPT specified a conditional probability distribution
over A given the atoms of the body. But, if there
are more than one different ground instances of rules
which all have A as head, we have multiple condi-
tional probability distribution over A — in particular
this is the normal situation if a Bayesian atom is de-
fined by several clauses. E.g., given the clauses for
alarm, the random variable alarm(james) depends on
both burglary(james) and tornado(james). However,
the CPT for alarm do not specify P(alarm(james) |
burglary(james), tornado(james). The standard solu-
tion to obtain the desired probability distribution from
the given CPTs is to use a so called combining rule.
Theoretically speaking, a combination rule is any al-
gorithm which maps every finite set of CPTs {P(4 |
Aiyoo 3 Aing) | 1 <4 < m, n; > 0} over ground
atoms onto one CPT, called combined CPT, P(A |
By,... ,Bn) with {Bl,... ,Bn} C U:ZI Ai,... , Ain; -
The output is empty iff the input is empty. Our defi-
nition of a combining rule is basically a reformulation

'In the examples, we use a naive representation as a ta-
ble, because it is the simplest representation. We stress,
however, that other representations are possible and known
(Boutilier et al. 1996).

*We denote a single probability with P and a distribution
with P.

30

of the definition given in (Ngo & Haddawy 1997)3. As
an example we consider the combining rule maz. The
functional formulation is

P(A | U,?:__.IAH,... ,Ain‘.) =
Iil:aix{P(A | Ail)' i aAi‘ni)}

It is remarkable that a combining rule has full knowl-
edge about the input, i.e., it knows all the appearing
ground atoms or rather random variables and the asso-
ciated domains of the random variables.

We assume that for each Bayesian predicate there is
a corresponding combining rule and that the combined
CPT still specifies a conditional probability distribu-
tion. From a practical perspective, the combining rules
used in Bayesian logic programs will be those commonly
employed in Bayesian nets, such as e.g. noisy-or, max.

Semantics of Bayesian logic programs

Following the principles of KBMC, each Bayesian logic
program essentially specifies a propositional Bayesian
net that can be queried using usual Bayesian net in-
ference engines. This view implicitly assumes that all
knowledge about the domain of discourse is encoded in
the Bayesian logic program (e.g. the persons belong-
ing to a family). If the domain of discourse changes
(e.g. the family under consideration), then part of the
Bayesian logic program has to be changed. Usually,
these modifications will only concern ground facts (e.g.
the Bayesian predicates “person”, “parent” and “sex”).

The structure of the corresponding Bayesian net fol-
lows from the semantics of the logic program, whereas
the quantitative aspects are encoded in the CPTs and
combining rules.

The set of random variables specified by a Bayesian
logic program is the least Herbrand model of the pro-
gram?. The least Herbrand model LH(L) of a definite
clause program L contains the set of all ground atoms
that are logically entailed by the program?®, it repre-
sents the intended meaning of the program. By varying
the evidence (some of the ground facts) one also mod-
ifies the set of random variables. Inference for logic
programs has been well-studied (see e.g. (Lloyd 1989))
and various methods exist to answer queries or to com-
pute the least Herbrand model. All of these methods
can essentially be adapted to our context. Here, we as-
sume that the computation of LH(L) relies on the use

8Tt differs mainly in the restriction of the input set to
be finite. We make this assumption in order to keep things
simple.

“Formally it is the least Herbrand model of the logical
program L', which one gets from L by omitting the asso-
ciated CPTs and combination rules as well as interpreting
all predicates as classical, logical predicates. For the benefit
of greater readability, in the sequel we do not distinguish
between L and L'

SIf we ignore termination issues, these atoms can - in
principle - be computed by a theorem prover, such as e.g.
Prolog.

of the well-known Ty, (cf. (Lloyd 1989)) operator®. Let
L be a Bayesian logic program.

TL(Z) = { A0 |there is a substitution § and a
clause A | Ai,... , Ay in L such that
Af| A10,... ,A,0 is ground and
all A;6 €T}

The least Herbrand model LH(L) of L is then the
least fixed point of T (0). It specifies the set of relevant
random variables. For instance, if one takes as Bayesian
logic program the union of all Bayesian clauses written
above together with neighbourhood(james) then LH(L)
consists of neighbourhood(james), burglary(james) and
alarm(james). Notice that the least Herbrand model
can be infinite when the logic program contains struc-
tured terms. This is not necessarily problematic as we
will see later.

Given two ground atoms A and B € LH(L), we
write that A is directly influenced by B if and only if
there is a clause A' | By,...,B, in L and a substitu-
tion # that grounds the clause such that A = A’0 and
B = B;0 for some ¢ and all B;# € LH(L). The rela-
tion influences is then the recursive closure of the rela-
tion directly influences. Roughly speaking, a ground
atom A influences B whenever there exists a proof
for B that employs A. For instance, alarm(james) is
influenced by neighbourhood(james) and directly influ-
enced by burglary(james). Using the influenced by re-
lation we can now state a conditional independency as-
sumptions: let A;,...,A, be the set of all random
variables that directly influence a variable A. Then
each other random variable B not influenced by A4, is
conditionally independent of A given A;,...,A,, i.e.
P(A|As,...,An,B)=P(A| A1,...,Ap). Eg. given
the propositional Bayesian logic program (the famous
example due to Pearl)

earthquake.

burglary.

alarm | earthquake, burglary.
johncalls | alarm.

marycalls | alarm.

the random variable johncalls is conditionally inde-
pendent of marycalls given alarm.

Obviously, the relation influenced by should be
acyclic in order to obtain a well-defined Bayesian net.
The network can only be cyclic when there exists an
atom A that influences itself. In this case executing the
query ?- A (using e.g. Prolog) is also problematic — the

8For simplicity, we will assume that all clauses in a
Bayesian logic program are range-restricted. This means
that all variables appearing in the conclusion part of a
clause also appear in the condition part. This is a com-
mon restriction in computational logic. When working with
range-restricted clauses, all facts entailed by the program
are ground. Also, the pruned and-or trees and graphs (cf.
below) will only contain ground facts. This in turn guaran-
tees that the constructed Bayesian net for any query con-
tains only proper random variables.

31

SLD-tree (see below) of the query will be infinite and
the query may not terminate. Thus the logical compo-
nent of the Bayesian logic program is itself problematic.
Additional simple considerations lead to the following
proposition:

Proposition 1. Let B be a Bayesian logic program and
LH(B) the least Herbrand model of B. If B fulfills the
following conditions:

1. the influenced by relation over LH(B) is acyclic and

2. each random variable in LH(B) is only influenced by
a finite set of random variables,

then it specifies a distribution P over LH(B) which
is unique in the sense that for each finite subset S C
LH(B) the induced distribution P(S) is unique.

A proof can be found in (Kersting 2000). The con-
ditions still allow infinite least Herbrand models but
account for Bayesian nets: they are acyclic graphs and
each node has a finite set of predecessors. Let us have a
look at a program which violates the conditions, more
exactly said, the properties of the random variable r(a)
together with the directly influenced by relation violates
them:

r(a). s(a,b).

r(X) | r(X).

r(X) | s(X,£(V)).
s(X,£(Y)) | s(X,Y).

Given this Program the random variable
r(a) is directly influenced by itself and by
s(a, £(b)), s(a, F(£((B))), .. --

s(a).
r(X) | r(£(X)).

r(£(X)) | s(£(X)).
s(£(X)) | s(X).

Given this Program the random variable r(a) is
influenced (not directly) by r(f(a)),r(f(f((a))),...
though it has a finite proof. In this paper, we assume
that the Bayesian logic program is unproblematic in
this respect”.

To summarize, the least Herbrand model of a
Bayesian logic program specifies the random variables
in the domain of discourse. These random variables
can then in principle® be represented in a Bayesian net
where the parents of a random variable v are all facts
directly influencing v. Any algorithm solving the infer-
ence problem for Bayesian nets can now be applied. At
this point it should be clear how Bayesian nets are rep-
resented as Bayesian logic programs. We only encode
the dependency structure as a propositional Bayesian
logic program. Everything else remains the same.

"This is a reasonable assumption if the Bayesian logic
program has been written by anyone familiar with Prolog.

8We neglect the finiteness of Bayesian nets for the mo-
ment.

Query-answering procedure

In this section, we show how to answer queries with
Bayesian logic programs. A probabilistic query or
shortly a query is an expression of the form

?7- Q | E1=1,...,EN=eN

and asks for the conditional probability distribution
PQ | E, =e,...,E, = e,). We first consider the
case where no evidence is given, and then show how to
extend this in the presence of evidence.

Querying without evidence

First, we show how to compute the probability of the
different possible values for a ground atom (a random
variable) Q. Given a Bayesian logic program,

lives_in(james,yorkshire).
burglary(james) .
lives_in(stefan,freiburg).
tornado(yorkshire).

alarm(X) | burglary(X).

alarm(X) | lives_in(X,Y), tornado(Y).

the query 7- alarm(james) asks for the probabilities
of alarm(james) = true and alarm(james) = false. To
answer a query 7- @ we do not have to compute the
complete least Herbrand model of the Bayesian logic
program. Indeed, the probability of ¢} only depends
on the random variables that influence @, which will
be called relevant w.r.t. @ and the given Bayesian logic
program. The relevant random variables are themselves
the ground atoms needed to prove that @ is true (in the
logical sense).

The usual execution model of logic programs relies
on the notion of SLD-trees (see e.g. (Lloyd 1989;
Sterling & Shapiro 1986)). For our purposes it is only
important to realize that the succeeding branches in
this tree contain all the relevant random variables. Fur-
thermore, due to the range-restriction requirement all
succeeding branches contain only ground facts. Instead
of using the SLD-tree to answer the query in the prob-
abilistic sense, we will use a pruned and-or tree, which
can be obtained from the SLD-tree. The advantage of
the pruned and-or tree is that it allows us to combine
the probabilistic and logical computations. An and-or
tree represents all possible partial proofs of the query.
The nodes of an and-or tree are partitioned into and
(black) and or (white) nodes. An and node for a query
?7- Q1,...,Q, is proven if all of its successors nodes
?7- @; are proven. An or node 7- @ is proven if at least
one of its successors nodes is proven. There is a succes-
sor node ?- A14,...,A,8 for an or node 7- A if there
exists a substitution € and a Bayesian definite clause
A'|Ag,..., A, such that A’'0 = Af. Since we are only
interested in those random variables used in success-
ful proofs of the original query, we prune all subtrees
which do not evaluate to true. A pruned and-or tree
thus represents all proofs of the query. One such tree
is shown in Figure 1. It is easy to see that each ground
atom (random variable) has a unique pruned and-or
tree. On the other hand, for some queries and Bayesian

32

alarm(james)

P(alarm(james Q P(alarm(james
(burgl(%y(janzels))/ \frnarso(york)sjlire

lives_in(james, yorfcshire))

o ®
burglary(james) tornado(yorkshire)
lives_in(james, yoricshz’re)

o 0
burglary(james) .
P(burglory(ames) tornado(yorkshire)

lives_in(james, yorkshire
P(lives_in(james, yorkshire)

Figure 1: The pruned and-or tree (with associated
CPTs) of the query 7- alarm(james).

alarm(james)
0—" O tornado(yorkshire)
burglary(james) O lives_in(james, yorkshire)

Figure 2: The dependency structure of the resulting
Bayesian net of the query 7- alarm(james).

logic programs it might occur that a ground fact A oc-
curs more than once in the pruned and-or tree. Given
the uniqueness of pruned and-or trees for ground facts,
it is necessary to turn the pruned and-or tree into an
and-or graph by merging any nodes for A. This can ac-
tually be achieved by storing all ground atoms proven
so-far in a look-up table, and using this table to avoid
redundant computations.

The resulting pruned and-or graph compactly repre-
sents the dependencies between the random variables
entailed by the Bayesian logic program. E.g. the tree
in Figure 1 says that burglary(james) is influenced by
neighbourhood(james). Furthermore, the and-or graph
reflects the structure of the quantitative computations
required to answer the query. To perform this com-
putation, we store at each branch from an or node to
an and node the corresponding CPT (cf. Figure 1).
The combined CPT for the random variable v in the
or node is then obtained by combining the CPTs on v’s
sub-branches using the combining rule for the predicate
in v. It is always possible to turn the and-or graph into
a Bayesian net. This is realized by (1) deleting each
and node n and redirecting each successor of n to the
parent of n (as shown in Figure 2), and (2) by using the
combined CPT at each or node.

Querying with evidence

So far, we have neglected the evidence. It takes the form
of a set of ground random variables {E1,...,E,} and
their corresponding values {e1,... ,e,}. The Bayesian
net needed to compute the probability of a random vari-
able @ given the evidence consists of the union of all
pruned and-or graphs for the facts in {Q, E1,...,En}.
This Bayesian net can be computed incrementally,
starting by computing the graph (and the look-up table

as described above) for @ and then using this graph and
look-up table when answering the logical query for E;
in order to guarantee that each random variable occurs
only once in the resulting graph. The resulting graph is
then the starting point for E3 and so on. Given the cor-
responding Bayesian net of the final and-or graph, one
can then answer the original query using any Bayesian
net inference engine to compute

P(QlEl =€1,... ,Enzen).

The qualitative dependency structure of the resulting
Bayesian net for the query 7- alarm(james) is shown
in Figure 1. Normally the resulting Bayesian net is not
optimal and can be pruned.

Retrospectively we can say that a probabilistic query
?- Q | El=el,..., EN=eN is legal if the union of all
and-or graphs of Q, E1,..., EN is finite. In other
words, the SLD trees of Q, E1,..., EN must be finite.

Implementation

The following Prolog code enables one to compute the
structure of the pruned and-or graph of a random vari-
able as a set of ground facts of the predicate imply,
assuming that the logical structure of a Bayesian logic
program is given as a Prolog program. The and-
or graph is represented as a set of ground atoms of
imply(or:X,and:Y) and imply(and:X,or:Y). The use
of the Prolog’s own query procedure proves for two rea-
sons as efficient: (1) it implements the desired search
and (2) it is efficient and uses an efficient hash table.
We do not present the entire source code, because the
remaining program parts follow directly from the pre-
vious discussion.

build_A0G(Goal) :-
clause(Goal, Body),imply(or:Goal,and:Body),!.
build_A0G(Goal) :-
clause(Goal, Body), build_AOG_Body(Goal,Body),
assert (imply (or:Goal,and:Body)).
build_AOG_Body(_,true):- !.
build_AO0G_Body(_, (Body,Bodies)) :~ !,
build_AOG(Body),
build_AOG._Conj((Body,Bodies) ,Bodies),
assert (imply(and: (Body,Bodies) ,or:Body)).
build_ADG_Body(_, (Body)) :-
build_AOG(Body), assert(imply(and:Body,or:Body)).
build_A0G_Conj((Goal,Goals), (Body,Bodies))
build_AOG(Body),
build_AOG_Conj((Goal,Goals) ,Bodies),
assert (imply(and: (Goal,Goals),or:Body)).
build_A0G_Conj({Goal,Goals) ,Body)
build_AOG(Body),
assert (imply (and: (Goal,Goals) ,or:Body)).

PR |
H LI

-
=1,

The pruned and-or graph is the component contain-
ing the root node as the following example clarifies. On
the query ?- alarm(stefan). the code asserts

imply(or:lives_in(stefan,freiburg), and:true).

The reason for that is that the and-or graph of a
ground atom g, which comes in a body of a rule before

33

a ground atom ¢', is asserted without proving the truth
of ¢’. To extract the right component one can use the
following code:

extract_pruned_A0G([1).
extract_pruned_AOG([_:true|Rest]) :-
extract_pruned_A0G(Rest).
extract_pruned_AOG([Goal |Rest]) :-
findall(Body, (imply(Goal,Body),
not marked(Goal,Body),
assert (marked(Goal,Body))),
Successors),
append(Successors,Rest,NewRest),
extract_pruned_AO0G (NewRest) .

Calling extract_pruned A0G([or:
alarm(stefan)]) it marks all nodes of the com-
ponent containing the root node. After marking we
can use
findall ((X,Y), (imply(X,Y),

not marked(X,Y),
retract (imply(X,Y))),_).

to delete all irrelevant nodes and arcs. Furthermore, the
code typifies the reason why “pure” Prolog programs
as well as structured terms can be elegantly handled
with Bayesian logic programs: it describes essentially
an usual Prolog meta-interpreter. Moreover it should
make the definitions of legal queries clearer.

Learning

So far we have merely introduced a framework that
combines Bayesian nets with first order logic. In this
section, we provide some initial ideas on how Bayesian
logic programs might be learned.

The inputs to a system learning Bayesian logic pro-
grams should consist of a set of cases, where each case
describes a set of random variables as well as their
states. One complication that often arises while learn-
ing Bayesian nets and that is also relevant here is that
some random variables or the corresponding states may
not be fully observable.

In the literature on learning Bayesian nets (Hecker-
man 1995; Buntine 1996) one typically distinguishes be-
tween:

1. learning the structure of a net (model selection)
and/or

2. learning the associated CPTs.

This distinction also applies to Bayesian logic pro-
grams, where one can separate the clausal structure
from the CPTs. In addition, the combining rules could
be learned®.

Let us address each of these in turn. .

For what concerns learning the underlying logic pro-
gram of a Bayesian logic program, it is clear that tech-
niques from the field of inductive logic programming
(Muggleton & De Raedt 1994) could be helpful.

®For our suggestions we assume that the rules are de-
termined by a user because learning the rules results in an
explosion of complexity.

To given an idea of how this might work, we merely
outline one possibility for learning the structure of the
Bayesian logic program from a set of cases in which
the relevant random variables are specified (though
their values need not be known). This means that for
each case we know the least Herbrand model. One
technique for inducing clauses from models (or inter-
pretations) is the clausal discovery technique by De
Raedt and Dehaspe (De Raedt & Deshape 1997). Ba-
sically, this technique starts from a set of interpre-
tations (which in our case corresponds to the Her-
brand models of the cases) and will induce all clauses
(within a given language bias) for which the interpre-
tations are models. E.g. given the single interpretation
{female(soetkin), male(maarten), human(maarten),
human(soetkin)} and an appropriate language bias the
clausal discovery engine would induce human(X) «
male(X) and human(X) + female(X). The Claudien
algorithm essentially performs an exhaustive search
through the space of clauses which is defined by a lan-
guage L. Roughly speaking, Claudien keeps track of a
list of candidate clauses @, which is initialized to the
maximally general clause in £. It repeatedly deletes
a clause ¢ from @, and test whether all given inter-
pretations are a model for c. If they are, ¢ is added
to the final hypothesis, otherwise all maximally general
specializations of ¢ in £ are computed (using a so-called
refinement operator (Muggleton & De Raedt 1994)) and
added back to Q. This process continues until @ is
empty and all relevant parts of the search-space have
been considered. A declarative bias hand-written by
the user determines the type of regularity searched for
and reduces the size of the space in this way. The pure
clausal discovery process as described by De Raedt and
Dehaspe may induce cyclic logic programs. However,
extensions as described in (Blockeel & De Raedt 1998)
can avoid these problems.

If we assume that the logic program and the com-
bination rules are given, we may learn the associated
CPTs. Upon a first investigation, it seems that the
work of (Koller & Pfeffer 1997) can be adapted towards
Bayesian logic programs. They describe an EM based
algorithm for learning the entries of CPTs of a proba-
bilistic logic program in the framework of (Ngo & Had-
dawy 1997) which is strongly related to our framework
as is shown in (Kersting 2000). The approach makes
two reasonable assumptions: (1) different data cases are
independent and (2) the combining rules are decompos-
able, i.e., they can be expressed using a set of separate
nodes corresponding to the different influences, which
are then combined in another node. As Koller and Pf-
effer note, all commonly used combining rules meet this
condition.

To summarize, it seems that ideas from inductive
logic programming can be combined with those from
Bayesian learning in order to induce Bayesian logic pro-
grams. Our further work intends to investigate these
issues.

34

Conclusions

In this paper, we presented Bayesian logic programs
as an intuitive and simple extension of Bayesian nets
to first-order logic. Given Prolog as a basis, Bayesian
logic programs can easily be interpreted using a vari-
ant, of a standard meta-interpreter. We also indicated
parallels to existing algorithms for learning the numeric
entries in the CPTs and gave some promising sugges-
tions for the computer-supported specification of the
logical component.

Acknowledgements
We would like to thank Daphne Koller, Manfred Jaeger,
Peter Flach and James Cussens for discussions and
encouragement. The authors are also grateful to the
anonymous reviewers.

References
Blockeel, H., and De Raedt, L. 1998. ISSID : an inter-
active system for database design. Applied Artificial
Intelligence 12(5):385-420.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and
Koller, D. 1996. Context-specific independence in
baysian networks. In Proc. of UAI-96.
Buntine, W. 1996. A guide to the literature on learn-
ing probabilistic networks from data. IEEE Trans. on
Knowledge and Data Engineering 8(2).
De Raedst, L., and Deshape, L. 1997. Clausal discovery.
Machine Learning (26):99-146.
Haddawy, P. 1999. An overview of some recent devel-
opments on bayesian problem solving techniques. AI
Magazine - Special Issue on Uncertainty in AL
Heckerman, D. 1995. A tutorial on learning with
bayesian networks. Technical Report MSR-TR-95-06,
Microsoft Research, Advanced Technology Division,
Microsoft Corporation.
Jaeger, M. 1997. Relational bayesian networks. In
Proc. of UAI-1997.
Kersting, K. 2000. Baye’sche-logisch Programme.
Master’s thesis, University of Freiburg, Germany.
Koller, D., and Pfeffer, A. 1997. Learning probabil-
ities for noisy first-order rules. In Proceedings of the
Fifteenth Joint Conference on Artificial Intelligence.
Koller, D. 1999. Probabilistic relational models. In
Proc. of 9th Int. Workschop on ILP.
Lloyd, J. W. 1989. Foundation of Logic Programming.
Berlin: Springer, 2. edition.
Muggleton, S., and De Raedt, L. 1994. Inductive logic
programming: Theory and methods. Journal of Logic
Programming 19(20):629-679.
Ngo, L., and Haddawy, P. 1997. Answering queries
form context-sensitive probabilistic knowledge bases.
Theoretical Computer Science 171:147-177.
Pearl, J. 1991. Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, 2.
edition.

Russell, S. J., and Norvig, P. 1995. Artificial Intelli-
gence: A Modern Approach. Prentice-Hall, Inc.

Sterling, L., and Shapiro, E. 1986. The Art of Prolog:
Advanced Programming Technigues. The MIT Press.

35

