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Abstract 
Relational data offer a unique opportunity for improving 
the classification accuracy of statistical models. If two 
objects are related, inferring something about one object 
can aid inferences about the other. We present an iterative 
classification procedure that exploits this characteristic of 
relational data. This approach uses simple Bayesian 
classifiers in an iterative fashion, dynamically updating 
the attributes of some objects as inferences are made about 
related objects. Inferences made with high confidence in 
initial iterations are fed back into the data and are used to 
inform subsequent inferences about related objects. We 
evaluate the performance of this approach on a binary 
classification task. Experiments indicate that iterative 
classification significantly increases accuracy when 
compared to a single-pass approach. 

Introduction   

The structure of relational data presents a unique 
opportunity to use knowledge about one object to inform 
inferences about related objects. The goal of this work is 
to explore how conventional techniques for constructing 
and using classification models can be used in new ways 
to exploit this opportunity. Specifically, we investigate 
using simple Bayesian classifiers in an iterative fashion to 
improve classification accuracy by exploiting relational 
information in the data.  
 The hypothesis underlying this approach is that if two 
objects are related, inferring something about one object 
can assist inferences about the other. We call this 
approach iterative classification. Inferences made with 
high confidence in initial iterations are fed back into the 
data to strengthen inferences about related objects in 
subsequent iterations. Experimental evidence shows that 
iterative classification leads to a significant increase in 
classification accuracy when compared with a single-pass 
approach. This suggests that there are distinctive 
characteristics of relational data that can be used to 
improve classification accuracy. 
 Simple Bayesian classifiers (SBCs) take traditional 
attribute-value data as input. In order to use SBCs with 
relational data, we flatten the data first by calculating 
intrinsic and relational attributes about individual objects. 
However, we maintain a relational representation of the 

data and flatten dynamically only when needed by the 
classifier. Retaining the relational representation makes it 
possible to extract data, perform a series of calculations 
and then feed the results back into the relational structure 
for use in future calculations. The ability to perform 
iterative calculations in this manner is one of the benefits 
of maintaining a relational data representation. For 
example, some measures of centrality in social network 
analysis (Wasserman and Faust 1994) can only be 
calculated in such an iterative fashion. Kleinberg’s Hubs 
and Authorities algorithm for Web searching (1998) also 
uses iterative calculations in this manner. 

Relational Classification 

Relational data sets present a special opportunity for 
improving classification. The opportunity exists if, when 
two objects are related, inferring something about one 
object can help you infer something about the other. For 
example, if two people jointly own a business, and one of 
them is identified as a money launderer, then it may be 
more likely that the other is also involved in money 
laundering. The ability to exploit associations among 
objects in this manner has applications in many fields 
with relational data, including epidemiology, fraud 
detection, ecological analysis and sociology.  
 A relational classification technique, which uses 
information implicit in relationships, should classify more 
accurately than techniques that only examine objects in 
isolation. Relational classification techniques could be 
particularly useful in domains with abundant information 
about the relationships among objects but only limited 
information about the intrinsic properties of those objects. 
For example, relational classification might be applied to 
identify potential money-laundering operations based on 
bank deposits and business connections (Jensen 1997). In 
such a situation, the existence of an employee making 
large cash deposits for more than one business gives little 
information as to the legitimacy of those businesses. 
Many service and retail companies have high volumes of 
cash sales and it’s not uncommon for a person to be 
employed by more than one company. However, if one of 
the businesses is discovered to be a front company for 
money laundering, then the related businesses are more 
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likely to be front companies as well. In this case, the 
relationship provided by a common depositor is more 
useful in the context of knowledge about the related 
companies. 
 There are multiple ways to approach classification in a 
relational context. One approach ignores related objects 
and builds classifiers based only on the properties of an 
object in isolation. Another approach looks at the 
properties of both the object and its related objects in a 
static manner, by taking a snapshot of the relational 
context at some time prior to classification. A third 
approach uses properties of related objects and 
dynamically updates those properties as predictions about 
related objects change. Iterative classification uses the 
latter approach, applying SBCs in a dynamic way to fully 
leverage the structure of relational data.  
 For example, in a data set we describe below, a 
relational data structure represents companies, their 
subsidiaries, corporate stockholders, officers and board 
members. Companies are linked indirectly through 
stockholders and through people serving simultaneously 
on several boards (see figure 1). Such an interlocking 
structure allows the creation of both intrinsic and 
relational attributes. Intrinsic attributes record 
characteristics of objects in isolation — for example, 
company type or officer salary. Relational attributes 
summarize characteristics of one or more related objects 
— for example, a company’s number of subsidiaries or 
the maximum salary of any board member.  
 Relational attributes fall into two categories which we 
will call static relational and dynamic relational. Any 
intrinsic attribute has the potential to be predicted by an 
SBC model; from the same company data we could 
predict any of the intrinsic attributes mentioned above. 
Static relational attributes use known intrinsic attributes of 
related objects and as such they can be computed without 
the need for inference. The values of static relational 
attributes remain constant over the course of 
classification. Dynamic relational attributes use inferred 
intrinsic attributes of related objects so they require that at 
least some related objects be classified before the attribute 
can be computed. The values of dynamic relational 
attributes may change as classification progresses and 
additional inferences are made about related objects. 
 For example, if we were predicting company type, then 
static relational attributes might record the number of 
board members who have the title CEO or the average 
salary of officers. Dynamic relational attributes might 
record the most prevalent type of corporate stockholder or 
the maximum number of subsidiaries that share the same 
type. Both of these latter attributes are dynamic and 
relational because they reference the company type of 
related objects, the very thing we are trying to infer about 
the primary object.  For notational simplicity, the 
remainder of this paper will refer to intrinsic and static 
relational attributes as static attributes, and dynamic 
relational attributes as dynamic attributes. 
 

Figure 1: Corporate data ontology 

 In a relational corporate data set, knowing the type of 
one company might help us infer the type of another 
company to which it is related, and vice versa. For 
instance, we may find that individuals tend to serve on 
boards of companies with the same type, so if a person is 
on the board of both company X and company Y, and 
company X is a bank, then company Y is more likely to 
also be a bank. Or we may find that companies tend to 
own stock in companies with the same type, so if a 
company owns both company X and company Y, and 
company X is a bank, then company Y is more likely to 
be a bank. In situations of this type, the relations among 
objects assist the inferences. 
 In iterative classification, a model is built using a 
variety of static and dynamic attributes. When training the 
model, the class labels of all objects are known and 
consequently the values of all dynamic attributes are also 
known. 
 The trained classifier is then applied to previously 
unseen examples for which the class labels are unknown. 
Initially, because class labels of related objects are 
unknown, values of all dynamic attributes are also 
unknown. However, their values can be estimated as 
classification progresses. At the onset, the classifier 
makes predictions for all objects based only on the values 
of static attributes. Classifications made with high 
probability are accepted as valid and are written into the 
data as known class labels. SBCs are useful for iterative 
classification because each prediction has an associated 
probability estimate that can be used to guide iterative 
classification. 
 After some percentage of the most certain 
classifications are “accepted” the classifier starts the next 
iteration, recalculating dynamic attributes in light of this 
new information and proceeding with classification once 
again. At each iteration, additional dynamic attributes are 
filled in and a greater percentage of classifications are 
accepted. 
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 Because each prediction is both recalculated and 
reevaluated for each iteration, a prediction about a given 
object may change over the course of iterations. If the 
probability associated with a particular prediction falls out 
of the top percentage of accepted predictions, the 
inference will be removed from the data. Also, if the 
predicted class label changes for a particular object (and 
the prediction is accepted), the new class label will be 
written into the data for that object. 
 After a given number of cycles, when all classifications 
have been accepted, the process terminates. We 
conjecture that iterative classification will produce more 
accurate predictions of class values than conventional 
classification involving intrinsic and static relational 
attributes alone. 

Iterative Classification Algorithm  
1. Build model on fully labeled training set 
2. Apply trained model to test set of N instances. For 

each iteration i : 1 to m 
a. Calculate values for dynamic relational attributes 
b. Use model to predict class labels 
c. Sort inferences by probability 
d. Accept k class labels, where k = N ( i / m ) 

3. Output final inferences made by model on test set 

Necessary conditions 

We conjecture that a relational data set must exhibit 
several characteristics before an iterative classification 
approach will improve accuracy over a single-pass 
approach. An initial outline of these characteristics is 
given below; however, further investigation is needed to 
determine the exact nature and scope of these conditions.  
 First, using static attributes alone should not maximize 
accuracy. If a classifier can make highly accurate 
predictions without dynamic attributes, there is little room 
for improvement via iteration. Also, if an inference about 
one object does not inform subsequent inferences about 
related objects, then dynamic attributes will not aid 
classification. The relevance of dynamic attributes can be 
gauged with a single “full knowledge” classification pass 
— where the true class labels of related objects are used 
to calculate the values of dynamic attributes. Such a test 
indicates the effectiveness of the dynamic attributes if the 
inferences made by the model were 100% accurate; the 
test reveals the ceiling accuracy for the chosen set of 
attributes. If the ceiling accuracy is not significantly 
higher than the floor accuracy (using only static 
attributes), iteration will produce no discernible effect.  
 Second, the data set must be sufficiently connected. An 
iterative approach uses relational structure to maximize 
the use of its inferences. The results of classification are 
spread through the relational structure via dynamic 
attributes, so if the data are sparsely linked, then there is 
less opportunity to make use of prior inferences. 

However, what constitutes “sufficient” linkage is not 
clear, and it may vary significantly across data sets. Both 
the degree of linkage, as well as the type of linkage, may 
affect the results of iterative classification. Further 
exploration is needed to determine the success of iterative 
classification for various types of relational structures. 
 Finally, there must be information present in the data to 
catalyze the iteration process. Initial classifications are 
made using only static attributes; therefore the 
classification model must have a way of making some 
initial inferences accurately. If none of the initial 
inferences are correct, then all subsequent predictions will 
be misled by those inferences that are accepted. This 
condition, combined with the first, implies the need for 
“islands of certainty.”  
 Islands of certainty denote knowledge from which 
some, but not all, objects can be classified accurately, 
with high confidence. Examples of islands of certainty 
include a highly predictive static attribute that is missing 
in many instances but known for some, a static attribute 
for which some values are highly predictive of particular 
class labels but other values are not, or a partially labeled 
data set. 
 The inferences made from islands of certainty catalyze 
iterative classification, leading to correct dynamic 
attribute calculations and improving predictions about 
related objects. Without such islands, the performance of 
iterative classification may degrade. Future work should 
explore the extent of this degradation and determining the 
size, type and number of islands needed for successful 
iterative classification. 

Experiments 

Our experiments use a data set which records intrinsic and 
relational features of publicly traded corporations. The 
data are drawn from documents filed with the US 
Securities Exchange Commission (SEC). Due to the size 
of the database, we chose to work with data from only 
two industries, banks and chemical companies. Data are 
maintained separately for each industry in the SEC 
database, so substantial consolidation was needed to 
combine data from two industries.  
 The data consist of companies, their board members 
and officers, stockholders, contractors and subsidiaries. 
The data set contains 2142 central companies (892 
chemical companies and 1250 banks). It also contains 
18679 related companies: 5201 corporate owners, 969 
contractors, and 12509 subsidiaries. Owners, contractors, 
and subsidiaries do not have the same intrinsic attributes 
as the banks and chemical companies, so we chose to 
represent then as separate objects. In addition to these 
objects, the data set also contains 25591 people who serve 
as officers and directors of the companies.  
 We selected a relatively simple task: to classify 
companies as to their industry, either bank or chemical, 
using both relational and intrinsic attributes. 
Classification of companies by type is a surrogate task 



intended to illustrate the potential of iterative 
classification in other domains with similar organizational 
structure, such as fraud detection or money laundering 
analysis. Iterative classification is not restricted to binary 
classification tasks. Because an SBC produces a posterior 
probability estimate for each class label, the approach 
could easily be used for classes with more than two labels. 
Multiple class labels, however, would make the queries 
for calculating and updating attribute values more 
complex, and complicate ROC curve analysis. 
 The data ontology is shown in figure 1. Nodes in the 
graph represent objects in the data set. Links in the graph 
correspond to possible relationships among objects. 
Italicized labels indicate link or object type. All other 
labels correspond to intrinsic data associated with the 
links and objects. A distinctive feature of this ontology is 
that companies are never linked to other companies 
directly; they are only linked indirectly through people, 
owners and contractors. 
 In our experiments, we used four attributes for each 
company: 1) the state of incorporation (static); 2) the 
number of subsidiaries (static); 3) whether the company is 
linked to more than one chemical company through its 
board members (dynamic); and 4) whether the company is 
linked to more than one chemical company through its 
insider owners (dynamic). Informal tests with additional 
attributes showed no substantial improvement in 
accuracy, so for efficiency reasons the attributes were 
limited to these four.  

Sampling 
Devising a disjoint training and test set was challenging. 
Partial sampling of linked data can bias statistical 
estimates of relational attributes (Jensen 1998). Fractional 
sampling of linkage in the data can produce under- and 
over-estimates of attributes that will reduce the 
effectiveness of an induction algorithm. SBCs assume that 
the distribution of features is comparable between training 
and tests sets, so their effectiveness depends on a 
sampling procedure that produces similarly linked 
training and tests sets. Also, because iterative 
classification involves inferences made about linked 
companies, a desirable sampling procedure would retain 
as much linkage to other companies as possible. 
 The sampling procedure used is similar to the 
exhaustive approach described by Jensen (1998). The 
process for creating two samples A & B from the set of all 
companies is given below. 
 This approach produces two disjoint subsets — the core 
of each sample. By definition companies in core A have 
no links to companies in sample B. Likewise, companies 
in core B have no links to companies in sample A (see 
figure 2). The resulting size of the cores depends on the 
degree of linkage in the data set. If the objects are highly 
linked then there will be very few objects in the core. 
 Because the success of iterative classification in the 
corporate data depends on linkage among companies, we 
 

Sampling Procedure  
1. Initialize X to the set of all company objects. 
2. Do until X is empty: 

a. Do until a company is placed in sample A: 
i. Randomly pick a company x and remove 

from X. 
ii. Gather all objects one link away from x. 
iii. If any of these objects is in sample B, discard 

x. Otherwise place x in sample A, along with 
all objects one link away from x. 

b. Do until a company is placed in sample B: 
i. Randomly pick a company y and remove 

from X. 
ii. Gather all objects one link away from y. 
iii. If any of these objects is in sample A, discard 

y. Otherwise place y in sample B, along with 
all objects one link away from y. 

3. For all discarded companies, randomly place half in 
sample A and half in sample B. 

4. Label all companies in sample A that have no links to 
sample B as objects in the core of sample A. Label 
sample B similarly. 

removed all companies from the sample with no links to 
other companies. This improved the statistical power of 
our evaluation by focusing on the portion of the task to 
which iterative classification is most applicable. It also 
reduced the total number of companies in the data set to 
1088. In order to increase the number of companies in the 
core of each sample, the definition of the core was 
relaxed. Because the only dynamic attributes used for 
classification involved links through people (insider 
owners or board members), the core objects were defined 
as those that have no links through people to companies 
in the other sample. Links to companies in the other 
sample through corporate owners and contractors 
however, were allowed. Core A therefore consists of those 
companies in sample A that have no links through people, 
to companies in sample B. The distribution of banks and 
chemical companies in both the samples and the cores are 
outlined in table 1. 

Figure 2: Example of indirect company linkage in samples 

Sample A Sample B

Core A Core B



 

 
Number of 

banks 
Number of 
chemicals 

Total number  
of companies 

Sample A 230 316 546 
Core A 170 113 283 
Sample B 236 306 542 
Core B 189 113 302 

Table 1: Distribution of samples and cores 

Experimental Procedure 
Using the two samples A and B we performed a two-fold 
cross validation test of iterative classification. The small 
number of objects in the resulting cores, when sampled 
for more than two sets, prohibited the use of more than 
two disjoint samples. The classifier was trained on a fully 
labeled sample A and then tested on sample B with 10 
iterations. Because the 10th iteration has only 90% of the 
inferences available for dynamic attribute calculation, a 
final classification pass (11th iteration) was also included 
which used 100% of the inferred class labels.  
 During training, the dynamic attributes of sample A 
make use of some of the class labels in sample B but this 
does not include any of the companies in core B. When 
testing on sample B, the classifier makes inferences about 
all the companies in sample B; however, accuracy is 
measured only on the fully disjoint companies in core B. 
The companies of sample A must be fully labeled during 
the testing process in order to prevent biasing the attribute 
calculation of companies in sample B that are not in core 
B. In the second test, the classifier is trained on sample B 
and tested on sample A. 

Results 
Accuracy results for the two test sets are shown in table 2; 
accuracy refers to the rate of correct predictions made by 
the model for the objects in the test set. The “Static” 
accuracy results are from a single classification pass using 
only static attributes of the test set, where the values for 
the dynamic attributes are all missing. “Iteration 1” and 
“Iteration 10” are the accuracy results after the first and 
tenth iteration respectively. “Full knowledge” indicates 
the accuracy results of a single classification pass using 
all attributes, where the dynamic attributes are calculated 
with complete knowledge of the true class labels of all 
related companies.  
 McNemar’s test (Sachs 1982) was used the compare the 
difference in classification accuracy between the 1st 
iteration and 10th iteration. The McNemar statistic tests 
the null hypothesis that the differences in frequencies of 
correct and incorrect classifications in each iteration 
represent random variations in the class labels. Combining 
the results from both cross-validation trials, the value of 
the McNemar statistic was 5.558, which indicates the 
difference in classifications from the 1st to the 10th 
iteration is significant at the 2% level. 

 

 
% Accuracy on 

Core B 
% Accuracy on 

Core A 
Static 69.2 68.6 
Iteration 1 72.2 78.1 
Iteration 10 75.2 80.9 
Full Knowledge 78.1 80.9 

Table 2: Classification accuracies 

 Accuracy results over the course of iterations for each 
cross-validation run are shown in figure 3. Accuracy 
increases steadily throughout the classification procedure 
except for a drop in the final pass (11th iteration). 
Dynamic attribute calculations in the final pass include 
the inferences for which the SBC model is most uncertain 
— the bottom 10%. This suggests that an improvement in 
classification could be achieved by the use of a threshold 
for accepting predictions, instead of accepting the top 
percentage.  

Figure 3: Accuracy results on core objects for each iteration 

 Because accuracy maximization assumes equal 
misclassification cost for false positive and false negative 
errors, the use of classification accuracy as a primary 
metric to compare classifiers is not always an indication 
of superior performance for other costs and class 
distributions (Provost, Fawcett and Kohavi 1998). 
Receiver Operating Characteristic (ROC) analysis is an 
alternative means to evaluate the error tradeoffs 
associated with a given model.  
 ROC curves for the SBC models on the 1st and 10th 
iterations are shown in figure 4. The curves show the 
predictive ability of each model across all possible error 
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costs and class distributions. Each SBC model is 
represented in ROC space by a curve corresponding to its 
true positive rates and false positive rates (TP, FP), as the 
probability threshold between classes is varied between 
zero and one. 
 An ROC curve maps a classifier’s performance as the 
confidence threshold for acceptance of its predictions is 
varied between the extremes of accepting no 
classifications to accepting all classifications. If a model 
dominates the ROC space it can be regarded as the “best” 
predictive model for all domains, no matter what the cost 
and class distributions are in the test environment. 

Figure 4: ROC Curves for classification on sample core objects 

Discussion 
The accuracy results imply some interesting conclusions 
regarding iterative classification in this domain. First, our 
window for improvement in this data set is quite small, 
with approximately a 10% difference between the floor 
and ceiling accuracies. The floor accuracy can be lowered 
artificially by dropping static attributes. This was 
attempted but the iterative approach failed without the 
inclusion of both static attributes. This indicates the 
importance of having strong static attributes as islands of 
certainty from which to jumpstart the iterative process. 
The limited variety of links in the data set constrained the 
number of potentially predictive dynamic attributes, so 
raising the ceiling accuracy was difficult. 

 Next, the improvement of accuracy in the 1st iteration 
compared to the static approach is noteworthy. The 
difference between classification in the 1st iteration and 
the static test is that during the 1st iteration some dynamic 
attributes values are known. For companies with less than 
two links to other companies through people, we can 
return a value of false for the dynamic attributes without 
any knowledge of the company type. This suggests that 
dynamic attributes whose value can be determined with 
certainty from a small amount of evidence may be quite 
helpful to the iterative process. 
 Also, it is worth mentioning that in the second trial on 
Core A, iterative classification was able to match the 
accuracy of classification with full knowledge. This 
shows the power of iterative classification to classify as if 
it had full knowledge of the surrounding environment. 
 Finally, the ROC curves show that the 10th iteration 
performs better than, or equal to, the 1st iteration for most 
thresholds. However, the ROC curves show that the 
primary effect of iteration occurs late in the curve when 
the probability of a company being a bank is relatively 
low. This may indicate that dynamic attributes are more 
helpful in the case of predicting chemical companies and 
do little to increase the probabilities associated with 
predictions of banks.  

Related Work 

Previous work of the WebKB project investigated 
classification in a relational context (Craven et al. 1998). 
WebKB used both SBCs and FOIL, a greedy covering 
algorithm for learning function-free Horn clauses, to label 
web pages automatically. Relationships among pages, as 
encoded by their hyperlinks, are used along with intrinsic 
attributes to improve classification accuracy.  
 “Co-training” is an iterative approach to learning 
models (Blum and Mitchell 1998, Mitchell 1999) that was 
applied to the WebKB labeling task. Experiments show 
that a large number of unlabeled instances can be used to 
boost the performance of a learning algorithm when only 
a small set of labeled instances is available. Multiple 
classifiers are learned on independent sets of attributes, 
from a common set of training examples. Each classifier 
is run and its most confidently predicted positive and 
negative instances are added to the training set. The 
classifiers are relearned with the larger, augmented 
training set, and the process is repeated. By using the 
same training data, the classifiers each profit from the 
predictions of other classifiers. Co-training is tested in a 
relational context; however, it can be applied to attribute-
value data as well. This method uses iteration for learning 
models instead of using iteration in the application of 
learned models, as does iterative classification.  
 Slattery (2000) has investigated using relational 
information in the test set to classify web pages more 
accurately. FOIL-HUBS is an extension of FOIL inspired 
by the Hubs & Authorities algorithm (Kleinberg 1998). 
FOIL-HUBS identifies the existence of hubs for each 
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target class (e.g., student-hubs point to many student 
pages) and hub weights contribute to the probability that 
pages pointed to by the hubs are of a particular class. 
FOIL-HUBS employs an iterative classification scheme to 
predict class labels and estimate hub weights, which is 
similar to our own algorithm for iterative classification, 
but it is limited to domains where hub nodes exist. In 
contrast, our work represents an initial attempt to provide 
a uniform framework for the calculation and use of a 
wider range of dynamic attributes, albeit within a simpler 
model representation (SBCs as opposed to function-free 
Horn clauses). 
 Freidman et al. (1998) have investigated the use of a 
relational framework to make sophisticated probabilistic 
inferences. They have shown how to learn probabilistic 
relational models (PRMs) from relational databases. 
PRMs extend the applicability of Bayesian networks 
techniques (Heckerman 1995), and allow the properties of 
an object to depend probabilistically on both intrinsic and 
relational attributes. As currently applied, PRMs do not 
use initial inferences to inform later inferences about 
related objects.  However, PRMs could be used in the 
same way that SBCs are used for iterative classification in 
the work reported here.  
 The Expectation-Maximization (EM) algorithm 
(Dempster, Laird, and Rubin 1977) is similar to in spirit 
to iterative classification, but it addresses a somewhat 
different problem. The EM algorithm uses a two-step 
iterative procedure to find the maximum-likelihood 
estimate of the parameters of an underlying distribution (a 
model) from a data set containing incomplete or missing 
data (Bilmes 1998). The first step of EM (the 
"expectation" step) finds the expected value of missing 
data values, given the current model. The second step of 
EM (the "maximization" step) finds the maximum-
likelihood model, given the inferred data. After replacing 
the current model with the new model, the process 
repeats. In contrast to iterative classification, EM 
readjusts the model in the second step, rather than 
adjusting the values of attributes that serve as inputs to the 
model. Thus, it is a method of learning a model given 
attribute-value data, rather than a method of applying a 
learned model to relational data.  
 Kleinberg (1998) developed an iterative algorithm, 
called Hubs & Authorities, for Web searching based on 
the network structure of hyperlinked pages on the Web. 
The algorithm uses a graph structure, with nodes 
corresponding to web pages and directed links indicating 
the presence of hyperlinks between pages. Given the task 
of identifying authoritative pages, two mutually 
reinforcing attributes are defined: hub weight and 
authority weight. The weights are calculated in an 
iterative fashion by feeding the values of one attribute 
into the calculations of the other. The iterative nature of 
this algorithm is similar to our approach in that it 
maintains and updates attribute values throughout the 
procedure. However, the algorithm assumes the values of 
both attributes are known for each instance and starts by 

assigning equal weights to all pages. It does not use a 
predictive model to assign weight values. 

Conclusions and Future Work 

A number of conclusions can be drawn from this work 
about the potential of iterative classification. We have 
shown that there is an opportunity to use relations in data 
to increase classification accuracy, and that an iterative 
approach exploiting this opportunity can produce a 
significant improvement in accuracy for a binary 
classification task in the corporate data set.  
 We have outlined several necessary conditions for 
successful application of iterative classification. For 
iterative classification to improve on a static approach, a 
data set should exhibit the following characteristics: 
insufficient predictive power from static attributes and 
useful dynamic attributes, rich relational structure, and 
islands of certain knowledge from which to jump start the 
iterative process. Expansion and formal verification of 
these ideas is an important area for further investigation. 
 In addition to presenting opportunities for discovery, 
relational data also offer several challenges. Devising a 
sampling procedure that does not bias statistical estimates 
of relational attributes is a difficult task. As the relational 
data structure becomes more complex, our opportunities 
for improving classification increase, but so do the 
challenges of sampling. Future work would be aided by 
the use of naturally disjoint data sets with similar 
distributions such as the university web sites used by 
Slattery (2000). 
 Formulating useful dynamic attributes is also 
challenging. It is difficult to define the value of a dynamic 
attribute when some, but not all of the related class labels 
have been inferred. Because the classifier is trained on 
full knowledge, dynamic attribute values expressing 
partial knowledge can bias or mislead the predictions of 
the classifier. A few incorrect inferences could have a 
“snowball effect,” with the dynamic attributes cascading 
the mistakes throughout the test set. For this reason it is 
important to use dynamic attributes whose values are 
either known with complete certainty or not at all. 
Threshold attributes are a good example of this type of 
“robust” attribute, where the value is known as soon as a 
particular value threshold is exceeded. Both dynamic 
attributes used in this experiment are examples of 
threshold attributes. Future work includes both 
establishing the effects of threshold attributes on iterative 
classification, and determining other types of robust 
attributes. 
 Attributes that combine probabilistic evidence of all 
related class labels are a potential alternative to threshold 
attributes. Instead of accepting the top percentage of 
predictions, or those exceeding a threshold, the algorithm 
would accept all predictions. The values of these 
probabilistic attributes are then determined by a 
combination of the probabilities associated with the 
inferred class labels of related objects. As the certainty of 



predictions change over the course of iterations, the 
attribute values could be dynamically updated. This is an 
area that requires additional exploration. 
 A potential pitfall of the specific variety of iterative 
classification explored here is that SBCs often produce 
biased probability estimates. SBCs are known to produce 
optimal class predictions in a wide variety of domains; 
however, SBC probability estimates are biased except 
under conditions of attribute independence. Future work 
includes exploring iterative classification with other 
methods that produce more accurate probability estimates 
such as Bayesian networks or PRMs (Freidman et al. 
1999). We will also investigate the use of a threshold for 
accepting predictions instead of accepting a percentage 
determined by the number of iterations.  
 Another direction for future work involves extending 
the iterative procedure for prediction of multiple object 
types by simply combining the results of multiple 
classifiers. Each classifier would make use of the dynamic 
attributes filled in through the efforts of the other 
classifiers. In this sense the classifiers would collaborate 
with each other to improve accuracies for both 
classification tasks. Caruana (1997) has investigated the 
collaboration of multiple models for learning under the 
hypothesis that multiple, related learning tasks share the 
same representation, and learning one helps with learning 
another. A relational approach would be similar but would 
involve the collaborative application of models instead.  
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