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Abstract
Data Warehouses and statistical databases (Shoshani
1997) contain both numerical attributes (measures) and
categorical attributes (dimensions). These data are often
stored within a relational database with an associated
hierarchical structure.  There are few algorithms to date
that explicitly exploit this hierarchical structure when
carrying out knowledge discovery on such data. We look
at a number of aspects of knowledge discovery from a
set of databases distributed over the internet including
the following:

•  Discovery of statistical relationships, rules and
exceptions from hierarchically structured data which
may contain heterogeneous and non-independent
instances;

• Use of aggregates as a set of sufficient statistics in
place of base data for efficient model computation;

• Leveraging the power of a relational database system
for efficient computation of sufficient statistics;

• Use of statistical metadata to aid distributed data
integration and knowledge discovery.

Introduction
Frequently data which are stored in transaction databases,
statistical databases and data warehouses are contained
within a hierarchical structure.  A typical example is
supermarket data where individual products can be grouped
within product groupings, within food categories.  This
type of data has been widely used recently for much of the
work in the area of discovering association rule at different
levels of hierarchal transaction data (Srikant et al. 1995).
However little work has been carried out to date in the area
of knowledge discovery from hierarchical data which
consists of both numerical (measures) and categorical
(dimensions) attributes.  This type of data is typically found
in statistical databases and data warehouses.

Attempting to carry out knowledge discovery from such
data when the data are distributed in a number of databases
over the internet adds an extra dimension to the problem.
Aggregates are especially appropriate for Knowledge
Discovery from distributed databases for reasons of

confidentiality and efficiency. Using aggregate data and
accompanying metadata retrieved from a set of distributed
database, we use statistical models to identify and present
relationships between a single numerical attribute and a
combination of other attributes at various levels of the
hierarchy. On the basis of these relationships and
interactions, rules in conjunctive normal form are induced.

We illustrate this work with vehicle insurance data.  The
task is to discover relationships between vehicle insurance
claim costs and a host of other attributes at different levels
of a hierarchy. The attributes of interest are shown in Table
2 along with their associated level in the hierarchy.

Distributed Data
When carrying out knowledge discovery from a number of
databases distributed over the internet, it may be either too
expensive or prohibited by confidentiality constraints to
communicate base (micro) data across the network
(Provost 1998).  One strategy in this instance is to use
meta-learning (Stolfo et al. 1997), whereby a model is
learned at each distributed site and sent in place of the base
data to a central site to be used to build a combined model.
We overcome this problem by communicating aggregate
data to a central site rather than the base data.  At the
central site, the aggregate data are harmonised, integrated
and then used as a set of sufficient statistics to reveal
statistical relationships in the data.

In (Páircéir et al. 1999) we presented an infrastructure
based on a European DOSIS project ADDSIA (McClean et
al 2000), for integrating aggregate data from horizontally
partitioned base data held in a number of statistical
databases distributed over the internet. In ADDSIA, a
MAMED object consists of an aggregate dataset (formed
from the base data at a site) with associated active
statistical metadata which is held in relational tables. A set
of MAMED operators have been developed to create the
MAMED objects at each site. Data from the different sites
(held in different countries in this instance) may contain
attribute domain value mismatches which need to be
harmonised before the data can be integrated for data
mining.  For example, domain values of a dimension
attribute may be recorded at different levels of granularity
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on different sites, or a measure attribute may record costs
in different currencies on the different sites.

Aggregate data harmonisation and integration at the
central site are accomplished using further MAMED
operators, with the aid of the active statistical metadata in
the MAMED objects. The statistical metadata also contain
data which are required for statistical modeling, including
information about the hierarchical structure of the data.  At
the central site the associated statistical metadata tables are
also integrated and can be viewed by the user.

Figure 1.  Insurance Data Star Schema and Hierarchy.

Data Model
At a distributed site base data are stored using a STAR
schema in a relational database with a central Fact table,
and associated Dimension tables. The database schema for
the insurance data is shown in Figure 1 along with the
concept hierarchy showing that individual vehicle drivers
are nested within Regions within Countries. The active
statistical metadata tables are not defined here.  In this
particular instance the country level data are stored in each
site's metadata store (McClean et al. 2000). Storing the base
data in the STAR schema format allows us to leverage the
query processing system of SQL databases to efficiently
compute the sufficient statistics in the form of the aggregate
data. Aggregate data in a MAMED object are stored in a
relational table with a schema of the following form:

R <C1,…Cn; S1{N1, SM1, SS1} …Sm{Nm, SMm, SSm}>

where C1,..Cn represent n dimension attributes and S1,…Sm
are m sets of summary attributes.  Each Si in the aggregate
relation consists of aggregates in the form of count (N),
sum (SM) and sums of squares (SS) for a measure or
derived measure from the base data.  The aggregates in
each set of summary attributes are functionally defined by a
cross product of the dimension attribute domain values. As
an example, Table 1 shows an aggregate relation with two
dimension attributes (gender and claim type) and one
summary attribute (age).  The cross product of the
dimension attribute values results in four records, each with
its corresponding summary attribute values for the age
measure.

Gender Claim Type Age_N Age_SM Age_SS
Male Accident 4240 148428 5194534
Male Theft 1341 45594 1550196
Female Accident 2210 70720 2263040
Female Theft 956 26768 749504

Table 1:  Aggregate relation for Gender and Claim Type.

When relational data are processed into flat file format,
as is most often the case with data mining algorithms, the
richness of the structure is often removed (Friedman et al.
1999).  This process loses information which might be
helpful in understanding the relationships in the data more
fully.  This is also the case in constructing the aggregate
data in a single relation.   When the individual level and
higher hierarchy level attributes are integrated into a single
aggregate relation for communication to the central site, the
hierarchical information is lost.  To ensure that this is not
the case, the relevant hierarchical information for the
attributes is included within the statistical metadata in the
system.  This is equivalent to retaining some of the
properties of related entities (between a driver entity, a
region and a country entity) if the base data which are
being aggregated are stored using an entity-relationship
model.

Sufficient Statistics
Graefe et al. (Graefe et al 1998) state that "most

algorithms are driven by a set of sufficient statistics that are
significantly smaller that the data".  Their approach takes
advantage of the query processing system of SQL databases
to produce this set of sufficient statistics for the task of
classification, thereby avoiding the need to move the
individual level data from the database to the client.  This
results in a significant increase in performance.  In the
distributed database situation, where it may be too
expensive or prohibited by confidentiality constraints to
communicate the individual level data across the network,
obtaining such a set of sufficient statistics is even more
relevant.  However in the distributed database scenario, we
must not only find a set of sufficient statistics, but also
ensure that they can be combined at the central site in a
meaningful way.  An important concept which enables us to
ultilse the summary attributes in the aggregate relations as
sufficient statistics is the additive property of these
summary attributes.  This property allows us to combine
aggregate data from the distributed sites seamlessly. The
additive property  (Sadreddini et al. 1991) is defined as
follows:

σσσσ ( αααα UNION ββββ) = σσσσ (αααα) + σσσσ (ββββ) (1)

where α and β are aggregate relations which are domain
compatible (McClean et al. 1998) and σσσσ() is an application
of a summary attribute function (e.g. SUM) over a measure
in α and β.  Note for example that if the summary attributes
contained average values, average is not an additive
summary function and thus such aggregates could not be
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combined at the central site.  However it is possible to
calculate average values using the Sum and Count values in
the aggregate relations. Two distributed aggregate relations
are domain compatible if they contain the same dimension
attributes (each with identical domain sets) and the same
measures (each defined on the same units).  By the time the
MAMED objects are communicated to the central site,
MAMED operators have been used to ensure that the
aggregate relations are macro compatible before all of the
aggregate relations are integrated into the one relational
table.

Thus it is possible to combine aggregates over these
summary attributes from the distributed sites at a central
site for our knowledge discovery purposes, once the data
have been suitably harmonised using the statistical meta
relations and the MAMED operators.

Discovering Relationships using Aggregate Data
Once the aggregate data have been integrated, the
challenge is to use these data rather than the base data to
discover interesting relationships.  The summary attributes
N, SM and SS in the aggregate data can be used as a set of
sufficient statistics to compute a large number of statistical
procedures including standard deviations, means
(Sadreddini et al. 1991) and many linear statistical models.
To date with the aggregate data, we have worked with
Multilevel statistical Models (Goldstein 1995) and Analysis
of Variance (Anova) models (Neter 1996) in identifying
relationships between a single measure attribute and a
combination of other attributes at various levels of the
hierarchy.

An Anova model is used in situations where all of the
explanatory attributes of interest are dimensions, some of
which are nested within hierarchies (e.g. days at level 1,
months at level 2 and years at level 3).  No assumption is
made in the model about the nature of the statistical
relationship between the explanatory attributes and the
single measure predictor attribute.  More than one
hierarchy can be included (for example one hierarchy along
the time dimension and another along a geographic
dimension) in the model but only one attribute is
represented at higher hierarchy levels. Before model
computation begins, the CUBE operator (Gray et al. 1996)
is applied to the final harmonised, integrated aggregate
relation.  The set of sufficient statistics for this model now
consists of the cubed data in this relation.  The statistical
metadata contain hierarchical information for the model.
An example Anova model represented in equation (2)
models insurance claim costs using Gender (G), Car-class
(P) and the geographic area hierarchy attributes (Region
(R) and Country (C)).  This model also includes interaction
terms and nestings within the geographic area hierarchy.

A multilevel problem is one that concerns the
relationships between attributes that are measured at a
number of different hierarchical levels. An example is
attempting to discover rules and exceptions for the attribute
"Cost of insurance claims" based on a number of
individual level attributes, a number of attributes at a
regional level and a further set of attributes at a country
level indicated in Table 2.  This represents a three-level
nested hierarchical situation.

Attribute Values Level
COST OF INSURANCE CLAIM {Continuous} Individual
CLAIM TYPE {Accident, Theft} Individual
GENDER {Male, Female} Individual
AGE {Continuous} Individual
CAR-CLASS {A, B, C} Individual
PREVIOUS CLAIMS {Yes, No} Individual
DRIVER TEST SCORE {Continuous} Individual
YEARLY MILEAGE {Continuous} Individual
REGION NAME
REGION TYPE {City, County} Region
MANDATORY CAR TESTING {Yes, No} Region
ROAD ASSESMENT SCORE {Continuous} Region
COUNTRY NAME
DRIVER LOWER AGE LIMIT {16, 18} Country
MEAN COUNTRY CLAIM {Continuous} Country

Table 2:   Attributes of Interest in the Modeling Phase.

Historically such multilevel problems have been
analysed by moving all attributes to one single level of
interest by aggregation or disaggregation. Aggregation
means carrying out the analysis at the region level for
example, and using the means of each individual level
attribute for each region in place of the individual level
data.  Disaggregation means moving region level attribute
values from being descriptors of regions to being
descriptors of the individual.

However these strategies  create two different sets of
problems.  Once groupings exist (e.g. drivers from the
same country or members of the same family, properties of
the entities we wish to include in the modeling), the
individual instances may not be independently and
identically distributed (IID). Heterogeneity is very often
present in relationships between hierarchical data held in
databases, and frequently the statistical models with full
IID assumptions do not explain this heterogeneity
sufficiently. In fact if this independence assumption is
violated, the estimates of the standard errors of
conventional statistical tests are much too small, resulting
in many deceptive statistically significant results. This lack
of independence between observations within groups is
expressed as the intra-class correlation.  It is a population
estimate of the variance explained by the grouping
structure.  Kreft (Kreft 1998) states that the within-group
information can account for as much as 80-90% of the total
variation in the data.  Therefore by aggregating to a higher
group level this information is lost before the analysis has
even begun.

Disaggregation can lead to many apparent statistically
significant relationships that are in reality questionable.
There can also be problems associated with analysing all of
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the data solely at one level and drawing conclusions about
the relationships at another level.  Robinson (Robinson
1950) shows that aggregate-level relationships (e.g. group
means of individual level attributes) can not be used as
estimates for the corresponding individual-level
relationships.  This is known as the Robinson effect or the
ecological fallacy. Robinson also showed that drawing
inferences at a higher level from an analysis at a lower
level can be just as misleading.  This is known as the
atomistic fallacy.

Multilevel models (Goldstein 1995) attempt more
realistically to model these situations where there is
clustering of individuals within groups and attributes are
measured at different grouping levels of the hierarchy.  In
these models the assumption of independence of
individuals is dropped, and relationships in the data are no
longer assumed to be fixed over groups but are allowed to
differ. We use multilevel models with a number of goals in
mind:

• firstly to determine the direct relationships between
individual and group level explanatory attributes
(e.g. age, region type) and a single measure attribute
(cost of insurance claim).

• Secondly to determine if the explanatory attributes at
the group level (regional and country attributes)
serve as moderators of individual level relationships.
If such moderators exist, they show up as statistical
interactions between explanatory attributes from
different levels.  This would occur, for example, if
varying the regional road assessment score affected
the relationship between yearly mileage and claim
cost at the individual level. Such moderator or
interaction relationships also allow us to explain
some of the variation in the cost of insurance claims
between groups.  This is not possible using other
statistical techniques.  As an example, if there is a
stark difference in the individual level cost claims
between certain regions, it may be possible to explain
this difference in the multilevel model using some of
the region level attributes (whether the region is a
city or a county).

• thirdly to improve prediction of cost claims within
individual units (Goldstein 1995), especially for
minority groupings by pooling similar individuals
from different groups.

• fourthly to partition the variance components among
levels into between-group (how much of the
variation in claim costs can be put down to
differences in drivers from different regions) and
within-group components (how much of this
variation is due to differences between drivers within
the same region).

• lastly to isolate groups at different levels of the
hierarchy that represent exceptions.

The most famous example of how an analysis of
multilevel data using standard techniques (in this case
multiple regression) can produce incorrect inferences

comes from Aitkin et al. (Aitkin et al. 1981).  A study had
been carried out on different teaching methods for children
with teachers in different schools.  The results of the
analysis using the standard techniques showed that there
was a statistical difference between the different teaching
methods.  As a result the new teaching methods were
implemented.  However, when the data was analysed using
the multilevel models, the results showed that there was in
fact no statistical difference between the methods and that
the results using the standard statistical methods had been
incorrect.

In an insurance scenario, such a "false positive" result
may end up costing the company a lot of money if the cost
of insurance is incorrectly set according to this apparantly
significant result.

Model details and Parameter estimation
Parameter estimation for the ANOVA models is a
straightforward computational procedure once the relevant
aggregate data have been integrated from the distributed
sites, integrated, and cubed.  The algorithm is not described
here and the model is described in (Pairceir 1999).
However computing a multilevel model requires an
iterative process.  The one we use is iterative generalised
least squares (IGLS) (Goldstein 1995) as this allows us to
use our aggregate data as a sufficient set of statistics

To explain the details of a multilevel model, we take as
an example a situation where we are trying to model
insurance claim cost (Y) using explanatory attributes
Gender (X1) and DriverTestScore (X2) at the individual
driver level, and attributes Region Type (Z1) and
RoadAssessmentScore (Z2) at the region level. The full
equation for this model is shown in  (3) below, but it can be
broken down for further explanation.  This model also
incorporates interactions between attributes from different
levels in a two level hierarchy.

Yij =  [γoo + γ10X1ij + γ20X2ij + γo1Z1j + γo2Z2j + γ11X1ijZ1j+γ12X1ijZ2j +
γ21X2ijZ1j+γ22X2ijZ2j]+  [µ2jX2ij + µ1jX1ij + µ0j + εij]                  (3)

Initially a separate model can be built for each regionj, with
separate slopes and intercepts as shown in (4).

Yij = β0j + β1jX1ij + β2jX2ij + εij (4)

where β0. is the usual regression equation intercept, β1. the
usual regression slope and εij the usual residual error term.
Yij represents the cost of insurance claim for an individual
driveri within regionj.

Multilevel models differ from a multiple regression
model in that both the intercepts and slopes are allowed to
vary across regions. Across all regions, each of these slope
and intercept coefficients have a mean and variance, and in
the multilevel model the variation in these coefficients is
modeled by introducing explanatory attributes at the
Region Level (Z1 and Z2).  Thus for the intercept
coefficients across regions, the level 2 model is



β0j  = γoo + γo1Z1j+γo2Z2j + µ0j (5)

and for each slope coefficient (β1j, β2j) for h∈{1,2}

βhj  = γh0 + γh1Z1j+γh2Z2j + µhj (6)

where γoo,γho are the intercept coefficients, γo. and γh. the
slope coefficients and, µ0j and µhj the residual errors at the
region level.

  Equation (5) states that the variation in the level 1
intercept coefficient can possibly be explained by the level
2 attributes Z1 and Z2, with any residual error variance
being captured in µ0j.  Equation (6) states that the variation
in the level 1 slope coefficients can possibly be explained
by attributes Z1 and Z2, with any residual error variance
being captured in µhj.  By substituting Equations (5) and (6)
into Equation (4) for β0j, β1j and β0j, we obtain a single
complex equation giving us a multilevel model at two
levels shown in Equation (3).  This can easily be
generalised to a case with more levels and more
explanatory attributes at each level. In equation (3), the
square brackets break the model up into a fixed components
part and a random part.

Maximum Likelihood estimation is used to obtain
estimates of the fixed and random coefficients of the
model. Computing the maximum likelihood estimates
requires an iterative procedure, in this case IGLS. Eaach
iteration consists of two stages.  Both stages involve the use
of generalised least squares equations (GLS).  The typical
form of this equation is shown in equation (7). For the
matrix notation in equation (7) below, X is a matrix of
explanatory attribute values, V is a Block Diagonal
covariance Matrix (Goldstein 1995) containing the
variance and covariance components of the model, β is a
matrix of model coefficients, and Y is a matrix of the
measure attribute values.  In equation (7), all values except
those in the β (fixed coefficients) and V (random
coefficients) matrices are known.  If the V matrix values
were known, we could obtain a solution to the equation in
just a single iteration.  However because the random
coefficients in the V matrix are unknown, they must also be
estimated using GLS.

β = (XTV-1X)-1 XTV-1Y (7)

Thus a single iteration moves from using the β matrix
coefficients to improve estimates of the random
coefficients in a GLS equation similar in form to that of
equation (7), to using these improved V matrix random
coefficient estimates to obtain improved estimates of the
fixed coefficients in β  in equation (7).  To start the
process, initial β matrix coefficients are estimated using
ordinary least squares (OLS) equations.  The iterations then
continue in this way going from one equation to the other
until the process converges.

If all of the data is available centrally, a solution is
obtained by a number of matrix computations in each

iteration.  However, in the distributed database case, each
iteration requires a number of data communications to and
from each distributed database involved. The following
algorithm overview illustrates the steps involved in the
process.  It begins with the user specifying the data of
interest and the multilevel model to be used.

Step 1.
MAMED Object request sent from the Query
Agent to the relevant distributed sites.  The

MAMED Objects are computed at each site and
returned to the central site where they are

harmonised.
Step 2.

The necessary matrices containing aggregates are
assembled from the returned harmonised

MAMED Object and are used to calculate the
initial β model coefficients using ordinary least

squares (OLS) equations.
Step 3.

The resulting β model coefficients are
communicated to each distributed site and used to

compute MAMED Objects consisting of
aggregates required to compute the V matrix

components.
Step 4.

These new MAMED Objects are returned to the
domain site, harmonised, and used to assemble the
necessary aggregate matrices required to calculate

a V matrix using GLS.
Step 5.

The resulting V-1 matrix coefficients are
communicated from the domain server to each

distributed site and a new MAMED Object
incorporating this V-1  data is computed for the

next iteration at the domain site.1

This process then returns to Step 2 and continues
in an iterative fashion from refined β estimation to

refined V estimation until convergence.  After
iteration 1,  OLS in Step 2 replaced by GLS.

                                                
1 Aggregates in the matrices require sums of products of
individual values of the X matrix and the V-1 matrix which
must be computed at the distributed sites.  It is for this
reason that the V-1 matrix must be communicated to the
distributed sites.



Relationships, Rules and Exceptions
Once the  model coefficients have been computed, we
present the significant attribute relationships to the user via
a graphical interface rather than the traditional statistical
tables.  The user may investigate significant relationships at
more detailed levels by interacting with the graphical
interface.  On the basis of these relationships, rules in
conjunctive normal form are induced and exceptions to
these rules are discovered. Exceptions are groups of
individuals at different levels of the hierarchy that represent
differences in insurance claim costs relative to other such
groups. A group  is deemed to be an exception if the actual
mean insurance claim cost for the group is significantly
different in a statistical sense from the value anticipated
using the multilevel model. The user may then browse
these exceptions at different levels of the hierarchy.

Figure 2.  Attribute Significance and Breakdown of
Variance between levels.

Figure 2 shows an example of the initial graphical
presentation of the model results to the user.   In this case it
is for a multi-level model which models insurance cost
claims with exploratory attributes taken from the three
levels of the geographic area hierarchy. Our approach
summarises the main details of this output in a format more
suited to a user not overly familiar with statistical modeling
and analysis. Only those explanatory attributes or effects
from the various hierarchical levels which exhibit a
statistically significant relationship with Cost of Insurance
claim are included in the graph.  The higher the bar, the
greater the statistical significance of the relationship. There
is a significant cross level interaction effect indicated
between the region level attribute region type and yearly
mileage from the individual level.  This means that the
relationship between yearly mileage and insurance claim
cost is also dependent on the associated value of region
type. The user can interact fully with this graphical output to
interrogate the results at more detailed levels.  This allows
the user to understand an effect’s relationship with the cost
of insurance claim in greater depth.  Dimension attribute-
value relationships with insurance cost claims can be
viewed graphically in terms of deviations from the overall
mean insurance claim cost. The graph in Figure 3 illustrates

this for each car-class in terms of deviance in claim cost
from the overall average claim cost.

Figure 3.  Rules induced from the multilevel model.

As a second step, the significant relationships are turned
into rules in conjunctive normal form with associated
statistical confidence intervals.  Figure 3 contains some
example rules relating insurance cost claims with Car-class
attribute values.  Rules involving measure attributes  take on
a slightly different format.  These rules can also involve
interactions between two or more attributes and the
insurance claim costs.

Once the rules have been induced, the final step in the
results presentation involves the identification of groupings
of individual cases which represent exceptions to these
rules.  These are also presented in conjunctive normal form.
An example exception grouping is shown in (3).

[Country {Ireland} ∧ Car-class{A} ∧ Region {City} ∧ Claim
Type {Theft} ∧ Gender {Male}, predicted cost claim {1820.54-
2023.54 ECU}, actual average cost claim 2100 ECU]        (3)

With the multilevel models, it is also possible to present
valuable information on the variation components of the
data.  This information is included in the graphical output
in Figure 2. This tells the user that 33% of the overall
variation in insurance claim costs was between drivers
within regions, 24% was between regions within countries
and a large 43% of the variation was between countries.
These figures aid the user in determining where most of the
variation in the cost of insurance claims arises.

Summary and Related Work
In this paper we have presented our recent and current
work in relation to discovering relationships, rules and
exceptions from aggregate data retrieved from a number of
databases distributed over the internet.  We have shown
how it is possible to use the aggregate data as a set of
sufficient statistics in the building of Multilevel models and
Anova models which we use for the discovery purposes.
Other distributed data mining work has concentrated on
distributing the data to improve the efficiently of data
mining algorithms or on using meta-learning techniques to
build models (Stolfo et al. 1997, Provost 1998).   SarWagi
et al. (Sarawagi et al. 1998) worked on the use of Anova

Car-Class {Type A} → cost of insurance
claim between {1700.4 - 2148.4}
Car-Class {Type B} → cost of insurance
claim between {1161.4 - 1582.4}
Car-Class {Type C} → cost of insurance
claim between {1039.4 - 1487.4}



models to highlight exceptions to a user within an OLAP
framework.

Future work will concentrate on the application of the
distributed aggregate data framework to other knowledge
discovery tasks involving hierarchical data. The automation
of model building for multi-level models within the
framework is also being studied.  In this scenario, the user
selects a set of attributes of interest and the system would
produce the most appropriate model in a step-wise fashion.
This may also involve assessing the possible use of random
sampling of the distributed databases in building the initial
multilevel models. We also intend to look into the
possibility of storing previously discovered relationships in
the data as part of the textual statistical metadata in XML.
This could then be used as part of the domain knowledge.
Finally, there is also a need to apply more robust
techniques for the production of the final rules.

Acknowledgements
This work has been partially funded by ADDSIA (ESPRIT
project no. 22950) which is part of EUROSTAT's DOSIS
initiative.

References

Aitkin M., Anderson, D. and Hinde, J. 1981.  Statistical
Modelling of data on teaching styles.  Journal of the Royal
Statistical Society Series A. no. 149 1-43.
Friedman, N, Getoor, L., Koller, D. and Pfeffer, A. 1999.
Learning Probabilistic Relational Models. In Proceedings
of the Sixteenth International Joint Conference on
Artificial Intelligence, 1300-1309, Stockholm, Sweden.:
Morgan Kaufmann.
Goldstein, H. eds. 1995.  Multilevel Statistical Models.
New York.: Halstead Press.
Graefe, G, Fayyad, U., Chaudhuri, S. 1998. On the
Efficient Gathering of Sufficient Statistics for
Classification from Large SQL Databases. In Proceedings
of the Third International Conference on Knowledge
Discovery and Data Mining. 204-208 California.: AAAI
Press.
Gray, J., Bosworth, A., Layman, A., Pirahesh, H. 1996.
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab and Sub-Total. In
Proceedings of the Twelfth International Conference on
Data Engineering, 152-159. Louisiana.: IEEE Computer
Society.
Kreft, I.,. de Leeuw, J. eds 1998. Introducing multilevel
modeling. London, Sage.
McClean S., Grossman, W. and Froeschl, K.  1998.
Towards Metadata-Guided Distributed Statistical

Processing.  In Proceedings of New Techniques and
Technologies in Statistics. 327-332 Sorrento, Italy:
McClean, S., Páircéir, R., Scotney, B. & Zhang, Y. 2000.
Adding context to the retrieval of summary tables from
distributed databases via the internet.  Submitted to VLDB
conference 2000.
Neter, J. 3rd eds. 1996.  Applied linear statistical models.
London.: Irwin.
Páircéir, R., McClean, S., Scotney, B. 1999. Automated
Discovery of Rules and Exceptions from Distributed
Databases Using Aggregates. In Proceedings of Third
European Conference Principles of Data Mining and
Knowledge Discovery, 156-164, Prague.: LNCS Vol. 1704,
Springer.
Provost, F. 1998. Distributed data mining: scaling up and
beyond.  KDD workshop on Distributed and Parallel
issues in data mining, KDD-98.
Robinson, W.S. 1950. Ecological correlations and the
behavior of individuals.  American Sociological Review,
no. 15, 351-357.
Sadreddini, M., Bell D., and McClean SI. 1991. A Model
for integration of Raw Data and Aggregate Views in
Heterogeneous Statistical Databases. Database Technology
vol 4,no. 2: 115-127.
Sarawagi, S., Agrawal, R., Megiddo, N. 1998.  Discovery-
Driven Exploration of OLAP Data Cubes. In Proceedings
of 6th International Conference on Extending Database
Technology, 168-182, Valencia, Spain.: LNCS Vol. 1377,
Springer.
Shoshani, A. 1997. OLAP and Statistical Databases:
Similarities and Differences. In Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 185-196, Tucson,
Arizona.: ACM Press.
Srikant, R. and Agrawal, R.  1995.  Mining Generalised
Association Rules.  In Proceedings of 21th International
Conference on Very Large Data Bases, 407-419, Zurich,
Switzerland. Morgan Kaufmann.
Stolfo, S., Prodromidis, A., Tselepis, S., Lee, W., Fan, D.,
Chan P. 1997. JAM: Java Agents for Meta-Learning over
Distributed Databases. In Proceedings of the Third
International Conference on Knowledge Discovery and
Data Mining. 74-81California.: AAAI Press.


