
A Bayesian Language for Cumulative Learning

Avi Pfeffer
Harvard University

Abstract

A cumulative learning agent is one that learns and
reasons as it interacts with the world. The Bayesian
paradigm provides a natural framework for cumulative
learning as an agent can use its observations and pri-
or models to reason about a particular situation, and
also learn posterior models. Cumulative learning re-
quires a rich, first-order representation language in or-
der to handle the variety of situations an agent may
encounter. In this paper, I present a new Bayesian
language for cumulative learning, called IBAL. This
language builds on previous work on probabilistic re-
lational models, and introduces the novel feature of
observations as an integral part of a language. The
key semantic concept is a scope, which consists both
of models and observations. The meaning of a scope
is the knowledge state of an agent. The language is
declarative, and knowledge states can be composed in
a natural way. In addition to presenting a language,
this paper also presents an EM based learning algo-
rithm called functional EM for learning IBAL models.

Introduction

A cumulative learning agent is one that learns and rea-
sons as it interacts with the world. In each encounter, it
uses its accumulated knowledge and its observations to
reason about the particular situation, and also updates
its knowledge base by learning from its observations.
The Bayesian paradigm provides a natural framework
for cumulative learning. An agent’s knowledge state in
a particular encounter consists of its prior knowledge,
which is a probability distribution over models, and its
observations about the particular situation. The obser-
vations serve a dual purpose -- to condition the agent’s
beliefs about unobserved aspects of the situation, and
to update the probability distribution over models. The
updated distribution can then be used as the agent’s
prior knowledge in its next encounter.

In addition to a framework for integrating the results
of successive encounters into a learned model, cumu-
lative learning requires a representation language that

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

is sufficiently rich to describe the different situation-
s the agent might encounter. In particular, the lan-
guage must be modular and extensible, to allow the
knowledge base to be extended and accumulated com-
positionally. Propositional or attribute-based represen-
tations are inadequate for this task. Inductive logic
programming (MR94) has emerged as one approach
learning a rich first-order representation language, but
the framework is not probabilistic.

In recent years, researchers have developed languages
that integrate logical and probabilistic representations.
One research direction has been to incorporate proba-
bilities into logic programs (Mug99). Another approach
extends the expressive power of Bayesian networks by
integrating them with object-based and relational rep-
resentations (Pfe00). There has also been work
learning such probabilistic relational models from da-
ta (FGKP99). Such languages provide a natural basis
for cumulative learning. Their rich expressive power
allows them to express the sort of knowledge a cumu-
lative learner needs, while their probabilistic aspect al-
lows them to use the Bayesian framework.

In this work, I extend the probabilistic relational
modeling languages of (Pfe00) to support cumulative
learning. I present a new language called IBAL (pro-
nounced "eyeball"), standing for Integrated Bayesian
Agent Language. The key difference between IBAL and
previous languages is that observations are now made
an integral component of the language. This means
that observations can now modify the meaning of mod-
el components, which can then be used in other mod-
els. This corresponds to a learning agent modifying its
models based on its observations, and using its models
in future situations. In addition, since observations are
an integral part of the language, each observation takes
place within a certain scope. Each scope describes a
knowledge state of an agent, consisting of the models
and observations within the scope.

Thus, the language presented here is declarative. It
provides a description of a cumulative agent by describ-
ing its successive knowledge states as a sequence of nest-
ed scopes. As such, it provides a language not only for
designing cumulative learning agents but also for rea-
soning about them. In fact, the language goes beyond

57

From: AAAI Technical Report WS-00-06. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

simply describing the knowledge states of a single learn-
ing agent. One can easily describe multiple agents in
the language, having both shared and individual experi-
ences. The knowledge states of different agents compose
in a natural way.

In addition to describing a language, this paper
presents a new algorithm for learning models in the lan-
guage. The algorithm, called functional EM, is a vari-
ation on the expectation-maximization algorithm, that
is specially tailored to take advantage of the structure
of models represented in the language. The algorithm
follows the lines of the structured probabilistic inference
algorithm presented in (PKMT99). It was shown there
that exploiting model structure yields great speedups
for probabilistic inference, and I believe that the same
will be true for learning.

Language
The basis for the IBAL language is the stochastic func-
tional language of (KMP97). While that language
more functional in flavor than the probabilistic rela-
tional languages of (Pfe00), the expressive power is es-
sentially the same. The ideas presented here can also
be applied to probabilistic relational languages, but the
key idea of using scoped observations is easiest to de-
scribe and implement in a functional framework.

The main structural unit of the language is a block.
A block consists of three kinds of statements: model
definitions, variable definitions, and observations. A
model definition describes an experiment that gener-
ates values according to some probability distribution.
The definition specifies the functional form of the ex-
periment, but the probabilities involved are learnable
parameters. The form of a model definition is "name
(args) = expression". A variable definition associates
an identifier with the outcome of an experiment, and
has the form "name = expression". A variable may
only be defined once in a block.

There are several kinds of expression. An expression
may simply be a symbolic value, or a variable name
preceded by a $ sign. A dist expression defines a prob-
ability distribution over several expressions. It has the
form "dist Pl : el,... ,Pn : en", where each ei is an
expression, and each Pi is a positive real number. The
pi are not bounded by 1 or required to sum to 1. In
fact, they do not directly represent probabilities, but
rather a Dirichlet prior over which of the ei is chosen.
The values of the Pi for each of the dist expressions in
a model are the parameters of the model.

There are several other kinds of expression: A case
expression selects one of a number of possibilities, ac-
cording to the value of some variable. An application
expression applies a model to a set of arguments, each of
which is an expression. The ability to pass arguments
and receive values from a model are what make this
language relational, and give it essentially the same ex-
pressive power as probabilistic relational models. The
model to apply may itself be an expression whose out-
come is stochastic -- this feature implements a form of

reference uncertainty, as described in (Pfe00). Finally,
there is the block expression, which is a block enclosed
between curly braces.

One can think of executing an expression to produce
a value, just as in an ordinary programming language.
The only difference is that the value produced is deter-
mined stochastically. In particular, for a dist expres-
sion, one of the possible subexpressions is executed, ac-
coridng to the specified distribution.

An expression may either be simple or complex. Sym-
bols are simple expressions, while block expressions are
complex. A case or dist expression is complex if any of
its possible results are complex. A model application is
simple or complex depending on whether the expression
defining the model is simple or complex. An attribute
chain extracts components of a variable defined by a
complex expression.

An observation has the form "simple-attribute-chain
is value". In the full language, expressions are typed,
and one can ensure that observations are well-typed,
but I do not go into details here.

To summarize, a block consists of probability mod-
els, variables, and observations about the variables.
The expressions defining the models and variables may
themselves contain nested blocks, which have their own
models, variables and observations. Each block de-
fines a scope, consisting of the variables and models
defined in the block, and all observations either direct-
ly in the block or within some nested block. Models
and variables, together with any observations in their
definitions, can be incorporated into a scope using an
import statement. The import statements must be
non-recursive -- a block is not allowed to import itself,
nor may two blocks import each other. A program,
which is just a top-level block, defines a hierarchy of
nested scopes.

In this language, a scope serves two purposes. There
is the traditional programming language purpose, which
is to determine what names are available for use inside
the scope. There is also an additional purpose, which is
to provide a context for the observations. If an obser-
vation occurs in a scope, it also occurs in all the scopes
that contain that scope. Scopes therefore provide us
with a natural way to compose experiences represented
by sets of observations.

Semantically, each scope is interpreted as the knowl-
edge state of an agent. The knowledge state consists of
prior knowledge derived from the model definitions, and
all the observations within the scope. Between them,
the prior knowledge and observations define a posteri-
or probability distribution over model parameters, and
over the values of the variables defined in the scope.

Examples

Perhaps the IBAL language is more easily appreciated
by seeing a few examples. The first example illustrates
some of the basic features of the language.

fair() = dist 50:heads, 50:tails

58

biased() = dist 90:heads, lO:tails
pick() = dist l:fair, l:biased
pick_and_toss() = dist l:fair(), l:biased()
c = pick()
x = $c()
y = $c()
z = pick_and_toss()
w = pick_and_toss()
x is heads
z is heads

This program contains models for fair and biased
coins, for the act of picking (but not tossing) a coin, and
for the act of picking and tossing a coin. The variable
c represents the result of picking a coin. The variables
x and y represent the result of two different tosses of
c. Note the $ signs and parentheses appearing in the
definitions of x and y. The $ signs indicate that the
model used to generate x and y is determined by the
value of c. The parentheses indicate that the value of
$c is computed, and then applied (with no arguments),
to produce x and y. This is an example of reference
uncertainty, and illustrates the power of allowing the
model in an application expression to be an expression
itself.

The values of x and y are correlated due to their mu-
tual dependence on the identity of c. The observation
of x provides evidence as to the identity of c, and there-
fore affects our beliefs about y. We should also update
the pick, fair and biased models based on the obser-
vation of x. The variables z and w, on the other hand,
represent the results of two independent experiments
involving picking and tossing a coin. The observation
of z provides no evidence as to the value of any other
variable, but it does allow us to update the models of
pick_and_toss, fair and biased.

The next example illustrates how the IBAL lan-
guage can be used to represent probabilistic relational
models¯ The example is based on the movie domain
of (FGKP99). This domain is represented by a rela-
tional database containing three relations: The MOVIE
relation describes movies and their properties, such as
the decade in which they were produced, their genre,
and whether they are in color¯ The ACTOR relation
describes actors, and includes a gender attribute¯ The
APPEARANCE relation relates actors to movies they ap-
peared in. It includes a role-type attribute, indicating
the type of role (e.g. hero, villian) played by the actor
in the movie. A relational probabilistic model for this
domain specifies a probability distribution over the val-
ues of attributes of tuples in each of the relations. The
value of an attribute may depend on values of attributes
of related tuples, so, for example, the role-type played
by an actor in a movie may depend on the gender of
the actor and the genre of the movie. A model for this
domain can be defined in IBAL as follows:

movie() =
decade = dist ...
color = case decade of ...

genre = case decade of ...
}

actor() :
gender = dist ...

}
appearance(a,m) =
role_type = case a.gender of
male : case m.genre of

western : dist ...

female : case m.genre of

The above model specifies the database schema, as
well as the structure of a probabilistic model over this
schema. As shown below, an actual database can then
be specified using variable definitions to create tuples,
and observations to assert attribute values. An IBAL
program can easily be produced automatically from a
database using a script.

modern_times = movie()
modern_times.decade is thirties
modern_times.color is false
modern_times, genre is comedy

charlie_chaplin = actor()
charlie_chaplin.gender is male

charlie_chaplin_in_modern~imes =
appearance(charlie_chaplin, modern~imes)

charlie_chaplin_in_modern~imes.role~ype
is innocent

The third example illustrates the use of scope to cap-
ture the successive knowledge states of a cumulative
learning agent. In each episode, the agent learns a new
model, which is then available for use in later episodes¯
For simplicity, the example illustrates an agent that us-
es the naive Bayesian classifier for its basic represen-
tation of models¯ A more sophisticated representation
such as probabilistic relational models could certainly
be used instead.

agentl = {
~i() :

c = dist ...
xl = case c of
vl : dist ...

vm : dist ...

xn = ..¯

59

}
el_l = fl()
el_2 = fl()

el_l.c is v3
el_l.xl is ...

}
agent2 = {
import agentl
f2() = { ... /* uses fl as a feature */
el_l = fl() ...
e2_l.c is ...

}

Notice how each successive agent state is a distinct
semantic entity. This ability of the language to declar-
atively describe the knowledge state of an agent has
powerful implications for representing situations with
multiple agents, as illustrated in the following example.

example.generator() = { ...

agentl = {
import example_generator
testl(x) : { ...

outcome = ...
}
el = testl(example-generator())
e2 = testl(example-generator())

el.outcome is ...
}

agent2 = {
import example_generator
test2(x) { .. .

outcome = ...
}
el = test2 (example-generator ())
e2 = test2 (example-generator ())

el.outcome is ..¯
}

agent3 = {
import agentl
import agent2

}
In this example, there is some model that generates

instances. Agents 1 and 2 both have a test they can
run on the instances, and both run a set of experiments
using their test, but they are unaware of each other.
As a result, they will learn separate models of the in-
stance generator. Agent 3 incorporates the knowledge
of agents 1 and 2, and will learn a single unified model
of both tests and the instance generator.

The Functional EM Algorithm
I have presented a powerful language for describing
complex probabilistic models and observations obtained
about those models. In order to use the language effec-
tively, we need two algorithms. One is a probabilistic
inference algorithm, that allows us to compute belief-
s about unobserved variables given the observed vari-
ables and particular values for the model parameters.
The algorithm for this language is essentially that of (P-
KMT99). It is based on the variable elimination algo-
rithm for Bayesian network inference, but also exploits
the functional structure of the model.

The second algorithm needed is a learning algorith-
m. Ideally, we would want one that learns a poste-
rior distribution over models given the priors and the
observations, which is exactly the semantics of an a-
gent’s knowledge state. Unfortunately, as in the case
of Bayesian networks with missing data, this is too
difficult, since the posterior is generally not Dirich-
let (Hec98). Instead, we compromise and learn the
maximum a-posteriori (MAP) models¯

The algorithm is based on the expectation-
maximization (EM) algorithm (MK97), but like
probabilistic inference algorithm it follows the function-
al form of the model, so I call it functional EM.

Consider an agent, defined by a scope¯ We want to
learn the agent’s MAP distributions for the models de-
fined within the scope, based on all the observations
in the scope. The model parameters are the distribu-
tions associated with each dist expression defined in
the scope. As always, the EM algorithm relies on the
notion of sufficient statistics. In our case, the sufficient
statistics are the number of times each of the possible
outcomes of a dist expression is chosen¯ Note that the
statistics are lexically associated with dist expressions¯
If the same dist expression is executed multiple times
during an experiment, the choices taken are all clumped
together into the same statistic.

Given the values of the sufficient statistics, the max-
imization step of the EM algorithm is completely stan-
dard and trivial. In fact, the MAP distribution is the
sum of the Dirichlet priors and the sufficient statistics,
normalized. All the work, therefore, is in the expecta-
tion step, in which the expected sufficient stastistics are
computed.

The algorithm for computing expected sufficient s-
tatistics given current model parameters is recursive.
Consider, first, the top-level block in a program. The
definitions within the block, together with the curren-
t model parameters, define a probability distribution
over the course of execution of the experiments gener-
ating the variables. The observations serve to condition
this distribution, by rejecting any execution runs that
produce values disagreeing with the observations. To
get the expected sufficient statistics, we need to figure
out the expected number of times each dist expres-
sion was executed, and the expected number of times
each of the possible branches was chosen. To make the
book-keeping simple, we create explicit variables to rep-

6O

resent the outcomes of dist expressions, by converting
the expression

dist Pl : el, ¯ ̄ ̄ ,Pn : en

into the expression

case v of 1 : el, ¯ ¯ ¯, n : en

where v is a new dummy variable whose definition is

v = dist Pl : 1,... ,Pn : n

The sufficient statistics are then the number of times
each of these dummy variables has a particular value.

Now consider a nested block B within a block A. B
may be executed multiple times within a particular ex-
ecution of block A -- let us just consider one of those
executions. For that particular execution, let X be the
free variables in B whose values are defined in A, and
Y be the variables that are defined in B and later used
in A. Let Z be the other variables in A that are not de-
fined in this execution of B (including those contained
in other executions of B), and W the other variables
defined in this execution of B that are not used by A.

Between them, X, Y, Z and W are all the variables
defined inside A, and define values for all the attribute
chains defined inside A. Consider any statistic Nv,i,

which is the number of times a particular dummy dist
variable v has a certain value i. v may appear multiple
times at the end of attribute chains in X, Y, Z and
W. An assignment of values x, y, z and w defines
a value for Nv,i. We can decompose Nv,i into a sum

v i v,i v,i v,i v,iN~’ + N~ + N~ + N~, where N~ is the number of
attribute chains in X ending with v that have the value
i, and so on.

In the terminology of (PKMT99), X and Y are the
interface of (this execution of) B, and W is d-separated
from Z by X and Y. Therefore P(x,y,z,w)
P(x)P(y I x)P(w I x,y)P(z] x,y). It follows that
the expected sufficient statistic E[Nv,i] can be decom-
posed as follows:

E[N~’i + N~’i + N~’i + N~i] =

E[N~’~] + Ex P(x)E[N~’~ I x]+
)-~x,y P(x)P(Y I x)(E[N~i l x, Y] + E[N~’i]

Now, in this expression, the terms E[N~’i] x],

P(Y I x), and E[N~~ I x, y] are computable completely
within B. This in fact holds not just for this particular
sufficient statistic Nv,i but for all sufficient statistic-
s. The functional EM algorithm is therefore recursive,
computing as much as possible within nested blocks.
At the core of the algorithm is a function SolveBlock,
taking the following arguments:

A block B.

A subset Y of the variables defined inside B.

Values y for Y.

SolveBlock returns the following:

A set of free variables X in B whose values are needed
in order to compute V.

For each such variable X, a range of values Dom[X]
that is consistent with the value of Y being y.

P(y Ix) for each x in Dom[X].

For each sufficient statistic Nv,i, the expected contri-
bution to Nv’i from variables defined inside B, given
each x and y.

SolveBlock works in two phases. In the first phase,
it computes the following information, by processing
each of the variable definitions from the bottom up:

For each variable Z, a set Needed[Z] is computed, con-
sisting of simple attribute chains beginning with Z
that are relevant to the observations.

For each attribute chain Z.a E Needed[Z], we compute
a set of values Dom[Z.a] that are consistent with the
observations.

If Z is a simple variable, the parents U of Z and P(Z
z I U = u), for all Z ¯ Dom[z] and u ¯ Dom[V] is
computed from the expression defining Z.

If Z is complex, let B be the block defining Z, and let
Y = Needed[Z]. For each value y ¯ Dora[Y], a recur-
sive call to SolveBlock is performed with arguments
B, Y and y. The result of each such recursive call is
a set of attribute chains X used in B, possible values
x for those chains, P(y [x) for each x Dom[X],
and for each sufficient statistic Nv,i and values x and
Y, E[N~’i I x, y], which is the contribution to the s-
tatistic resulting from the execution of Z, given that
X and Y have the given values.
In the second phase of SolveBlock, the information

computed in the first phase is used to compute sufficient
statistics. First, for each simple dummy variable v, we
compute the distribution over the value of v using stan-
dard BN inference, and add P(v = i) to E[NV,i]. Then,
for each complex variable Z, we have already comput-
ed expected sufficient statistics Nz resulting from the
computation of Z given each possible set of inputs u
and observations y on the output. We therefore com-
pute P(u, y) using standard BN inference, and add

E P(u, y)E[Nz [u,
uc Dom[u],yE Dom[Y]

to the expected sufficient statistics.
This is the core of the learning algorithm. Note that

the same advantages that were obtained from using a
structured algorithm for probabilistic inference are also
achieved by functional EM. There are two advantages
in particular. The fact that the computation of statis-
tics for nested scopes is performed via a recursive call
exploits the fact that most of the internal details of the
called scope are encapsulated from the calling scope. In
addition, if the same block is called from multiple places
with the same possible values for relevant inputs and
outputs, the same set of nested sufficient statistics will
be returned. The nested sufficient statistics therefore
only need to be computed once, and reused each time
the block is called. Both these advantages were shown

61

to produce major speedups for inference in (PKMT99),
and I believe the same will be true for learning.

Discussion

IBAL is a work in progress. I am currently develop-
ing an implementation, which will hopefully be made
publically available for research purposes. In addition
to observations, I intend to make decisions and utilities
basic components of the language -- hence the "inte-
grated" part of the name. My hope is that it will devel-
op into a system that can be used for rapidly designing
new representations, agent architectures and inference
algorithms, and can be applied to a wide variety of do-
mains.

With regard to learning, this paper can be extended
in several ways. The functional EM algorithm learns
a single agent’s models. The language allows us to de-
scribe a cumulative learning agent, or multiple agents
with different knowledge states, and one would like to
learn the models of the different agents in a composi-
tional manner. It is possible, though it remains to be
seen whether this will work out in practice, that learn-
ing the scopes in a program from the bottom up will
turn out to work well. The idea is that if each of the
nested scopes contains observations, the observations in
the innermost scopes can be used to quickly learn good
probability models in the inner scopes. Even though
these models may need to be updated based on obser-
vations in higher level scopes, they should provide a
good starting point for learning on the higher level.

The functional EM algorithm presented here as-
sumes that the recursive procedure eventually termi-
nates. This is the case for the languages discussed in (P-
KMT99) and (FGKP99). However, in (PK00), we
low for the possibility of infinite recursion by developing
an iterative anytime approximate inference algorithm.
It should be possible to extend functional EM to deal
with the infinitely recursive case. EM is also an iter-
ative algorithm. This raises the intriguing possibility
of interleaving the two iterative processes into a single
lazy process.

Finally, the language and algorithm presented here
only allows for learning the model parameters, and not
model structure. Because of the ability of the language
to represent uncertainty over which of several models
gets executed (as in the first example), even this lim-
ited language is quite powerful. However, it would be
interesting to try to learn model structure as well, as
in (FGKF99).

References

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In Proc. IJ-
CAI, 1999.

D. Heckerman. A tutorial on learning with Bayesian
networks. In M. I. Jordan, editor, Learning in Graph-
ical Models. MIT Press, Cambridge, MA, 1998.

D. Koller, D. McAllester, and A. Pfeffer. Effective
Bayesian inference for stochastic programs. In Proc.
AAAI, 1997.
G.J. McLachlan and T. Krishnan. The EM Algorithm
and Extensions. Wiley Interscience, 1997.

S. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal o] Logic
Programming, 19,20:629-679, 1994.

S. Muggleton. Stochastic logic programs. Journal o]
Logic Programming, 1999. Accepted subject to revi-
sion.
A.J. Pfeffer. Probabilistic Reasoning/or Complex Sys-
tems. PhD thesis, Stanford University, 2000.

A. Pfeffer and D. Koller. Semantics and inference for
recursive probability models. In Proc. AAAI, 2000.
A. Pfeffer, D. Koller, B. Milch, and K.T. Takusagawa.
SPOOK: A system for probabilistic object-oriented
knowledge representation. In Proc. UAI, 1999.

62

