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ABSTRACT 

 
The Cooperative Intelligent Real-time Control 
Architecture employs an integrated planning-
scheduling system to create plans that 
guarantee system safety in complex real-time 
environments.  The planner uses state 
transitions with discrete-valued features to 
build and schedule plans that maintain system 
safety while achieving mission goals.  The 
product, a real-time control plan, specifies 
actions plus a resource schedule to guarantee 
that real-time constraints will be met during 
plan execution.  In this paper, we overview the 
production and use of a real-time control plan, 
then we discuss challenges associated with 
modeling complex dynamic environments in 
any state-space planning system. 

Introduction  
 
Autonomous behavior in complex real-world 
systems requires accurate and timely reactions to 
environmental events.  These reactions must 
prevent all catastrophic failures such as loss-of-
life and should ultimately achieve mission goals 
such as arriving at a destination on time.  Timely 
and accurate responses for a complex domain may 
require a significant amount of computational 
resources, regardless of whether such responses 
are pre-programmed or dynamically selected as 
the agent acts within its environment.  As 
processor speed and algorithm efficiency increase, 
it is tempting to presume that resource limitations 
are not an issue because they can always be 
combated with a bigger, faster system.  However, 
the exponentially-complex search-based planning 
and scheduling algorithms typically utilized to 
impart "intelligence" to a complex autonomous 
system can quickly consume all such resources.  
Additionally, the level of intelligence actually 
achieved is a function of planning knowledge 
accuracy and completeness.  

The Cooperative Intelligent Real-time 
Control Architecture (CIRCA) (Musliner, Durfee, 
and Shin 1995) and, more recently, CIRCA-II 

(Atkins 1999) explicitly combine distinct planning 
and scheduling algorithms into a single system in 
order to produce hard real-time control plans that 
achieve mission goals while providing safety 
guarantees in time-constrained environments.  The 
state-space planner specifies a set of actions 
required to guarantee safety and achieve goals, 
then the real-time scheduler places the safety-
preserving action subset in a cyclic schedule based 
on their worst-case execution properties and 
planner-specified task separation constraints.  
These real-time control plans are then executed as 
scheduled by a plan execution module. 

Instead of discussing the design and operation 
of CIRCA or CIRCA-II, this paper focuses on 
how to define the planner/scheduler domain-
specific “input” (i.e., knowledge base) and 
“output” (i.e., real-time control plan) for a 
complex dynamic domain.  First, we present our 
definition of a real-time control plan to illustrate 
the product we require from the planner.  We have 
used this plan representation in CIRCA/CIRCA-II 
for experiments in a variety of domains, most 
recently an Uninhabited Aerial Vehicle (UAV).  
Next, we describe the input domain knowledge 
required to actually create such plans.  Because 
systems such as the UAV are typically described 
using complex nonlinear continuous dynamic 
equations of motion, developing a sufficient 
representation for actions and state feature values 
is a difficult task.  We define a hybrid real-time 
system as a domain (e.g., UAV) in which state 
feature evolution over time is naturally described 
by a combination of continuous dynamic motion 
and discrete events.  We conclude with a 
discussion of challenges we face when using 
CIRCA-II to control such a hybrid system along 
with open issues to be addressed in future work. 

Output:  Real-time Control Plans 

Depending on research focus, the term plan 
may refer to either a sequence of actions or else a 
policy that applies to a group of world states.  Due 
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Figure 1:  Traditional Plan Types. 
 

Figure 2:  Evolution of the Real-time Control Plan. 
 
to our veritable obsession with hard real-time plan 
execution, our plans must include more than 
constructs for matching actions to states.  Figure 1 
illustrates two of the most popular interpretations 
of a plan.  Figure 1a shows a STRIPS plan (Fikes 
and Nilsson, 1987), a sequential action format 
produced by many popular state-space and plan-
space systems.  This specification is appropriate 
when actions may always be executed in a 
predefined sequence.  The STRIPS plan structure 
does not rely on active sensing during plan 
execution, implying there can be no uncertainty 
about when or in what order actions should 
execute.  Figure 1b illustrates a policy 

representation such as that generated by a 
traditional Markov Decision Process (MDP) 
(Boutilier, Dean, and Hanks, 1999).  In this 
model, there is uncertainty regarding the exact 
progression of states that will be encountered, so 
the set of current state features must be sensed and 
matched to the correct action to execute next.  As 
a result, reaction times to environmental events 
are a function of the total time required to identify 
the current state, find the appropriate action, then 
execute that action. 

Because the progression of world states may 
not be known during offline plan development, a 
real-world plan execution system may require 
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state feature sensing to select appropriate actions.  
However, dynamic and dangerous environments 
also require that the complete sense-act loop 
execute in hard real-time to guarantee failure-
avoidance.  To define our notion of real-time 
control plan, consider an MDP policy as the initial 
representation.  Now, to increase execution 
efficiency for matching the current world state to 
the correct policy action, consider a new format in 
which the policy is post-processed so that a set of 
general "preconditions", not fully-instantiated 
states, is used to uniquely match each reachable 
state to a policy action during plan execution.  
This "minimized precondition" policy 
representation is shown in Figure 2a.1 

In a policy where the exact sequence of states 
cannot be predicted, the "minimized-
preconditions" for executing each action must be 
checked periodically, with each action executing 
whenever its preconditions match. Otherwise, the 
action may never execute in a state where it has 
been planned.  This plan structure suggests a loop 
over the precondition-action pairs to identify and 
execute the proper action for each state.  A cycle 
through the plan-loop will not execute 
instantaneously, so we must structure the plan so 
that each action's preconditions will be tested with 
sufficient frequency to guarantee avoiding any 
failures that might occur should action execution 
delay too long.   

If all actions are required for failure-
avoidance and all actions have the same real-time 
execution deadlines for failure-avoidance, then the 
best we could do is to cycle through the plan-loop 
as-is.  However, typically, only certain actions are 
required for failure-avoidance while others are 
used only for goal-achievement.  We attach to 
each action the worst-case timing requirements for 
guaranteed failure-avoidance, and classify all 
actions with specified worst-case timings as 
"guaranteed" while all others are "best-effort", as 
illustrated in Figure 2b.  Now, if all guaranteed 
actions have the same worst-case timing 
requirements, we can execute the "plan-loop" over 
all guaranteed actions, inserting best-effort actions 
into slack time intervals when available.  
However, in general, the guaranteed actions may 
have a very diverse set of real-time requirements.  

                                                 

1 The decision-tree-based minimal precondition 
generation algorithm in CIRCA and CIRCA-II prevents 
the existence of multiple choice points for all states 
expanded during planning.  All other “unexpected” 
states are identified during plan execution as described 
in (Atkins, 1999). 

Thus, instead of looping over each action in the 
guaranteed set, we may maximize our ability to 
guarantee that all execute in time by explicitly 
scheduling these actions in accordance with their 
resource requirements and real-time deadlines.  

Figure 2b includes a cyclic schedule that 
specifies the "plan-loop" for the set of guaranteed 
actions for this plan. We define a task as the 
combination of the minimized-precondition 
feature tests for the action as well as the action 
itself.  For guaranteed performance, this schedule 
must be built assuming worst-case task resource 
consumption, and must verify that all real-time 
constraints for the associated action will be met 
during execution.  In CIRCA and CIRCA-II, we 
define a real-time control plan as the Figure 2b 
combination of a minimized-precondition task set 
and cyclic task schedule that guarantees real-time 
failure-avoidance during plan execution.   

Input:  Knowledge Base 

The primary reason to create a real-time control 
plan is to guarantee safe operation while a 
system/vehicle interacts with a dangerous, 
dynamic environment.  Generally, AI planners are 
defined by the search strategies and heuristics 
employed to develop plans.  Ultimately, however, 
plan quality is a function of domain knowledge 
accuracy and completeness.2  For traditional 
planners, a knowledge base contains a set of 
discrete state features and values along with 
transitions that describe how the world changes as 
actions are executed.  A large but finite set of 
world states may be enumerated from this 
information, and associated transitions provide a 
simple mechanism for describing discrete events 
(e.g., (STACK A B) from the “Blocks World” 
(Russell and Norvig, 1995)).  This state-space 
representation has been adopted by planning 
researchers and has led to systems that reason 
efficiently about complex high-level tasks and 
their interactions. 
 CIRCA and CIRCA-II adopt this basic model 
for encoding domain knowledge and include 
transitions to describe both controlled actions and 
exogenous events.  Due to its focus on real-time 
issues, a CIRCA knowledge base also contains 

                                                 

2 This statement holds for static and dynamic (i.e., 
learned) knowledge, given that plan quality may change 
over time as new experiences are integrated. 



transition timing information, including delays3 
before exogenous events may occur and delays 
between initiating an action and the associated 
state change.  This information along with worst-
case action execution properties allow 
development of the real-time control plans 
described above. 

Hybrid Systems for Plan Development 

 Real-time agents typically move within their 
environment, either on the Earth’s surface (e.g., 
office robot, automobile) or in three-dimensional 
space (e.g., UAV).  Such motion is inherently 
continuous in nature, but symbolic planning 
researchers have discovered clever ways of 
circumventing this problem.  For example, A* 
search during route planning (Russell and Norvig, 
1995) allows identification of the shortest path 
from a location A to location B.  The key to the 
“shortest route” search problem is the existence of 
a “road map” to define route segments (i.e., 
actions) and their associated distances and 
traversal times (i.e., costs). 
 

 
 

Figure 3:  Excerpt from an IFR Flight Chart. 
 

                                                 

3  Transition delays are specified statistically in 
CIRCA-II. 

 We have taken an analogous approach in 
CIRCA-II.  For UAV simulations, we have 
extrapolated the “road map” idea to IFR 
(Instrument Flight Rules) flight routes.  Figure 3 
shows an IFR chart for the Miami area, with route 
segments connecting circled “waypoints”.   

Unfortunately, many systems operate in 
environments where clearly-defined routes are not 
available.  For example, off-road driving makes 
traditional road maps irrelevant, and the upcoming 
transition to aircraft “free-flight” will limit the 
utility of IFR charts for route planning.  To-date, 
we have either specified a choice of routes for the 
CIRCA planner (e.g., segments from an IFR flight 
chart) or else ignored the routing problem 
completely (e.g., specified action “go to location 
x” without deeper investigation).  If specific 
routing details are not required at the state-space 
planning level (e.g., “go to destination x” is 
sufficient), then a separate trajectory generation 
module can be used to supplement the planner.  
This module would take as input proposed start 
and destination locations, and would feed back a 
trajectory, minimum transit time, and maximum 
resource consumption required for that path.  In 
this fashion, complete real-time plans are 
developed.  This method is desirable because it 
allows the planner to exclusively reason about its 
area of expertise:  discrete events, including fixed 
initial and goal destinations (e.g., airports). The 
use of a dynamics-based trajectory generator is 
also attractive because it allows tractable 
consideration of continuous operating regions 
(e.g., aircraft free-flight) rather than pre-
determined fixed routes.   

Although a good first step, we believe this 
simple combination is not generally sufficient for 
autonomous vehicle operation, specifically in 
situations where the precise path between initial 
and destination locations is relevant for high-level 
deliberation.  For example, consider a UCAV 
(Uninhabited Combat Aerial Vehicle) mission in 
which the “goal destination” is a missile target, 
along with additional goal of aircraft survival.  
Combat survival involves evading enemy 
weapons when required (e.g., with aggressive 
maneuvers) followed by a return to the nominal 
goal path, as was demonstrated with CIRCA-II in 
simulation (Atkins, 1999).  However, survival 
following battle damage requires knowledge of 
the degree to which the UCAV can still fly.  As a 
simple example, consider damage that results in 
engine failure.  In this situation, the UCAV will 
most likely be unable to reach its goal, thus an 
alternate trajectory based on “best reachable 
emergency landing site” must be computed.  The 



continuous variable values representing aircraft 
best glide ratio, altitude, airspeed, etc. are required 
to determine the subsequent contingency plan, and 
the overall “goal” switches from a specific 
destination to selecting and landing safely at a 
“reachable” destination.  However, the planner 
does not have sufficient knowledge to distinguish 
between reachable and unreachable goal 
destinations without a more information about 
vehicle dynamics.  Conversely, the basic 
trajectory generator can determine whether any 
particular site is “reachable” but does not have the 
knowledge to select “desirable” versus 
“undesirable” goal destinations. 

To address such a situation, we are working 
to develop a more tightly integrated symbolic 
planning — trajectory generation approach.    
Recently, hybrid systems researchers (Egerstedt 
et. al.) with roots in the controls community have 
adopted finite state automata for discrete events 
along with dynamics-based trajectory generation 
algorithms to effectively develop and follow paths 
from initial to goal locations.  Because such 
systems were developed from the “bottom up” 
(i.e., dynamics � controller � trajectory 
generation � reactive finite automata), the bulk of 
research to-date has employed a set of mode 
switch transitions to define how the trajectory 
should be generated, and goal destinations are 
either fixed or else generated implicitly by 
potential field maps.  By using the fundamental 
equations of motion, route segment shapes and 
traversal times are easily recomputed as vehicle 
dynamics (e.g., maximum engine power/thrust) 
and environmental properties (e.g., mud depth for 
off-road driving) change.  We believe the finite 
automata currently used by trajectory generation 
experts will guide us in the direction of a more 
expressive symbolic planning – trajectory 

generation interface, and we hope to incorporate 
such techniques as tools for next-generation 
planning algorithms. 
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