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Abstract

This paper presents a method for using expected util-
ity distributions in the execution of flexible, contingent
plans. A utility distribution maps the possible start
times of an action to the expected utility of the plan
suffix starting with that action. The contingent plan
encodes a tree of possible courses of action and in-
cludes flexible temporal constraints and resource con-
straints. When execution reaches a branch point, the
eligible option with the highest expected utility at that
point in time is selected. The utility distributions
make this selection sensitive to the runtime context,
yet still efficient. Our approach uses predictions of
action duration uncertainty as well as expectations of
resource usage and availability to determine when an
action can execute and with what probability. Exe-
cution windows and probabilities inevitably change as
execution proceeds, but such changes do not invali-
date the cached utility distributions; thus, dynamic
updating of utility information is minimized.

Introduction
The work reported here is part of a research program to
develop robust, autonomous planetary rovers (Wash-
ington, et al., 1999). Traditionally, spacecraft have
been controlled through a time-stamped sequence of
commands (Mishkin, et al., 1998). The rigidity of this
approach presents particular problems for rovers: since
rovers interact with their environment in complex and
unpredictable ways and since the environment is un-
known or poorly modeled, the rover’s actions are highly
uncertain. We have developed a temporally flexible,
contingent planning language, which enables the spec-
ification of rover actions that can adapt to the chang-
ing execution situation. The plan language is called
the Contingent Rover Language or CRL (Bresina, et
al., 1999). CRL allows a rich specification of precondi-
tions, maintenance conditions, and end conditions for
actions. These conditions can include absolute and rel-
ative temporal constraints, resource constraints (e.g.,
power), as well as constraints on the rover’s state.
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A contingent plan is a tree of possible courses of
action; when execution reaches a branch point, the
rover’s on-board executive selects the eligible option
with the highest expected utility. If all the actions were
time-stamped, then it would suffice to precompute the
expected utility for each contingent option, using clas-
sical decision theory. However, because the actions in a
CRL plan can start within a flexible temporal interval,
the expected utilities of the contingent options depend
on the time that the branch point is reached during
execution. Hence, a single utility measure is insuffi-
cient, and we need to compute a utility distribution
that maps possible action start times to the expected
plan-suffix utility, i.e., the expected utility of executing
the plan suffix starting with that action.

Expected plan-suffix utility depends on when actions
can execute and with what probability. The time over
which an action executes and the probabilities of suc-
cess and failure are affected by all the constraints in
the action’s conditions (pre-, maintain, and end), as
well as by the inherent uncertainty in action durations.
As plan execution proceeds, the temporal windows for
plan actions narrow, resource availability can change,
and rover state can change in unpredictable ways. Such
changes affect the execution time and success proba-
bilities and, thus, the expected utilities. Note, how-
ever, that even though temporal changes can affect
the probabilities of when future actions will start, the
plan-suffix utility distributions of these actions do not
have to be recomputed because they are conditioned
on start time. Although the use of utility distributions
does reduce utility recomputations, it does not elim-
inate them; e.g., changes in resource availability can
require dynamic utility updates.

In contrast to classical decision-theoretic frame-
works, the uncertainty arises from an interaction of ac-
tion conditions and execution time, which is uncertain
because of variations in action durations. Modeling
this with decision-theoretic tools would require cover-
ing the spaces of possible action times and available re-
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sources. Thus, a decision-theoretic planning approach
that a priori considers all possible decision points and
pre-compiles an optimal policy is not practical.

In this paper, we present an approach for estimating
the expected plan-suffix utility distribution in order to
make runtime decisions regarding the best course of
action to follow within a flexible, contingent plan. Our
method takes into account the impact of temporal and
resource constraints on possible execution trajectories
and associated probabilities by using predictions of ac-
tion duration uncertainty and expectations of resource
usage and availability.

Plan-Suffix Utility Distributions

The utility of a plan depends on the time that each ac-
tion starts, when it can execute, and its constraints. In
CRL, an action may be constrained to execute within
an interval of time, specified either in relative or abso-
lute terms. In a plan with this type of temporal flexibil-
ity, the exact moment that a future action will execute
cannot, in general, be predicted. We use a probability
density function (PDF) to represent the probability of
an action starting (or executing, or ending) at a partic-
ular time. The focus of this paper is on the ability to
estimate the expected utility of a sequence of actions
by propagating these PDFs from action to action. The
propagation uses the temporal and resource conditions
of the action to restrict the action’s execution times.

The plan-suffix utility of an action is a mapping from
times to values: u(S, t) is the utility of starting execu-
tion of a plan suffix S at time t. The terminal case is
u({}, t) = 0. For a plan {a, S}, denoting action a fol-
lowed by the plan suffix S, there are two cases, depend-
ing on whether failure of a causes general plan failure
or not. Let us denote psuccess(t

′|a, t) as the probabil-
ity of success of a at time t′ given that it started at
time t, pfailure(t

′|a, t) as the probability of a’s failure
at time t′, and va as the fixed local reward for success-
fully executing action a. If the plan fails when a fails,

u({a, S}, t) =

∫ ∞
−∞

psuccess(t
′|a, t) · (va + u(S, t′)) dt′

If the plan continues execution when a fails,

u({a, S}, t) =
∫∞
−∞ [ psuccess(t

′|a, t) · (va + u(S, t′)) +

pfailure(t
′|a, t) · u(S, t′) ] dt′

In the case of a branch point b with possible suffixes
Sb = {S1, ...Sn}, the plan-suffix utility u({b,Sb}, t) is
a function of the utilities of each possible suffix:

u({b,Sb}, t) =
∑
Si∈Sb

∫ ∞
−∞

pselect(Si, t) · u(Si, t) dt

where pselect(Si, t) is the probability of suffix Si being
selected at time t (0 if the eligibility condition is un-
satisfied). This is an average of the individual suffix
utilities, weighted by the selection probabilities.

Given a planning language with a rich set of tem-
poral, resource, and state conditions, the functions
psuccess and pfailure do not allow closed-form calcu-
lation of the plan-suffix utilities. We solve this by dis-
cretizing time into bins; the value assigned to a bin
approximates the integral over a subinterval. Calcula-
tions of the integrals above become summations. The
choice of bin size introduces a tradeoff between accu-
racy and computation cost, which we examine in the
section Empirical Results.

Although the utility calculation is defined with re-
spect to an infinite time window, the plan start time,
action durations, and action conditions restrict the
possible times for action execution and for transitions
between actions. In this work we model only temporal
and resource conditions; the time bounds we compute
may be larger than the real temporal bounds because
of the unmodeled conditions.

The basic approach is to propagate the temporal
bounds forward in time throughout the plan, produc-
ing the temporal bounds for action execution. Those
temporal bounds serve as the ranges over which the
utility calculations are performed. Outside of these
ranges, the plan fails. A failed plan receives the local
utility of the actions that succeeded and zero utility
for the remainder; failure could be penalized through
a simple extension.

The temporal bounds are calculated forward in time
because the current time provides the fixed point that
restricts relative temporal bounds. The utilities, on
the other hand, are calculated backward in time from
the end(s) of the plan. The utility estimates are condi-
tioned on the time of transitioning to an action; since
they are not dependent on preceding action time PDFs,
they remain valid as plan execution advances, barring
changes in resource availability.

In the following sections, we describe the elements of
an action and present the procedures for propagating
temporal bounds and utilities in more detail.

Anatomy of an Action

In the Contingent Rover Language, each action in-
stance includes the following information:

Start conditions. Conditions that must be true
for the action to start execution.

Wait-for conditions. A subset of the start con-
ditions for which execution can be delayed to wait for
them to become true (by default, unsatisfied start con-
ditions fail the action). Temporal start conditions are



treated as wait-for conditions, and may be absolute or
relative to the previous action’s end time.

Maintain conditions. Conditions that must be
true throughout action execution. Failure of a main-
tain condition results in action failure.

End conditions. Conditions that must be true at
the end of action execution. Temporal end conditions
may be absolute or relative to action start time.

Duration. Action duration expressed as an expec-
tation with a mean and standard deviation of a Gaus-
sian distribution. Our approach would work equally
well with other models of action duration.

Resource consumption. The amount of resources
that the action will consume. It is expressed as an
expectation with a fixed value, because we currently
assume that resource consumption for a given action
is a fixed quantity with no uncertainty.

Continue-on-failure flag. An indication of
whether a failure of the action aborts the plan or allows
execution to continue to the next action.

Resource conditions considered here are threshold
conditions; i.e., they ensure that enough of a given
resource exists for the action to execute. The re-
source profile is an expectation of resource availability
over time, represented by a set of temporal intervals
with associated resource levels. A resource condition
is checked against the availability profile to determine
the intervals over which the condition is satisfied.

Temporal Interval Propagation

Each temporal aspect of an action is represented as a
set of temporal intervals, and we distinguish the fol-
lowing temporal aspects of an action.

Transition time. The time that the execution of
the previous action terminates. This is not the same as
start time, since the action’s preconditions may delay
its execution. The transition-time intervals are the set
of possible times that the previous action will transi-
tion to this action.

Start time. The time that the action’s precondi-
tions are met and it executes. The start-time intervals
are the set of possible times that the action will start.

End time. The time at which the action termi-
nates. We distinguish between successful termination
and failure, due to condition violation, and determine
a set of end-succeed intervals and end-fail intervals.

Execution proceeds according to the following steps:
1. If the current time is already past absolute start

bounds, fail this action.
2. Execution waits until all wait-for and lower-

bound temporal conditions are true (but if upper-
bound temporal conditions are violated at any time,
the action fails).

3. The start conditions are checked, and the action
fails if any are not true.

4. The action begins execution. If any maintenance
conditions fail during execution, the action fails. If the
temporal upper bound is exceeded, the action fails.

5. The action ends execution. The end conditions
are checked, and the action fails if any are not true.

6. Execution transitions to the next action.
As mentioned earlier, action failure either fails the

plan or simply transitions to the next action, as spec-
ified within the plan (the continue-on-failure flag).

Temporal bounds and utilities are propagated to re-
flect the execution steps. We illustrate the temporal
interval propagation by demonstrating how the vari-
ous conditions affect an arbitrary transition-time PDF.
The interval propagation is done simply through com-
putations on the bounds, but since the utility compu-
tations propagate PDFs, the general case demonstrates
the basics underlying both calculations.

Transition time

The possible transition times of the plan’s first action
is when plan execution starts; typically, this is a single
time point (e.g., the set time that the rover “wakes
up”). For all other actions, the transition time PDF is
determined from the previous action’s end time PDFs,
as follows. If the previous action’s continue-on-failure
flag is true, then the possible action transition times
are the union of the possible end-succeed times and the
end-fail times from the previous action. On the other
hand, if the previous action’s continue-on-failure flag
is false, then the action’s transition times are identical
to the previous action’s end-succeed times.

Start time

Given the possible transition times and a model of re-
source availability, we determine the set of temporal
intervals that describes the possible action start times,
along with a set of temporal intervals during which the
action will fail before execution begins.

Consider an action with absolute time bounds
[lbabs, ubabs] (default [0,∞]) and relative temporal
bounds [lbrel, ubrel] (default [0,∞])1. Consider also
resource wait-for conditions Rwait and resource start
conditions Rstart. For a given resource availability pro-
file, each resource condition r corresponds to a set of
time intervals Ifalse(r) for which the resource condi-
tion is not true. We define the set of wait intervals:

Iwait = [−∞, lbabs] ∪
⋃

r∈Rwait

Ifalse(r).

1In practice, a finite planning horizon bounds the abso-
lute and relative time bounds; it also bounds the probabil-
ity reallocation for unmodeled wait-for conditions.



We define the set of fail intervals:

Ifail = [ubabs,∞] ∪
⋃

r∈Rstart

Ifalse(r).

The following rules partition the space of time; they
are used to identify the possible start times and the
possible fail times, given the conditions. In the rules,
t is a given transition time.

1. If t > ubabs, then the action fails at time t.
2. Else, if t + lbrel > ubabs, then the action fails at

time ubabs.
3. Else, if t+lbrel is within a wait interval Iwaiti , and

the upper bound of the wait interval ubwait is such that
ubwait − t > ubrel or ubwait > ubabs, then the action
fails at time min(t+ ubrel, ubabs).

4. Else, if t + lbrel is within a wait interval Iwaiti ,
and the upper bound of the wait interval ubwait is such
that ubwait−t ≤ ubrel, then the action waits until time
ubwait. If ubwait falls within a fail interval, then the
action fails at time ubwait. Otherwise the action starts
at time ubwait.

5. Else, if t+ lbrel is not within a wait interval Iwaiti ,
and t+ lbrel falls within a fail interval, then the action
fails at time t+ lbrel.

6. Finally, if none of the preceding conditions holds,
then the action starts at time t+ lbrel.

If all of the conditions could be accurately modeled,
then a transition time would map to a single start time.
However, as mentioned earlier, we currently model only
temporal and resource conditions. The set of unmod-
eled conditions adds uncertainty about the time inter-
vals over which the sets of conditions will be true. For
start conditions, this adds a fixed probability of failure
to every time point. For wait-for conditions, unsatis-
fied preconditions move probability mass later; to re-
flect this, we subtract a proportion α of the probability
density at each time point and allocate it uniformly to
each time later within the absolute bounds; after this,
the rules above apply for the modeled conditions.

End time

Here we consider how end times are calculated for an
action that has its start conditions true and has started
execution. The successful end time of an action is de-
termined by its start time, duration, maintenance con-
ditions, and end conditions. Without maintenance or
end conditions, the end time PDF is determined by
convolving the start time and duration PDFs; for the
bounds, each start time interval [lbstart, ubstart] and
duration interval [lbdur, ubdur] yields an end time inter-
val [lbstart + lbdur, ubstart + ubdur].

2 All such intervals
are unioned to yield the possible end times.

2To bound the duration interval, we truncate the normal
distribution at ±2 standard deviations and at 0 and then

Maintenance conditions restrict the possible end
times by defining valid execution time intervals; if ex-
ecution exits a valid interval, the action fails. End
conditions further restrict the successful times; if ex-
ecution ends when an end condition is not true, the
action will fail. The temporal end upper bounds are
treated as maintenance conditions so that action exe-
cution is bounded. An action will succeed only if the
following four conditions are met:

1. It successfully begins execution.
2. Its start time falls within a valid execution inter-

val. If not, the action will fail at that start time.
3. Its duration is such that its end time falls within

the same valid execution interval. If not, the action
will fail at the end of this execution interval.

4. The end time falls within a valid end interval. If
not, the action fails at the end time.

Utility Propagation
Utility propagation follows the same basic rules as

temporal interval propagation in terms of the effects
of conditions, but it is calculated during a sweep back
from the terminal actions of the plan tree. A termi-
nal action has an empty plan suffix of utility 0. The
plan-suffix utility is conditioned on the start time of
the action: we calculate the utility of an action and
its successors given a particular transition time. The
plan-suffix utility composed with a PDF of possible
transition times to this action yields the expected util-
ity of the plan suffix starting with this action over the
time distribution given by the PDF. Caching the utility
conditioned on start times allows an efficient means of
choosing the highest utility eligible contingent option.

An action’s plan-suffix utility for a given transition
time is computed as follows. First, the transition time
is propagated to a discrete start time PDF accord-
ing to the start time propagation rules. Second, the
convolution of the start time PDF and duration PDF
is computed to produce the PDFs for successful end
times and failed end times according to the end time
propagation rules. Third, the success end time PDF is
composed with the local value and the plan-suffix util-
ity of the next action to produce the plan-suffix utility
for the given transition time. If the action’s continue-
on-failure flag is set, the failure end time PDF is also
composed with the plan-suffix utility of the next action
and added to the utility computed from the end time.

Empirical Results
To demonstrate our approach, we use a small plan ex-
ample, which is shown in Figure 1. The plan consists
of an initial traversal and then a branch point with the

normalize the remaining distribution.
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Figure 1: Example contingent rover plan. The (µ, σ) above actions indicate duration mean and standard
deviation. Start time constraints are shown in square brackets below arrows. Nonzero local values (assigned by the
scientists) are indicated below actions. For a plan start time of 700, each action’s plan-suffix utility distribution is
plotted above it; all have x-range [955, 1605] and y-range [0, 210]. The leftmost plot is for the branch point. The
plan’s utility is 52.2. The resource availability profile has x-range [955, 1605] and a resource dip over [1000, 1025].

following three contingent options: (i) travel toward a
farther, but more important science target, capture its
image, and communicate the image and telemetry, (ii)
travel toward a nearer, but less important science tar-
get, snap its image, and communicate the image and
telemetry, or (iii) communicate telemetry.

The communication must start within the interval
[1600, 1610]. If communication does not happen, then
all data is lost; hence, it has a high local value. Thus,
the primary determinant of which option has the high-
est expected utility is whether there is enough time
to execute the communication action. The duration
uncertainty of the actions affects the probabilities of
successfully completing each of the contingent options
and, hence, affects the expected utility. The time that
plan execution starts also affects these probabilities
and utilities. In addition, the power availability profile
is such that it prevents motion over a small range of
time; this is also reflected in the utility distributions.

The three utility distributions corresponding to the
three options will be used, when execution reaches the
branch point, to determine which option to execute.
For the case shown, the start time (700) falls at a time

when the first option is likely to fail, which is reflected
in the plan-suffix utility distributions in the figure. The
first option has the highest expected utility only within
the temporal interval [958, 966]. The second option
has the highest expected utility within the temporal
intervals [966, 997] and [1025, 1042]. Within the gap
between these two intervals, i.e., [997, 1025], the third
option has the highest expected utility.

In order to examine the tradeoff of discrete bin size
versus accuracy, we use our example plan with a start
time of 700 (as shown in Figure 1) and compare the
utility of the entire plan when computed using bin sizes
of 0.5, 1, 2, 5, 10, 20, 50, and 100. We also estimate
the exact plan utility with a 100,000 trial Monte Carlo
stochastic simulation. The results are shown in Figure
2. The results show increasing accuracy with decreas-
ing bin size; the largest error is still less than 12%.

Concluding Remarks

In this paper, we presented expected plan-suffix utility
distributions, described a method for estimating them
within the context of flexible, contingent plans, and
discussed their use for runtime decisions regarding the



46

48

50

52

54

0.1 1 10 100

U
ti

lit
y

Bin size

Plan expected utility as function of bin size

Discretized
Monte Carlo

Figure 2: Tradeoff of accuracy and bin size. The
reference line is the value reached through a Monte
Carlo simulation. Note that the x-axis is log scale.

best course of action to take.

The approach presented in this paper attempts to
minimize runtime recomputation of utility estimates.
Narrowing the transition intervals of an action does not
invalidate its utility distributions. Resource availabil-
ity changes may affect the times over which an action’s
conditions are true and, thus, the probability distribu-
tion of successful execution. The plan-suffix utility of
all actions before an affected action will need to be up-
dated. Actions later than an affected action only need
to be updated at newly enabled times.

In contrast to standard decision-theoretic frame-
works (Pearl, 1988), uncertainty arises from an inter-
action of action conditions with an execution time of
uncertain duration. Decision-theoretic tools would re-
quire covering the spaces of possible action times and
available resources; thus, a decision-theoretic planning
approach that considers all possible decision points and
pre-compiles an optimal policy is not practical.

An earlier effort that propagated temporal PDFs
over a plan is Just-In-Case (JIC) scheduling of Drum-
mond, et al. (1994). The purpose was to calculate
schedule break probabilities due to duration uncer-
tainty. Unlike our rich set of action conditions, the only
action constraint in the reported telescope scheduling
application was a start time interval. JIC used the sim-
plifying assumption that start time and duration PDFs
were uniform distributions and that convolution pro-
duced a uniform distribution. Our discretized method
is more statistically valid and could be used in JIC to
increase the accuracy of its break predictions.

An alternative approach to utility estimation is to
use Monte Carlo simulation on board, choosing dura-
tions and eligible options according to their estimated
probabilities. The advantage of simulation is that it
is not subject to discretization errors. On the other
hand, a large number of samples may be necessary to
yield a good estimate of plan utility; furthermore, the
length of the calculation is data-dependent (e.g., to
reach a particular confidence level). We consider such

an approach to be impractical for on-board use, given
the computational limitations of a rover.

A number of issues are raised by this approach, and
some remain for future work. The combination of plan-
suffix utilities at branch points depends on the proba-
bility of choosing each sub-branch at each time. Given
unmodeled conditions, this can only be estimated, but
an interpretation of the conditions on each of the sub-
branches can be performed to determine the expected
probability of that sub-branch being eligible. If there
are times for which more than one sub-branch is poten-
tially eligible, then the resulting utility is some combi-
nation of the utility of each sub-branch at that time.

The use of discrete bins in calculating utility intro-
duces error into the calculation; the probabilities and
utilities of a precise time point are diffused over sur-
rounding time points. As the chain of actions becomes
longer, the inaccuracies grow. Smaller bin sizes mini-
mize the error; however, the utility calculation is in the
worst case O(n3) for n bins. This tradeoff of accuracy
versus computation time requires further study. Bin
size could be scaled with the depth of the action in the
plan, but this would require frequent recalculations as
execution progressed through the plan.

Our approach can be extended by making more real-
istic modeling assumptions; e.g., modeling uncertainty
in resource consumption and modeling hardware fail-
ures. One possible next step is to introduce limited
plan revision capabilities into the plan to handle cases
where all possible plans are of low utility and are thus
undesirable. Another extension would be to introduce
additional sensing actions to disambiguate multiple el-
igible options with similar utility estimates.
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