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Abstract

In order to support awide range of planning-related activities,
we argue that plan and action representations must move to
amore expressivelanguagefor goals and capabilitiesthanis
found in most current systems. A structured representation
for capabilities can make explicit a hierarchy of capabilities
based on subsumption, resulting in benefits for reasoning,
representing, and acquiring operators and plans. By making
capabilities more easily understandable to humans, such a
representation can also benefit mixed-initiative approaches.
We present a structured representation of capabilities and a
subsumption-based matcher for it. We then describe three
existing systems that use this approach in different kinds
of planning tasks and tools. We finish with a discussion
of how plan generation systems can benefit from using this
representation.

Introduction

An important component of plans, processes, and activities
is the description of the capabilities (or goals, or tasks, or
objectives) that an agent or component within a system can
achieve. Typically, acapability isdescribed as a flat predi-
cate with a predicate name and severd arguments and only
limited reasoning is done about them. As part of our work
within the EXPECT project at USC/ISI, we have been using
astructured representation of capabilitiesthat has been use-
ful in several tasks and tools, including a problem solver, a
plan editor, a plan evaluation critiquing tool, and an agent
matchmaker. Although our work concentrates on a partic-
ular aspect of the overall representation of plans and tasks,
we believethat it rai ses some issues that must be taken into
account in the devel opment of plan representationsthat can
address the challenges of real-world, knowledge-intensive
domains.
The main features of our approach are;

o exploit domainontol ogiesthat can beused to reason about
the objectives

o represent explicitly task qualification parameters that
are part of the capability description in addition to data
needed to achieve the capability

o support flexiblematching techni questhat go beyond exact
match, such as subsumption and reformulation.

¢ itishuman understandable as well as transparent to ma-
chines

o support self-organizing libraries of capabilities

In this paper, we describe our approach to represent ca
pabilities and present three systems where we have used it
that address planning-rel ated tasks of a different nature and
in different domains.

Structured Representations of Capabilities

In our approach, capabilitiesare represented as verb clauses
using a case-grammar style of formalism (Fillmore 1968).
Each capability consistsof averb, that specifieswhat istobe
done, and anumber of roles, or slots, which specify the pa-
rameters to be used in the action. The parameters use terms
that are defined in a domain ontology, in our case speci-
fied in Loom (MacGregor 1987). For example, the goa
of estimating the closure date of a particular transportation
movement would be specified roughly as:

estimate 0OBJ closure-date

OF transportation-movement-1

Here, estimate isthe verb, and the roles are indicated
inupper case. Therolesarefilled by concepts and instances
taken from the domain ontol ogy.

Rolescan befilled inseveral different ways, whichallows
considerableflexibility in specifying atask to be performed.
A role can befilled by a specific instance:

add 0BJ 3 TO 5

which alows usto specify particular instances that areto
be used in an action. A role can befilled by a concept:

compute OBJ (spec-of factorial) of 7

In this case, the concept factorial isused to specify
thekind of task that isto be performed. The datarequiredto
perform the computation are specified as parameters (in this
case the number 7), while these additional task parameters
allow usto express what needs to be done with that datain
an explicit way and are not strictly necessary to perform the
computationitself. Thefact that rolescan beused both to
specify theparametersor objectsthat will beinvolvedin
atask andto further describe or specify thetask itself is
one of the key capabilitiesthat our representation sup-
ports, providing us with a rich language for specifying
goals.




Roles can be atype of an instance, asin:

divide OBJ (inst-of number) BY 2

Thisexpressesageneric goa that can beinstantiated with
any elements of that type.

Roles can aso befilled by extensiona setsasin:
find OBJ (spec-of maximum) OF (42 2 99)

or they can befilled by intensional sets, where the set is
described by a concept:
find OBJ (set-of (spec-of violated-constraint))

IN (inst-of configuration)

Finaly, itispossibleto usedescriptions(whicharesimilar
to the definitions of Loom concepts) in roles:
estimate OBJ support-personnel

IN (and location (exactly O seaports))

Thisisagoal to estimate the support personnel in aloca
tion with no seaports.

This approach provides us with arich language for spec-
ifying behaviors. The case grammar formalism makes it
relatively straightforward to paraphrase the gods into nat-
ural language, helping to make them more understandable
(Swartout, Paris, & Moore 1991).

Animportant aspect of the systemswe haveimplemented
that use this expressive representation is how they reason
with it, exploiting subsumption and reformulation as we
describe next. Further details can be found in (Swartout &
Gil 1995; Gil & Melz1996). Capabilitiesaretrandatedinto
Loom definitions, following an algorithm described in (Gil
& Gonzaez 1996). For example,
compute OBJ (spec-of factorial) OF (5 7)
istrandated into:

(defconcept compute-factorial-of-numbers

:is (:and compute
(:the obj (:and concept-description factorial))
(:the of (:and number extensional-instance-set

(:filled-by instance-name 5)
(:filled-by instance-name 7)))))

Loom’s classifier reasons about these definitions and
places them in a lattice, where more general definitions
subsume more specific ones. Notice that this subsumption
reasoning uses the definitions of the domain terms and on-
tologies that are contained in the domain knowledge bases.
For exampl e, the capability to “move cargo with avehicle’
will subsume oneto “move cargo with an aircraft”, because
according to the domain ontologies vehicle subsumes air-
craft. Thisisillustrated in the hierarchy shown in Figure 1.
As aresult, the capabilities are automatically organized ac-
cording to subsumption, and they can be compared based
on their placeinthe lattice.

Subsumption matching can help find suitable capabilities
when presented with a query, but in some cases no subsum-
ing capability has been added to the knowledge base. In
these cases it may be possibleto fulfill the request through
agoal reformulation. Thisallows amore flexible matching
than is possible if one required an exact match for goals
and methods. A goa reformulationis aform of divide and
conquer. It transforms a goal into a set of goas that par-
tition the original goal. For example, suppose a god of
estimating support personnel has been posted, and that the
domain ontology indicates that the concept support person-
nel is partitioned into unloading personnel, seaport support

method
hierarchy

Capability:

move

OBJ (inst-of cargo)
WITH (inst-of aircraft)

L
|

| OBJ (inst-of cargo)
| WITH C-140

Figure 1. Trandating capabilitiesinto Loom descriptions

personnel and airport support personnel. The original goal
can then be reformulated into three new goals to estimate
each type of personnel in the partition. In our approach we
support severa types of reformulations. For more details,
see (Swartout & Gil 1995).

Goa reformulations alow us to state the description of
method capabilities more independently from the descrip-
tions of the goalsthat are posted by other methods or by the
user. The benefit isamoreloose coupling between methods
and tasks, i.e., between what isto be accomplished and what
are possible waysto accomplish it.

We have used these structured representations of objec-
tivesin severa systemsthat we now describe.

EXPECT

EXPECT is a reasoning system that supports acquisition of
problem-solving knowledge through several different tech-
niques. These include maintaining a dependency model
of any knowledge-based system (KBS) that is built with
EXPECT, scripting tools that can guide a user through a
multi-step modification to a KBS and the use of back-
ground knowledge about generic tasks. Here we fo-
CUS On EXPECT'S representation of tasks and subtasks.
Details of the overal reasoning and knowledge acqui-
sition tools can be found in (Swartout & Gil 1995;
Gil & Mdz 1996; Talis & Gil 1999; Kim & Gil 1999;
Blythe & Gil 2000).

The problem-solving knowledge of an EXPECT KBS con-
sists of a set of methods. Each method has a capability
that declares what task can be achieved by the method, a
body that describes how the capability isachieved and are-
turn typethat characterizes what the method produces. The
method body iswritten in aprogramming language that in-




cludes basic constructs such as a conditiona test and can
also include other goals. These goas may be matched by
the capabilities of other methods, which will be used when
the method is applied, resulting in a tree of methods.

EXPECT method capability descriptions are specified in a
similar way to goas, except that variables may appear in
the capability descriptions. These are bound when the ca-
pability descriptionsare matched with goals. Thefollowing
is an example of a method and its capability:

((name calculate-total-cargo-weight-objects)

(capability (calculate (obj (?w is (spec-of weight)))

(of (?fms is (set-of (inst-of object))))))
(result-type (inst-of weight))
(method (sum (obj (r-weight ?7fms)))))

Because it uses structured representations of method ca-
pabilities, EXPECT can reason about how different methods
relate to each other. Thisis useful for organizing method
libraries (Swartout, Gil, & Valente 1999) aswell as support-
ing the acquisition of new problem-solving methods (Kim
& Gil 1999).

We mentioned earlier that the representations were de-
veloped to support natural language paraphrasing to sup-
port explanation generation. This can support knowledge
acquisition (KA) from domain experts, since the paraphrase
of a capability can be generated automatically from the
computer representation and corresponds closely to it. As
part of our work on KA tools, we have developed an
English-based method editor that takes advantage of this
feature, and allows users to select meaningful portions of
a paraphrase and replace them by other constructs pro-
posed by the system based on the grammar and the ex-
isting content of the knowledge base (Blythe & Gil 2000;
Blythe & Ramachandran 1999). Figure 2 shows a snapshot
of part of this editor.

O = Editing method for EXPECT:CALCULATE-TOTAL- CARGO-WEIGH
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In orderto calculate a amount of weight of several objects:
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alternative information about the objects
the depth of the ohjects the length of the objects
the weight of the ohjects tHe width of the objects

Figure 2: English-based EXPECT method editor

Using the techniques described in the previous section,
EXPECT creates Loom definitions for the capabilities of all
the methods that are defined in the knowledge base. Ex-
PECT exploits the representation of goals and capabilities
for matching method capabilities with the goals that arise
during problem solving.
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Figure3: Performance of the Loom-based EXPECT Matcher.
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Figure 4: Strategies-to-Tasks Example (from [Todd 94])

We have been using the representations and matching
approach described herefor a most a decade within EXPECT.
Figure 3 showstheaverage matcher performancefor severa
problems in different domains with quite large knowledge
bases. We have found that it scales up well, duein no small
part to Loom'’s efficiency.

Representing Objectivesand Tasksfor Air
Campaign Planning

We have also used structured representations to represent
objectives in air campaign plans. An air campaign plan
specifieswhat air operationswill be conducted in amilitary
campaign.  The strategies-to-tasks methodology (Todd
1994; Thaler 1993) providesaframework to think about air
campaign plans where low-level military tasks are derived
from higher level national and campaign goas. Figure 4
illustrates the hierarchy of objectives and how it links low
level operational activitiesto higher level objectives.

The Air Campaign Planning Tool (ACPT) wasthefirstin
aseries of plan editorsthat allow a user to define objectives
using this methodol ogy, possibly invoking automated plan
generationtool sto flesh out the plan at thelower levels. Plan
editors are useful at the higher levels of planning to enable
usersto design the overall strategy and structure of the plan.
However, this process is prone to error since it is mostly
manua and can involve severa hundreds of interdependent
objectives and tasks contributed by a number of different
people. We developed INSPECT (Valente et al. 1999), a
knowledge-based system built with EXPECT that analyzes a

Destroy key hardened airbase-support



manualy created air campaign plan and checks for com-
mon flaws, including incompleteness, problems with plan
structure, and insufficient resources. Here we focus on the
structured representation of objectives that was devel oped
in thiswork.

In ACPT the objectives were described as strings, which
lack the structure that an automated tool such as INSPECT
needs in order to reason about them. We embarked on
an effort to provide a formdization of air campaign ob-
jectives, which improved the editor and was a so useful to
other air campaign planning tools. Operationa users found
our structured representationsvery useful, because an editor
would enable them to be more precise in representing ob-
jectives and because they resulted in standard statements of
objectivesthat could be shared and understood by everyone.
For example, ACPT allowed them to state an objective as
"conduct operations', whichistoo vague, or "gain air supe-
riority", which is imprecise because it does not specify the
geographical area within the theater that isintended.

Working with Air Force experts from the “Checkmate
cell” a the Pentagon, we developed a structured represen-
tation of air campaign objectives (Valente, Swartout, & Gil
1996) based on the EXPECT representation. We later devel-
oped grammarsfor other kindsof objectives,including force
support and defensive air operations. In our initial analysis
of offensiveair operations, lessthan 30 different verbswere
used. Each verb had a precise meaning that the experts
would agree upon after some discussion. Once the main
verbs were agreed to, we discovered that the verb itself put
considerable constraints on the roles that were applicable,
making a case grammar an appropriate way to structurethe
objectives. Several editorsthat make use of our grammars
have been built as extensionsto ACPT.

Our air campaign planning tool was successfully demon-
strated in ARPI's Fourth Integrated Feasibility Demon-
stration (IFD-4) in 1996, was part of the DARPA Joint
Force Air Component Commander (JFACC) Jumpstart
Demonstration in 1997, and was integrated within ARPI’s
Multi-Agent Planning and Visuaization System (MAPVIiS)
demonstrated at 1STI-98 and EFX-98. The structured rep-
resentations of air campaign plan objectives were used by
other systems besides INSPECT in several of these demon-
strations. They continueto be well received by operational
users, and thereisinterest in using them to devel op aformal -
ization of several standardization efforts such asthe Unified
Joint Task List (UJTL) and theUS Air Force METL. Weare
currently involved in a technology transition effort as part
of the Joint Defense Planner (JDP).

Phosphorus. Describing and Matching Agent
Capabilities

We are aso using structured representations of capabilities

and ontologies for a new project on agent matchmaking?.

Multi-agent architectures typically offer matchmaking ser-

vices that an agent can query to find what other agents can

perform a given task. For example, aroute planning agent

Lsee hitp:/www.isi.edu/expect/projects/agents/phosphorus.

may invoke threat detection agentsin order to make a safe
choice among all possible routes. Simple string matching
often suffices when the agent communities are relatively
small and the agents that need to issue a request know be-
forehand what other agents are available and how they are
invoked. Most current multi-agent systems al so assumethat
an agent can perform a few tasks (often just a single task),
where the advertisements and invocations of agents are ne-
gotiated in advance by the agent designers. In large and
heterogeneous communities of agents, where the agent that
formulates the request would not know whether and how
another agent has advertised relevant services, there is a
need for more sophisticated matchmaking mechanisms. A
language is required to support descriptions of agent capa
bilitiesthat enable communication among agentsthat had no
previous knowledge of each other and thus need to provide
enough information about themsel vesto agreetojoint activ-
ities. The kinds of structured representations discussed in
thispaper providearicher languagefor advertising the capa-
bilities of agents and would support more flexible matching
algorithms.

Our group is collaborating with the Loom, TEAMCORE,
and ARIADNE projects at 1 SI2 to devel op an agent-based en-
vironment that integrates agent organizations and human
organizations. Typical tasks involve planning a schedule
for avisitor and organizing off-site demonstrationsand vis-
its. Researchers, students, technical support personnel, and
project assistants play different rolesin each of these tasks
and each person has different capabilities to offer in the
organization. For example, only certain project assistants
can process recel pt reimbursements and only certain people
withinaproject can givedemosof it. Agent capabilitiesare
advertised using our structured representations:

((capability (process (obj (spec-of reimbursement))

(for (?r is (set-of (inst-of receipt))))))

(agents (katya fanny tanya)))

((capability (demo (obj Phosphorus)))
(agents (surya)))

((capability (take (obj (?v is (inst-of visitor)))
(to (spec-of lunch))))
(agents (tambe knoblock minton chalupsky gil)))

Using ontologies, we represent information about
projects, (their members, funding agencies, software, etc.),
equipment, etc. The agent capabilities are translated into
Loom descriptions as before. The matchmaker uses sub-
sumption, reverse subsumption, and severa kinds of refor-
mulations to find agents relevant to a request. Figure 5
illustrates the different kinds of match.

Reguests are formulated in the same language. They can
beissued by asoftware component or by apersonthroughan
interactive interface that uses a structured editor that guides
a user to formulate a request using the grammar. A snap-
shot of thisinterface is shown in Figure 6. Here, the user
has issued a request for agents that can set up equipment,
and through acovering reformul ation the matcher has found

2see the project pages http://www.isi.edu/isd/L OOM,
http://www.isi.edu/teamcore and http://www.isi.edu/ariadne .
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Figure5: Agent capability matching

D) Partial match: an agent has a capability
that issimilar/related to the original request

sets of agents that can set up different kinds of equipment.
Work isunder way to develop an interface that alowsindi-
vidua researchers to specify their capabilities so they can
be advertised through the matcher.

We have integrated our matcher with the TEAMCORE ar-
chitecture for rapid assembly of agent teams, which needs
to reason about agent capabilitiesin order to support team
work and configure initial teams.

This work will enable us to further investigate the use
of structured representations for tasks, goas, activities, ca
pabilities, and objectives. Currently, only a few agents
are represented in the system, but as the project progresses
and more agents are incorporated, we expect the system
to benefit from the flexibility provided by our approach.
We plan to build on work that has been done in other ar-
eas, including CSCW, agent-based systems, workflow and
planning, and software reuse (Tissot & Gruninger 1999;
Sycara et al. 1999; Fensdl et al. 1999; Ghallab et al. 1998;
Wilkins & Myers 1995; Tate 1998).

Discussion

We have shown how a structured objective representation
approach can help with planning-related tasks such as plan
evaluation and capability matching. The approach can also
provide benefits for classical Al plan generation systems,
as we now describe. In some cases these benefits are in
modelling adomain, hel ping to keep the model manageable
and help knowledge acquisition, and in some cases they
are algorithmic, allowing the planner to make use of more
powerful tools.

Almost al Al planning algorithmsinclude a step to find
suitable operators given a god or capability specification.
In subgoaling planners such as UCPOP (Penberthy & Weld
1992) and Prodigy (Mintonet al. 1989), thisusually findsall
operatorswith an effect that can unify exactly with thegodl .
In HTN planners such as SIPE (Wilkins 1988) and UMCP
(Erol, Nau, & Hendler 1994), all templates that can match
the capability description are found. Using subsumption

Find phonenumbers of
US citizensin Kuwait

matching with a structured representation, one can increase
the flexibility of these algorithms and this can have two
distinct advantages. First, more planning knowledge can be
represented in a domain-independent manner, resulting in
more compact domainsthat arelesslikely to haveerrorsand
areeasier to understand. Second, the matching mechanisms
can be more explicit than the equiva ent planner-dependent
inference, leading to aclearer domain representation. These
advantages can beincreased if more sophisticated matching
techniquesare used, for example using goal reformulations.

For example, suppose that a planning domain has two
operatorsfor clearing rubblefrom an areg, that thefirst calls
for a generic bulldozer in its preconditions and the second
calsfor aparticular kind of bulldozer. The second is more
specific and, when it can be matched, is more rdliable, so
we would like the planner to choose it when it is appli-
cable. One might use a domain-dependent sel ect-operator
preference rule to do this, but because the rule is opague,
one can only record that the reason for the choice is speci-
ficity through comments that are only read by humans. If
this effect is instead achieved by explicitly preferring the
operator with the more specific objective, there are at least
two benefits. Firdt, less planner code has to be written,
sincethe operator preference isnow expressed in adomain-
independent manner. This makes for both a more readable
and a more bug-free domain. Second, the nature of the
preference rule, preferring more specific operators, is now
made explicit.

Another important area where structured representations
are useful isthe development of verification tools for plan-
ning domains. Even if not used explicitly in the algorithm,
the extra semantic information can provide error checking
capabilities, e.g. if some operator’s capability is more spe-
cific than another, but the first could not be used to solve
the second’s goals, or this fact is not somehow reflected in
more specific preconditions.
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