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Abstract job-shop scheduling by manufacturers. We describe how

We integrate an ordinary planner into a manufacturing ~ our planner can form multipld5, and § matrices and
system by showing that the assembly trees used by how thesecan be combined into a single set of matrices.
manufacturers can be converted into domain operators and The matrices formed by our planners can also be usec

that the operator sequence formed by the planner can be ) . . .
converted into a set of matrices used by the manufacturing for the long-term planning horizons used by Manufacturing

system. This allows manufacturers to continue to use their ~ Resource Planning. We describe the MRP problem and
existing representations where possible. We form additional Show how our matrix notation enhances the MRP
resource matrices based on the planner’'s output which an  algorithm by allowing limited production capacity

existing dispatching system uses to reserve machines and
avoid deadlock. We also show how our planner and matrix
notation can efficiently implement Manufacturing Resource
Planning. In many cases, our MRP system can seamlessly
integrate limited production capacity without manager
intervention.

Inputsto Control System

Researchers studying issues in intelligent control at the

. Automation and Robotics Research Institute (ARRI) have

Introduction developed a multi-level real-time discrete event control

Previous research has developed a real-time control System {acconi & Lewis 1997). The control system needs

system using matrices to describe the sequence ofaS input four matrices describing the conditions under

operations and resources needed to construct parts andvhich the system can legally transition between job steps.
subassemblies (Tacconi & Lewis 1997). We have added Al Figurel shows a sample set of matrices.

planning technology to this system and generated these ABC e

matrices which were previously hand-generated. We have ><1[1 1 ﬂ " %, ?] .
shown that manufacturing assembly trees can be encoded ' %[0 0 1 xz[o "
into HTN operators which allow both input and output A e Pout

from our planner to use manufacturing representations. ¢ Clj)l(lﬁ B X %, a é(lﬁ s
Although the system originally focused on real-time P '

control, we have shown that our matrix-based approach Figure 1: SampleFv andSv Matrices
can also be used for inventory control and advance : ; e a
y The F, matrix maps actions to transitions;lain

planning trfad|t|ona}lly done b_y MRP systems. . locationi, ] means that transitiod, cannot fire until action
We begin by giving a brief overview 9f the real-_nme A completes. They, matrix maps transitions into actions;
contrqller. The_ controller_uses four matrices; and_q a 1 in locatiori, j of this matrix means that when transition
describe ordenqg constraints betwe(_an plan operations, andxj fires, actionA, is startedTwo or more 1s in a single row
F. and 3 describe resource constraints. of I, signal assembly operations. Two or more 1s in a
We show how assc_ambly trees can be U,SEd to form plan single column ofk, signal the start of a job-shop choice.
operators and describe how the planner’'s output can beTwo or more 1s in the same row &f indicate the end of

conve_rted Into thel—vdand 3, matrices. We mtrotduute_ ta job shop choice. Our controller does not allow the same
generic resources and use a resource assignment matrix tQ .o of S, to have more than a single 1.

form the F; and 3 matrices from thel, and &}, matrices. and § describe the resource requirements; a 1 in

H H r
One key advantage that machine planners can offer is thepositioni, j of the F. matrix means that resourBemust

i~ . . .
ability to easily handle alternate courses of action—called be secured before transitidhcan fire. A 1 in positior, j

. . . o . in the § matrix means that when transitiog fires,
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than one 1, resourdeis being shared by more than one  The labelof an assembly tree node names the part
job. produced. This becomes toerator’s todo and :effects.

Although the controller implementation uses matrix Each of the node's children becomes a subgoal The actio
operations, the matricesan be viewed as describing a needed to produce the part, listed on the arcs linking the
Petri-Net (See Figure 1). Using this view, the and §, part to its subassemblies, becomes a primitive (directly
matrices describe places corresponding to tasks; a token inexecutable) action for our planner. We complete the
a task place corresponds to a completed operation. Place®perator by specifying that the primitive action
in - and § correspond to resources; tokens in resource accomplishes the operator’s goal. Ordering constraints ar
places correspond to the availability of that resource to Simple; eachsubgoal (child node of the tree) must be
manufacturing operations. complete before the primitive action (arc label) can begin.

We emphasize that the control system, including the Figure 3 summarizes these correspondences; the resultin
matrix representation,was developed without Pplan operators appear in the top portion of Figure 4.

consideration of machine planning technology. The Assenbly Tree Node HTN Qper at or
matrices, previously hand-generated, capture information Node Label » :todo & :effects
genuinely needed by the control system in the form most Children's Node Labels »{ subgoal s
helpful to the control system. By converting our planner’s Ac Label w-| primitive action

output to this representation, we insure the planner is both
genuinely improving the systeemd also easily integrated Figure 3: Converting Tree Nodes to Operators
with the system.

(act schema Buil d-B
:todo (Assenbl ed B)

Converting Assembly TreestoHTN Operators

Manufacturers use assembly tre@fo(ter, Chakrabarty, &
Tsao 1992) or, equivalently, bill of materials (BOM)
(Baker 1974) to specify a partial order of jobs required to
complete a finished product. Assembly trees do not contain
any information about the resources needed for the jobs;
they contain only product-specific job sequencing
information. We represent assembly trees graphically, with
an edge for each manufacturing operation. Nodes in the
graph represent parts or sub-assemblies; the part name
changes as operatiorsse performed. Figure 2 shows a

rexpansion ((stepl :goal (Assenbled A))

(step2 :prinmitive (Drill A)))
ceffects ((step2 :assert (Assenbled B)))
:orderings ((stepl -> step2)))

(actschema Build-D
:todo (Assenbl ed D)
:expansion ((stepl :goal (Assenbled B))
(step2 :goal (Assenbled C))
(step3 :primtive (Attach B Q)))
ceffects ((step3 :assert (Assenbled D))
;orderings ((stepl -> step3) (step2 -> step3))
(actschema Prepare-A
:todo (Assenbled A)
cexpansion ((stepl :primtive (PutOn A Pallet)
ceffects ((stepl :assert (Assenbled A))))

sample assembly tree; by drilling partwe create paiB.

PartsB andC can be assembled to form the single part Figure 4: Operators for Sample Assembly Tree

D Leaf nodes for an assembly tree represent incoming
parts. Our planner can use “stub” operators to indicate the
point in the plan when the incoming parts are required. We

Assenbl e do this by including HTN operators with rembgoals, as
B C shown in the bottom of Figure 4 for the incoming part A.
Assembly trees show only a single method of
_ contructing a part, but plan operators can represent man'
Drill alternate means of constructing a part. Manufacturers refe
A to this as ajob-shop scheduling problem; we detail this
Figure 2: Sample Assembly Tree ability in a later section.
In this section, we describe how to convert nodes in
an assembly tree into HTN operators. We use the operator
syntax from UMNonlin (Ghoshet al 1992), but the Figure 5 shows a sample plan which includes assembly
descriptions are easily converted into other operator operations and partial ordering of steps (operations F anc
description languages. Like other HTN operators, UM- G may be done in either order or simultaneously). The
Nonlin operatorexplitly identify the subgoal(s) achieved choice of orderings leads to a simple job shop ch@ce.

by each operator; in UMNonlin this is inthe :todo field. controller represents job-shop choices as an explicit choice
The :expansion part showsbgoals and primitive actions  between job sequences, so when we convert the plan to th
needed to execute the operator, and the :effects partcontroller’s representation, we explicitly show the two
describes the result of the operator's executiofn choices: The controller can execute F and then G
:orderings field indicates the partial-order constraints on (corresponding to executing operations F1 and G1) or it
the subgoals and primitive actions listed in the :expansion can execute G and then F (corresponding to operations G:
field. and F2). In (Harris, Cook, & Lewis 200), we show how

ConvertingPlan toTask Matrices



this plan, after the partial orderings are expanded, can beresources are represented by columnB,afontaining two

converted into the, and &, matrices shown in Figure 6.

Figure5: A Sample Plan

Start

PAPgA B C D EFLGLG2 F2 H
X,/1 00 000O0O0OGO0O0 O
X, [0 1 000 00O0O0O0 0 O
/00100000000 O
/000110000000
X |0 0000100000 O
= X |0 00000100000
Vv X, /0 00000100000
X, |0 00000010000
X, |0 0 000O00O0T100 0
X/0 00000 0O0O0T1O0 0
X,,/0 0 0 000 00O0O0 10
X,,/0 00 00 00O OO0 0 1
XX X3 X X5 X5 X X5 X9 X9 X X0
A /1 0000UO0OO0OT® OO OT OO
g - B 010000000000
v C |0 01 00000O0UO0TU OT OO
D |[000100O0GO0UO0UO0T OO0
E |000010000UO0TU OO0
F1L|0 0 0001 000G 0G0 O
G1|/0 000 0OOD100T0TGO00O
G20 00 00O0DO0100TU00O
F2 /0 00 000O0GOT1@0TG0O0
H o0 000OO0DOGO O OO OT1T10
Futlo 0 0 0o o0 0 0o 00 0 0 1

Figure6: F, andS, Matrices

Initially, we assume that each operation has its own
dedicated resource. That is, if a transition starts aéjoih
will also reserve a dedicated resoureg, and if the
completion of an actiod, causes a transition to fire, the
transition will also release a resource. This
correspondence allows us to quickly form initial estimates
for the resource matrices:

F= S,T with the product-out column(s) removed.

é = FVT, with the product-in row(s) removed.

In most cases, this initial assumption is unrealistic. For
example, if action®A, D, andE all involve drilling
operations but we only have one drill, our drill must be
shared by the three operations. In terms of dedicated
resources, this sharing means ti@&at d, and € all

correspond to the same actual resource. We represent thenatrices into

sharing in a resource assignment magjxIf F, contains a
1 in positioni,j, then our actual resouréis performing
the duties of our idealized dedicated resout¢e Shared

or more 1s.

Figure 7 shows a resource assignment matrix containing
two shared resources; a single resowde performs the
functions of the generic resourcas d, and € (and will
be shared among actioAsD, andE) and a single resource
f will perform the functions of generic resourcé% and

f 2 (and thus will be shared by actioR$ andF2).
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Figure 7: F, Assigns Resources

Once we have formed our resource assignment matrix.
we can easily compute our finglandF, matrices.

F=F*F,
S=F*§

One slight complication can arise with self-
loops. For example, consider resouade. With dedicated
resources, transitioX; reservese and releasesl. Now,
transition Xg reserves resourc@le and releases the same
resourceade. This behavior is not correct; intuitively, it
means that at the instaffires, two uses of resourcele
are held. We eliminate this self-loop by finding pairs
such thaf[i,j] = S[j,i] = 1 and changing both values to 0.
This action corresponds to three matrix equations, in which
“&” represents an element-by-element logical AND
operation and “-” represents ordinary matrix subtraction:

T=F&§
I:rnew = Told o -I-S
Snw\/ = Sold N TST

Figure 8 shows our finalS, and F, matrices. To
summarize, the plan itself forn& andF, matrices once
partial orderings are converted to an explicit choice of total
orderings. The idea of generic resources allows us to form
initial resource matrices; by using a resource assignmen
matrix F,, we can easily convert the initial resource
the finaF, andS, matrices. Thus, our
planner has successfully formed the four task matrices
needed by the manufacturing control system.
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] mapping, it determines which transitions from the second
plan are novel anddds equivalent transitions to the first
plan. Thus, the first set ot;, and & matrices will
incorporate alternatives from both plans. Once the plannei
has formed these matrices, we can assign resources ar
form F and § as previously described.

Combining alternatives in this way allows our dispatcher
to dynamically decide among alternate courses of action
based on such dynamic factors as which machines ar
available, what order products arrive in, etc. In other
words, the dispatcher can take advantage of conditions a
execution time to decide among alternatives which are
equally viable at planning time.
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Figure8: F, andS Matrices
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Figure9: Alternate Assembly Trees

M anufacturing Resour ce Planning

Although the matrix notatiowas originally designed for a
real-time control system, th§, andF, matrices can also
represent the ordering constraints needed for
Manufacturing Resource Planning (MRP). In this section,
we show how our matrix notation allows for an efficient
implementation of a Manufacturing Resource Planning
system which accounts for limited capacity constraints for
a large class of systems. In this paper, MRP refers tc
Manufacturing Resource Planning (MRP-Il) and not the
outdated Materials Requirement Planning (little—mrp).

Managing Multiple Plans

One advantage machimanners offer over conventional
manufacturing representations is that they can easily
represent alternate methods of constructing a part.

In (GracaninSrinivasan, & Valavanis 1994gravcanin
uses a parameteriz&ktri-net to represent different means
of assembling ai$4 part. We have shown the alternatives
in assembly tree form in Figure 9.

Of course, machine planners can very easily generate
alternate plans based on different operator sequences; in - .

(Harris, Cook, & Lewis 200Q)we have described a 1raditional MRP Implementation

polynomial-time algorithm for combining different plans This section describes an implementation of MRP for a
into a unified set of matrices. The algorithm begins by single part. The algorithm uses several vectors as shown il
forming separatetr;, and &, pairs for each solution. It  Table 1. Each vector tracks the quantity of a particular part
forms a mapping between places in the second plan andover time. Later, we will consider each vector to be one
(possibly new) places in the first plan; based on this row of a matrix.

Table 1: Vectorsand Scalarsused by MRP

Name | Type Description
R vector | Gross Requirements; amount of product required at each time period.
A scalar Lead time; the time need to produce (or order) a product.

I vector | Inventory, records the amount of product on hand at each time step.
| scalar Minimum inventory the amount of safety stock to keep on hand.

S vector | Scheduled Receigtamount of product we have already planned for.

N vector | Netrequirements; needsexcess of inventory.

POR | vector | Planned OrdeReceiptamount of product we plan to purchase/assemble.
K scalar Capacity constraint; maximum number produced per time unit

es vector | Ordersin excess of capacity.

@) vector | Adjusted planned receipt

E vector | Planned Order Relegsamount of product we must begin assembling.




Inputs. The basic algorithm forms vectors for a single part es; means that the schedule is infeasible; even if the
and takes as input two vectors and three scalars. The Rfactory immediately begins operating at full capacity, it

vector gives the gross requirements—a list of how many will be unable to satisfy its requirements. Assuming that
parts we need at each time unit. Thead time, A, the schedule is feasible, the O vector (Adjusted Order
guantifies the time that will pass between issuing an order Receipt) indicates a schedule for when parts should finish

for a part and receiving the completed payt.the initial
inventory, gives the current stock-on-hand for the patt.
the minimum inventory, gives the amount of safety stock
to keep on hand at all times. Finally, tRevector gives the

being manufactured or arrive from suppliers.

Lead Time. Our manufacturing operations may take more
than one time unit to complete. Likewise, some purchasec

scheduled receipts; it indicates how many parts are alreadyproducts must be ordered well in advance. Tdad time

in production and when they will be ready.

Forming POR. We use a streamlined implementation of
MRP based on equations from (Bedworth & Bailey 1987)
to form POR, the Planned Order Receipt vector. This
process also formk the inventory vector. These vectors
are constructed piecewise, starting freyrand working
upwards:

NtzR_S_|t+|min
POR = max(0, N,)
|t+l: max(lmin’_Nt)

The equations work by forminly, the Net Requirements
vector, one element at a time. A negative elemen of
indicates that supply exceeds demand; the excess will be
stored in inventory and appear in thevector. Positive
elements ofN indicate that demand exceeds supply and
thus additional parts must be purchased or built. These
parts appear in the POR vector.

Capacity Contraints. The POR vector assumes that our
factory has unlimited production ability. However, even at
a long-term view, our factory is limited in the number of
parts it can produce per time unit. We wst® indicate the
capacity constraint for the current part. We can seamlessly
account for this limited capacity by starting from the
highest time unit and working backwards towgrd

O, = max(POR + €s,k)
es_, = max(0,POR +es — k)

These equations form the vectes which indicates
demand in excess of production capacity. A non-zero value
for an element ofes indicates that future demand will
exceed production capacity and thus the factory must begin
work at an earlier time period and store items in inventory.
The equations form a value for_gsa non-zero value for

(A) indicates how long this takes. We use matrices we call
d-matrices to account fdead time. The; matrix has 1s

on its first sub-diagonal; when a vectermultiplied byad,,

the vector will be left-shifted by one unit. Similar, has

1s on the second subdiagonal and when a vestor
multiplied byad,, it will be left-shifted by two units. These
matrices make it easy to account for lead-times:

E=0*§,

The E vector (Planned Order Release) is the main result o
MRP. It indicates when manufacturing must begin or when
purchase ordemnust be placed for the part. In particular, if
E has a non-zero value gt then a purchase order or
manufacturing authorization must be placed during the
current time unit to avoid a slipped schedule.

Matrix MRP Implementation

We have developed an MRRplementation which works
on the matrices developed by our planner. We present ai
extended description of our algorithm, with an example, in
(Harris, Lewis, & Cook 2000b). Table 2 shows the
matrices used by our algorithm; we maintain separate
matrices for manufacturing operations and purchasing
operations. In the tablé,is the number of manufactured
parts, | is the number of purchased parts, amds
determined by the planning horizon.

Our matrix algorithm (shown in Figure 10) accepts as
input R, therequirements matrix. This matrix indicates the
duetimes for all parts considered by our system. We
repeatedly extract a row froR and run the traditional
MRP algoritm to form the E vector for that part. We put
the vector in the appropriate row of a temporargnatrix.

The requirements for this part correspond directly to
needed manufacturing operations and tiesaccumulated
into aT matrix.

We next for an intermediate rest. Our X matrix
holds the deadlines for the subassemblies needed to form



Table 2: Matrices used by Enhanced MRP Algorithm

Entity Size Description

F, i*(i+1) F, matrix, described previously.

S i*i S matrix, described previously.

R i*h Requirementsnumber of parts needed at each time unit.

E i*h Temporary matrix; holds planned order release for a single part.

X @i+D)*h Temporary matrix; holds subassembly requirements for a single part.
T i*h Assembled parts; shows how many of each part must begin assembly.
L I*h Purchased parts; shows how many of each part must be ordered.

Future work includes integrating a scheduler into the
our current part. Manufactured subassemblies form the system to automate the formation lBf, and to further

first i rows of X and are added into thR matrix. expand the MRP algorithm to automatically determine the
Purchasedsubassembies form the remainingows of X capacity constraints for the various subassemblies anc
andare accumulated into the matrix. manage interacting constraints.

When the loop finishesT holds the number of
subassemblies which must begin manufacturing at each
time unit. TheL matrix at this point holds the due times of Acknowledgements
purchased parts; to account for lead-times and possible
maximum order sizes, we run the traditional MRP
algorithm one more time on each rowLof

This research was supported in part by the National Science
Foundation, under grant GER-9355110.
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