
Combining Representations from Manufacturing, Machine Planning, and

Manufacturing Resource Planning (MRP)

Billy Harris Diane Cook Frank Lewis
wharris@cse.uta.edu cook@cse.uta.edu flewis@arri.uta.edu
Department of Computer Science and Engineering Automation and Robotics Research Institute
University of Texas at Arlington 7300 Jack Newel Blvd South
Arlington, Texas 76019 Ft. Worth, Texas   76118

Abstract
We integrate an ordinary planner into a manufacturing
system by showing that the assembly trees used by
manufacturers can be converted into domain operators and
that the operator sequence formed by the planner can be
converted into a set of matrices used by the manufacturing
system. This allows manufacturers to continue to use their
existing representations where possible. We form additional
resource matrices based on the planner’s output which an
existing dispatching system uses to reserve machines and
avoid deadlock. We also show how our planner and matrix
notation can efficiently implement Manufacturing Resource
Planning. In many cases, our MRP system can seamlessly
integrate limited production capacity without manager
intervention.

Introduction   

Previous research has developed a real-time control
system using matrices to describe the sequence of
operations and resources needed to construct parts and
subassemblies (Tacconi & Lewis 1997). We have added AI
planning technology to this system and generated these
matrices which were previously hand-generated. We have
shown that manufacturing assembly trees can be encoded
into HTN operators which allow both input and output
from our planner to use manufacturing representations.
Although the system originally focused on real-time
control, we have shown that our matrix-based approach
can also be used for inventory control and advance
planning traditionally done by MRP systems.

We begin by giving a brief overview of the real-time
controller. The controller uses four matrices: Fv  and Sv
describe ordering constraints between plan operations, and
Fr  and Sr  describe resource constraints.

We show how assembly trees can be used to form plan
operators and describe how the planner’s output can be
converted into the Fv  and Sv  matrices. We introduce
generic resources and use a resource assignment matrix to
form the Fr  and Sr  matrices from the Fv  and Sv  matrices.
One key advantage that machine planners can offer is the
ability to easily handle alternate courses of action—called
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job-shop scheduling by manufacturers. We describe how
our planner can form multiple Fv  and Sv  matrices and
how these can be combined into a single set of matrices.

The matrices formed by our planners can also be used
for the long-term planning horizons used by Manufacturing
Resource Planning. We describe the MRP problem and
show how our matrix notation enhances the MRP
algorithm by allowing limited production capacity

Inputs to Control System

Researchers studying issues in intelligent control at the
Automation and Robotics Research Institute (ARRI) have
developed a multi-level real-time discrete event control
system (Tacconi & Lewis 1997). The control system needs
as input four matrices describing the conditions under
which the system can legally transition between job steps.
Figure 1 shows a sample set of matrices.

The Fv  matrix maps actions to transitions; a 1 in
location i, j means that transition Xi cannot fire until action
Aj completes. The  Sv  matrix maps transitions into actions;
a 1 in location i, j of this matrix means that when transition
Xj fires, action Ai is started. Two or more 1s in a single row
of Fv  signal assembly operations. Two or more 1s in a
single column of Fv  signal the start of a job-shop choice.
Two or more 1s in the same row of Sv  indicate the end of
a job shop choice. Our controller does not allow the same
column of Sv  to have more than a single 1.

Fr  and  Sr  describe the resource requirements; a 1 in
position i, j of the  Fr  matrix means that resource Rj must
be secured before transition Xi can fire. A 1 in position i, j
in the Sr  matrix means that when transition Xj fires,
resource Ri is released. If a column j of Fr  contains more

Figure 1: Sample Fv and Sv Matrices
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than one 1, resource j is being shared by more than one
job.

Although the controller implementation uses matrix
operations, the matrices can be viewed as describing a
Petri-Net (See Figure 1). Using this view, the Fv  and Sv
matrices describe places corresponding to tasks; a token in
a task place corresponds to a completed operation. Places
in Fr  and Sr  correspond to resources; tokens in resource
places correspond to the availability of that resource to
manufacturing operations.

We emphasize that the control system, including the
matrix representation, was developed without
consideration of machine planning technology. The
matrices, previously  hand-generated, capture information
genuinely needed by the control system in the form most
helpful to the control system.  By converting our planner’s
output to this representation, we insure the planner is both
genuinely improving the system and also easily integrated
with the system.

Converting Assembly Trees to HTN Operators

Manufacturers use assembly trees (Wolter, Chakrabarty, &
Tsao 1992) or, equivalently, bill of materials (BOM)
(Baker 1974) to specify a partial order of jobs required to
complete a finished product. Assembly trees do not contain
any information about the resources needed for the jobs;
they contain only product-specific job sequencing
information. We represent assembly trees graphically, with
an edge for each manufacturing operation. Nodes in the
graph represent parts or sub-assemblies; the part name
changes as operations are performed. Figure 2 shows a
sample assembly tree; by drilling part A, we create part B.
Parts B and C can be assembled to form the single part D.

In this section, we describe how to convert nodes in
an assembly tree into HTN operators. We use the operator
syntax from UM-Nonlin (Ghosh et al 1992), but the
descriptions are easily converted into other operator
description languages. Like other HTN operators, UM-
Nonlin operators explitly identify the subgoal(s) achieved
by each operator; in UM-Nonlin this is in the :todo field.
The :expansion part shows subgoals and primitive actions
needed to execute the operator, and the :effects part
describes the result of the operator’s execution.  An
:orderings field indicates the partial-order constraints on
the subgoals and primitive actions listed in the :expansion
field.

The label of an assembly tree node names the part
produced. This becomes the operator’s :todo and :effects.
Each of the node's children becomes a subgoal The action
needed to produce the part, listed on the arcs linking the
part to its subassemblies, becomes a primitive (directly
executable) action for our planner. We complete the
operator by specifying that the primitive action
accomplishes the operator’s goal. Ordering constraints are
simple; each subgoal (child node of the tree) must be
complete before the primitive action (arc label) can begin.
Figure 3 summarizes these correspondences; the resulting
plan operators appear in the top portion of Figure 4.

Leaf nodes for an assembly tree represent incoming
parts. Our planner can use “stub” operators to indicate the
point in the plan when the incoming parts are required. We
do this by including HTN operators with no subgoals, as
shown in the bottom of Figure 4 for the incoming part A.

Assembly trees show only a single method of
contructing a part, but plan operators can represent many
alternate means of constructing a part. Manufacturers refer
to this as a job-shop scheduling problem; we detail this
ability in a later section.

Converting Plan to Task Matrices

Figure 5 shows a sample plan which includes assembly
operations and partial ordering of steps (operations F and
G may be done in either order or simultaneously). The
choice of orderings leads to a simple job shop choice. Our
controller represents job-shop choices as an explicit choice
between job sequences, so when we convert the plan to the
controller’s representation, we explicitly show the two
choices: The controller can execute F and then G
(corresponding to executing operations F1 and G1) or it
can execute G and then F (corresponding to operations G2
and F2). In (Harris, Cook, & Lewis 200), we show how

Figure 4: Operators for Sample Assembly Tree

Figure 2: Sample Assembly Tree

Figure 3: Converting Tree Nodes to Operators
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(actschema Build-B
:todo (Assembled B)
:expansion ((step1 :goal (Assembled A))

(step2 :primitive (Drill A)))
:effects ((step2 :assert (Assembled B)))
:orderings ((step1 -> step2)))

(actschema Build-D
:todo (Assembled D)
:expansion ((step1 :goal (Assembled B))

(step2 :goal (Assembled C))
(step3 :primitive (Attach B C)))

:effects ((step3 :assert (Assembled D)))
:orderings ((step1 -> step3) (step2 -> step3)))

(actschema Prepare-A
:todo (Assembled A)
:expansion ((step1 :primitive (PutOn A Pallet)))
:effects ((step1 :assert (Assembled A))))



this plan, after the partial orderings are expanded, can be
converted into the Fv  and  Sv  matrices shown in Figure 6.

Initially, we assume that each operation has its own
dedicated resource. That is, if a transition starts action Ai, it
will also reserve a dedicated resource   

)
Ri , and if the

completion of an action Aj causes a transition to fire, the
transition will also release a resource R̂j . This
correspondence allows us to quickly form initial estimates
for the resource matrices:

F̂ Sr v
T� , with the product-out column(s) removed.

Ŝ Fr v
T� , with the product-in row(s) removed.

In most cases, this initial assumption is unrealistic. For
example, if actions A , D , and E  all involve drilling
operations but we only have one drill, our drill must be
shared by the three operations. In terms of dedicated
resources, this sharing means that â , d̂ , and ê  all
correspond to the same actual resource. We represent the
sharing in a resource assignment matrix Fa. If Fa contains a
1 in position i,j, then our actual resource Rj is performing
the duties of our idealized dedicated resource R̂i . Shared

resources are represented by columns of Fa containing two
or more 1s.

Figure 7 shows a resource assignment matrix containing
two shared resources; a single resource ade performs the
functions of the generic resources â , d̂ , and ê  (and will
be shared among actions A, D, and E) and a single resource
f  will perform the functions of generic resources f̂1 and
f̂ 2 (and thus will be shared by actions F1 and F2).

Once we have formed our resource assignment matrix,
we can easily compute our final Sr and Fr matrices.

F F Fr r a
� ˆ *

S F Sr a
T

r
� * ˆ

One slight complication can arise with self-
loops. For example, consider resource ade. With dedicated
resources, transition X5 reserves ̂e  and releases ̂d . Now,
transition X5 reserves resource ade and releases the same
resource ade. This behavior is not correct; intuitively, it
means that at the instant X5 fires, two uses of resource ade
are held. We eliminate this self-loop by finding i,j pairs
such that Fr[i,j] = Sr[j,i] = 1 and changing both values to 0.
This action corresponds to three matrix equations, in which
“&” represents an element-by-element logical AND
operation and “-” represents ordinary matrix subtraction:
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Figure 8 shows our final S r  and F r matrices. To
summarize, the plan itself forms Sv and Fv matrices once
partial orderings are converted to an explicit choice of total
orderings. The idea of generic resources allows us to form
initial resource matrices; by using a resource assignment
matrix F a, we can easily convert the initial resource
matrices into  the final F r and S r matrices. Thus, our
planner has successfully formed the four task matrices
needed by the manufacturing control system.

Figure 7: Fa Assigns Resources

Figure 5: A Sample Plan

Figure 6: Fv and Sv Matrices
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Managing Multiple Plans

One advantage machine planners offer over conventional
manufacturing representations is that they can easily
represent alternate methods of constructing a part.

In (Gracanin, Srinivasan, & Valavanis 1994), Gravcanin
uses a parameterized Petri-net to represent different means
of assembling an S4 part. We have shown the alternatives
in assembly tree form in Figure 9.

Of course, machine planners can very easily generate
alternate plans based on different operator sequences; in
(Harris, Cook, & Lewis 2000), we have described a
polynomial-time algorithm for combining different plans
into a unified set of matrices. The algorithm begins by
forming separate Fv  and Sv  pairs for each solution. It
forms a mapping between places in the second plan and
(possibly new) places in the first plan; based on this

mapping, it determines which transitions from the second
plan are novel and adds equivalent transitions to the first
plan. Thus, the first set of Fv  and Sv  matrices will
incorporate alternatives from both plans. Once the planner
has formed these matrices, we can assign resources and
form Fr  and Sr  as previously described.

Combining alternatives in this way allows our dispatcher
to dynamically decide among alternate courses of action
based on such dynamic factors as which machines are
available, what order products arrive in, etc. In other
words, the dispatcher can take advantage of conditions at
execution time to decide among alternatives which are
equally viable at planning time.

Manufacturing Resource Planning

Although the matrix notation was originally designed for a
real-time control system, the Sv and Fv matrices can also
represent the ordering constraints needed for
Manufacturing Resource Planning (MRP). In this section,
we show how our matrix notation allows for an efficient
implementation of a Manufacturing Resource Planning
system which accounts for limited capacity constraints for
a large class of systems. In this paper, MRP refers to
Manufacturing Resource Planning (MRP-II) and not the
outdated Materials Requirement Planning (little–mrp).

Traditional MRP Implementation
This section describes an implementation of MRP for a
single part. The algorithm uses several vectors as shown in
Table 1. Each vector tracks the quantity of a particular part
over time. Later, we will consider each vector to be one
row of a matrix.

Table 1: Vectors and Scalars used by MRP

Name Type Description
R vector Gross Requirements; amount of product required at each time period.�

scalar Lead time; the time need to produce (or order) a product.
I vector Inventory; records the amount of product on hand at each time step.
Imin

scalar Minimum inventory; the amount of safety stock to keep on hand.

S vector Scheduled Receipts; amount of product we have already planned for.
N vector Net requirements; needs in excess of inventory.
POR vector Planned Order Receipt;amount of product we plan to purchase/assemble.

� scalar Capacity constraint; maximum number produced per time unit
es vector Orders in excess of capacity.
O vector Adjusted planned receipt
E vector Planned Order Release; amount of product we must begin assembling.

Figure 8: Fr and Sr Matrices

Figure 9: Alternate Assembly Trees
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Inputs. The basic algorithm forms vectors for a single part
and takes as input two vectors and three scalars. The R
vector gives the gross requirements—a list of how many
parts we need at each time unit. The lead time, 

�
,

quantifies the time that will pass between issuing an order
for a part and receiving the completed part. I0, the initial
inventory, gives the current stock-on-hand for the part. Imin,
the minimum inventory, gives the amount of safety stock
to keep on hand at all times. Finally, the S  vector gives the
scheduled receipts; it indicates how many parts are already
in production and when they will be ready.

Forming POR. We use a streamlined implementation of
MRP based on equations from (Bedworth & Bailey 1987)
to form POR, the Planned Order Receipt vector. This
process also forms I, the inventory vector. These vectors
are constructed piecewise, starting from t0 and working
upwards:

N R S I I

POR N

I I N

t t t t

t t

t t

� � � �
�

� ��

min

min

max( , )

max( , )

0

1

The equations work by forming N, the Net Requirements
vector, one element at a time. A negative element of N
indicates that supply exceeds demand; the excess will be
stored in inventory and appear in the I vector. Positive
elements of N indicate that demand exceeds supply and
thus additional parts must be purchased or built. These
parts appear in the POR vector.

Capacity Contraints. The POR vector assumes that our
factory has unlimited production ability. However, even at
a long-term view, our factory is limited in the number of
parts it can produce per time unit. We use �  to indicate the
capacity constraint for the current part. We can seamlessly
account for this limited capacity by starting from the
highest time unit and working backwards toward t0:

O POR es

es POR es
t t t

t t t

� �
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max( , )

max( , )

	
	

1 0

These equations form the vector es which indicates
demand in excess of production capacity. A non-zero value
for an element of es indicates that future demand will
exceed production capacity and thus the factory must begin
work at an earlier time period and store items in inventory.
The equations form a value for es-1; a non-zero value for

es-1 means that the schedule is infeasible; even if the
factory immediately begins operating at full capacity, it
will be unable to satisfy its requirements. Assuming that
the schedule is feasible, the O vector (Adjusted Order
Receipt) indicates a schedule for when parts should finish
being manufactured or arrive from suppliers.

Lead Time. Our manufacturing operations may take more
than one time unit to complete. Likewise, some purchased
products must be ordered well in advance. The lead time
( 
 ) indicates how long this takes. We use matrices we call�
-matrices to account for lead time. The 

�
1 matrix has 1s

on its first sub-diagonal; when a vector is multiplied by 
�

1,
the vector will be left-shifted by one unit. Similarly, 

�
2 has

1s on the second subdiagonal and when a vector is
multiplied by 

�
2, it will be left-shifted by two units. These

matrices make it easy to account for lead-times:

The E vector (Planned Order Release) is the main result of
MRP. It indicates when manufacturing must begin or when
purchase orders must be placed for the part. In particular, if
E has a non-zero value at t0, then a purchase order or
manufacturing authorization must be placed during the
current time unit to avoid a slipped schedule.

Matrix MRP Implementation
We have developed an MRP implementation which works
on the matrices developed by our planner. We present an
extended description of our algorithm, with an example, in
(Harris, Lewis, & Cook 2000b). Table 2 shows the
matrices used by our algorithm; we maintain separate
matrices for manufacturing operations and purchasing
operations. In the table, i is the number of manufactured
parts, l is the number of purchased parts, and h  is
determined by the planning horizon.

Our matrix algorithm (shown in Figure 10) accepts as
input R, the requirements matrix. This matrix indicates the
duetimes for all parts considered by our system. We
repeatedly extract a row from R and run the traditional
MRP algoritm to form the E vector for that part. We put
the vector in the appropriate row of a temporary E matrix.
The requirements for this part correspond directly to
needed manufacturing operations and thus are accumulated
into a T matrix.

We next for an intermediate result X . Our X  matrix
holds the deadlines for the subassemblies needed to form

E O� * ��



Table 2: Matrices used by Enhanced MRP Algorithm

Entity Size Description
Fv

i*( i+l) Fv  matrix, described previously.

Sv
i* i Sv  matrix, described previously.

R i*h Requirements; number of parts needed at each time unit.
E i*h Temporary matrix; holds planned order release for a single part.
X (i+l)*h Temporary matrix; holds subassembly requirements for a single part.
T i*h Assembled parts; shows how many of each part must begin assembly.
L l*h Purchased parts; shows how many of each part must be ordered.

our current part. Manufactured subassemblies form the
first i rows of X  and are added into the R  matrix.
Purchased subassembies form the remaining l rows of X
and are accumulated into the L matrix.

When the loop finishes, T  holds the number of
subassemblies which must begin manufacturing at each
time unit. The L matrix at this point holds the due times of
purchased parts; to account for lead-times and possible
maximum order sizes, we run the traditional MRP
algorithm one more time on each row of L.

Conclusions

We have integrated the representations used by machine
planners, assembly trees, and MRP systems. This mapping
allows machine planners to be easily integrated into
manufacturing systems and allows for the execution of
short-term plans and the understanding of long-term plans.

We have shown that assembly trees in use among
manufactures can be used to encode plan operators. The
output of a planner can be converted into two matrices
which encode operating constraints in a manner most
convenient for an existing real-time manufacturing control
system. For real-time systems, we have shown how we can
easily form resource useage matrices based on the resulting
plan.

Over longer planning horizons, we have shown how the
same two matrices, along with an abstract notion of limited
production capacity, can be used in a modified MRP
system. This allows manufacturers to detect potential
scheduling problems well in advance and seamlessly
integrates assembly trees, capacity requirements planning,
manufacturing resource planning, and symbolic planning.

Future work includes integrating a scheduler into the
system to automate the formation of Fa, and to further
expand the MRP algorithm to automatically determine the
capacity constraints for the various subassemblies and
manage interacting constraints.
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  L = L + leaf nodes of X

Figure 10: Matrix MRP Algorithm


