
Flexible Blackbox: Preliminary Results

Peter Jarvis†, Ian Miguel‡, and Qiang Shen‡

†Artificial Intelligence Center
SRI International,

333 Ravenswood Ave, Menlo Park, CA 94025, USA.

‡Division of Informatics
The University of Edinburgh

80 South Bridge, Edinburgh, EH1 1HN, UK

Jarvis@ai.sri.com, {ianm, qiangs}@dai.ed.ac.uk

Abstract
We argued in our Flexible Graphplan (FGP) work that the
classical definition of the planning problem is too rigid to
capture the full subtlety of many real problems. In light of
this, we provided a new flexible definition and described a
solution strategy based upon the Graphplan framework.
Under this definition an action must determine how well its
preconditions are met and assert a relative satisfaction
degree along with its effects. In this paper, we describe how
the Blackbox framework can be modified to solve the same
flexible problem. Our Flexible Blackbox (FBB) system can
synthesise a range of plans for a given flexible problem,
trading the compromises made in a plan versus plan length
in the same manner as FGP. We detail the modifications
required and provide empirical results that compare our
implementation of FBB with our FGP solver on a range of
flexible problems and against vanilla Blackbox, STAN, IPP,
and Graphplan on imperative problems.

Keywords: Flexible Planning Problems, Blackbox, and
Graphplan.

Introduction

In our Flexible Graphplan work (Miguel, Jarvis, & Shen
2000), we argued that the classical definition of the
planning problem, which casts such problems in terms of
imperative constraints that are either wholly satisfied or
violated, is too restrictive to capture the full subtlety of
real-world problems. We defined a new flexible planning
problem and described a solution strategy based upon the
Graphplan framework (Blum & Furst 1997).

In this paper, we describe our work on adapting the
Blackbox framework (Kautz & Selman 1999) to solve the
same flexible planning problem. This development is
interesting because in contrast to the Dynamic Flexible
CSP engine (Miguel & Shen 1999) used in FGP, the plan
extraction phase in FBB deploys a standard SAT solver. To
achieve this we introduce a new procedure for extracting
from a flexible plan graph a structurally valid subgraph
with a given minimum satisfaction degree. This is

necessary as a flexible plan graph is underpinned by
multivalued logic, which is not recognised by standard
Boolean SAT solvers. This work provides further insights
into the additional effort needed to solve a flexible
planning problem and further demonstrates that the recent
heuristic advances in planning enable new epistemic
benefits to be realised economically, too.

To motivate the need to consider flexibility in planning
problems, consider the UM-Translog domain (Andrews et
al. 1995), derived from Veloso's work (1992), where a
valuable package must be carried on an armored truck and
the loading and unloading is to be accompanied by a guard.
The preconditions of the LOAD-TRUCK action state that
(i) the truck and the valuable package must be at the same
location, (ii) the truck must be armored, and (iii) a guard is
on station. While precondition (i) is imperative,
preconditions (ii) and (i i i) are preferences or soft
constraints (Fox 1987) and can be relaxed with associated
reduction in the quality of the resultant plan. It is this
ability to reason about the relaxation of soft constraints and
the resultant reduction in the quality of to the plan
synthesised that we have added to the Graphplan
framework and in this paper we add to the Blackbox
framework.

The remainder of this paper is structured as follows. The
next section describes related work in the areas of
contingent, conformant, and mixed-initiative planning and
describes how the flexible planning problem is distinct and
complementary to these areas. The formal definition of the
flexible planning problem from our FGP work is then
reprised and a solution strategy using the Blackbox
framework is proposed. This strategy is evaluated against
FGP on flexible problems and against the vanilla Blackbox
system on imperative problems. We finish with a summary
and an outline of future work. The reader is assumed to be
familiar with the basic operation of Graphplan and
Blackbox.

Related Work

The assumptions that an agent possesses complete and
correct information has received much attention in the form

From: AAAI Technical Report WS-00-07. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

of contingent and conformant AI planning research. In
contingent planning, a planner is equipped with sensing
actions that can be used to determine the state of the world
during plan execution (Warren 1976; Peot & Smith 1992;
Etzioni et al. 1992; Goldman & Boddy 1994a; Golden,
Etzioni, & Weld 1994; Pryor & Collins 1996). In
conformant planning, a planner is provided with
knowledge about the possible states the world can be in at
the start of execution and the possible outcomes of
executing each action (Kushmerick, Hanks, & Weld 1994;
Smith & Weld 1998; Blum & Langford 1999). The
approaches are complementary and their integration has
been explored (Draper, Hanks, & Weld 1994; Blythe &
Veloso 1997; Goldman & Boddy 1994b; Onder & Pollack
1999).

The proposed flexib le approach is distinct from, but
complementary to, contingent and conformant techniques.
With respect to contingent approaches, FBB like FGP
makes the closed-world assumption and is not furnished
with information-gathering actions. However, the flexible
propositions used complement the natural imprecision in
real-world sensing actions as had been exploited in the area
of fuzzy control (Pedecrycz & Gomide 1999).
 With respect to conformant approaches one might
initially consider overloading a probabilistic formalism to
represent the action satisfaction degree property that we
introduce later. However, as probability theory and fuzzy
logic make different ontological commitments, the
inferences made by a probabilistic planner on such an
overloaded description will not be sound. To see this
consider the finite-horizon Markov Decision Process that
underpins PGraphplan (Blum & Langford 1999). The
policies synthesised by this system consider repeating an
action if its desired effects do not occur during execution.
In a flexible context, repeating an action is nonsensical as
this will not affect a plan’s satisfaction degree. Repeating
an action will not change the quality of a plan.

Recent applied planning research explored a mixed-
initiative paradigm where the user is supported in exploring
the range of plans that can be used to achieve a task. Two
approaches have emerged. In TRIPS (Ferguson & Allen
1998) and O-Plan (Tate, Dalton, & Levine 1998), the user
is expected to interact extensively with the planner to
explore the solution space. This has the weakness that a
user may not understand the solution space that he or she is
exploring and has the danger that vital solution areas may
be missed. The present work is in line with that of Myers
and Lee's (1999) development of the SIPE-2 planner
(Wilkins 1988) where the system automatically produces a
number of courses of action. Their approach is based on
the biasing of planner choice points against a meta-theory
that relates domain objects and actions to user evaluation
criteria. The planner is then run several times on the
problem, each time with bias settings from different points
in the meta-theory. The proposed approach is similar in
that it minimises user-interactions with the system. The
important difference is that it is capable of automatically

finding a range of plans, given a flexible planning problem,
by using a single run.

A Flexible Planning Problem

As defined in (Miguel, Jarvis, & Shen 2000), a flexible
planning problem, Ψ, consists of a 4-tuple, <Φ, Ο, Ι, Γ>,
denoting sets of domain individuals, flexible operators,
initial conditions consisting of flexible propositions, and
flexible goal conditions, respectively. Boolean propositions
are herein replaced by flexible propositions, ρ, which have
the form (ρ φ1, φ2,…,φj, κ i), where φi ∈ Φ and κ i is an
element of a totally ordered set, Κ , which denotes the
subjective degree of truth of the proposition. Κ is
composed of a finite number of membership degrees, κ↓,
κ1,…,κ↑. The original Boolean proposition type is captured
at the end points of Κ , with κ ↓∈Κ and κ↑∈Κ indicating
total falsehood and total truth, respectively. For brevity,
propositions expressing a truth value of κ↓ or κ↑ will be
written in the Boolean style of ¬ (ρ φ1, φ2,…,φj) and (ρ φ1,
φ2,…,φj), respectively.

A flexible proposition is described by a fuzzy relation, R.
R is defined by a membership function µ(.):Φ1 × Φ2

×…×Φj →Κ, where µ(.):Φ1 × Φ2 ×…×Φj is the cartesian
product of the subsets of Φ allowable at this place in the
proposition.

As an illustrative example, consider a problem in the
logistics domain containing packages pkg1, pkg2, and pkg3.
The unary flexible proposition (valuable ?pkgi kj) is
represented by a discrete unary fuzzy relation that maps
each package to an associated truth degree in Κ. Assume
that the midpoint of K is denoted, κ→. We can now assert
that pkg1 is worthless with the flexible proposition
(valuable pkg1 κ↓), that pkg2 is moderately valuable with
(valuable pk2 κ→), and that pkg3 is very valuable with
(valuable pkg3 κ↑).

A flexible operator, ο ∈ Ο, cannot simply test for the
presence of a consistent set of preconditions; it must
recognise how well its preconditions are satisfied. Flexible
operators are also described by fuzzy relations that map
from the precondition space to a totally ordered satisfaction
scale, L, as well as a set of flexible effects propositions. As
per K, L is composed of a finite number of membership
degrees, l↓ , l1,...,l↑. The endpoints, l↓ ,∈ L, and, l↑ . ∈ L,
respectively denote a complete lack of satisfaction (in
which case the operator is not to be added to the planning
graph based on these preconditions) and complete
satisfaction.

A flexible operator consists of a set of disjoint
conditional clauses, Σ (similar to a traditional STRIPS
operator (Fikes & Nilsson 1971) enhanced to support
conditional effects (Pednault 1989)). Each σ ∈ Σ is a triple
<Θ, R, κ i> denoting, respectively, a conjunction of flexible
preconditions, a conjunction of flexible effect propositions,
and the associated satisfaction degree of this operator given
these preconditions. Each θ∈Θ has the form (ρ φ1, φ2,…,φj

τ κ i), where τ is a precondition operator with argument set
κ taken from those shown in Table 1. The general format

of a flexible operator is shown in Figure 1. Each σi maps a
subset of the space of preconditions to a particular set of
effects and a satisfaction degree in L.

A flexible plan goal γ ∈ Γ maps from the space of
flexible propositions to L. Each goal is defined using a
number of clauses, as shown in Figure 2. The preconditions
are defined exactly as those used in the flexible operators.
More than one set of mutually consistent propositions may
exist that satisfy the plan goals to some extent. Hence, the
satisfaction degree of the plan as a whole must take into
account the goal satisfaction degrees as well as those of the
flexible operators.

Precondition Operator, τ Arguments, κ
≡ κi

<= κi

>= κi

Range κi κj

Discrete κa κb É

Table 1: Operators Used to Defined Flexible Preconditions

(operator οI (params param1, param2, …)
σi :{ when (preconds θi1, θ i2, …)

(effects ρi1, ρi2 …) (satisfaction l i)}
σj :{ when (preconds θi1, θ i2, …)

(effects ρi1, ρi2 …) (satisfaction l j)}

Figure 1: The General Format of a Flexible Operator

(goal γi

{ when (θi) (satisfaction l i)}
{ when (θj) (satisfaction l j)}

Figure 2: The General Format of a Flexible Goal

The satisfaction degree of a flexible plan is defined as
the conjunctive combination of the satisfaction degrees of
each flexible operator and each flexible goal used in the
plan. The conjunctive combination of two fuzzy relations,
Ri ⊗ Rj, is usually interpreted as the minimum membership
value assigned by either relation, although other
interpretations of combination are possible (Smith & Shen
1997). The quality of a plan is defined in terms of its
satisfaction degree combined with its length. Given two
plans with an equivalent satisfaction degree, the shorter is
deemed to be the better.

Flexible Blackbox

The original Blackbox framework (Kautz & Selman 1999)
operates in four stages:

1. A planning problem is converted to a plan graph by
using the same procedure (and code) as in
Graphplan. When the sufficient conditions for plan
existence are met, the system moves to step 2.

2. Translation rules are used to transform the planning
graph into a CNF wff suitable for input to a SAT
engine.

3. A SAT engine is applied to the CNF wff.
4. If the SAT engine finds a model then that model

corresponds to a plan, which is recovered from the
model, and the system terminates. If no model can
be found, then the system returns to step 1.

To adapt this framework to solve the flexible planning
problem, a new flexible graph expansion procedure is used
in step 1 and a new subgraph extraction procedure must be
added to step 2. These modifications are described in the
following sections.

Flexible Graph Expansion
This process (and the code) is identical to that used by
Flexible Graphplan. To describe the process, it is first
necessary to define exclusivity in the context of flexible
propositions. Two flexible propositions are labelled as
exclusive if either they express a different truth degree for
the same core proposition or (as per Graphplan) all ways of
creating one are exclusive of all ways of creating the other.

Mutual-exclusion constraints between action nodes are
again defined for FGP in a manner similar to that of the
original Graphplan framework. They express the
information that no valid plan could possibly contain both
actions. Two flexible actions are mutually exclusive if any
of the following hold:
§ Inconsistent Effects: The actions have mutually

exclusive effects.
§ Interference: One action has an effect proposition

that expresses a different truth degree than for a
proposition required as the precondition of the
other.

§ Competing Needs: The actions have mutually
exclusive preconditions.

All initial conditions are placed in the first proposition
level of the graph (which will be referred to as level 0). A
generic action level is generated as follows. Each clause of
each flexible operator is instantiated in all possible ways to
propositions of the previous level. If all preconditions are
mutually consistent, an action instance with the associated
satisfaction is added to the planning graph for each such
instantiation. No-op actions are again added in exactly the
same manner as for Graphplan. The No-op action is a
special case, which always has a satisfaction of l↑ .

The graph expansion process can be improved for FBB
to ease the burden of maintaining flexible information.
Consider the case where a plan of satisfaction degree l i has
been found. If l i < l↑ the expansion process must continue
onward from this point to look for a plan with a higher
satisfaction degree. However, it can be seen that there is no
point in instantiating flexible operator clauses with a
satisfaction degree less than or equal to li: a plan with this
satisfaction degree has been found already a longer plan
with the same satisfaction degree is deemed to be of a
lower quality. The conjunctive combination rule ensures
that no plan of satisfaction degree lj can contain an action
of satisfaction li, where li < lj; hence, the completeness of
the search is not affected by omitting such actions in future
flexible planning graph levels.

An Example
For illustration, consider the following example derived
from the logistics domain. The example contains three
cities connected by three roads. Road1 and Road2 are major
roads and connect City1 to C i t y2 and Ci ty2 to City3

respectively. Road3 is an unsafe track through the hills and
connects City1 to City3. The single imperative goal of this
problem is to transport a package, Pkg1. from City1 to City3.
The following definitions are used for K and L : Κ = {κ↓,
κ1, κ2,κ↑}, L = {l ↓, l1, l2,l↑} .

Figure 3 shows an operator which expresses the damage
done to a plan by sending a truck across the dangerous dirt
track whilst indicating that using the major roads has no
damaging effect on the plan. Although in this simple
illustrative case all effects sets within the operator are the
same this is not a requirement and in general they may be
totally different. Other inflexible operators are defined (by
not using any of the flexible preconditions and assigning a
satisfaction of l↑) that allow for packages to be unloaded
and unloaded from a truck.

(operator DRIVE
(params (?v vehicle) (?o location) (?d location)

(?r1 major-road) (?r2 track))
{(when (preconds (at ?v ?o) (connects ?r1 ?o ?d))

(effects (not (at ?v ?o)) (at ?v ?d))
(satisfaction l↑)}

{(when (preconds (at ?v ?o) (connects ?r2 ?o ?d))
(effects (not (at ?v ?o)) (at ?v ?d))
(satisfaction l1)}

Figure 3: Flexible Operator Drive

Given the flexible Drive operator and the problem of
moving a package from City1 to City3, the flexible graph
expansion will create a graph containing a plan at a
satisfaction degree of l1 after two steps and a plan at l↑ after
three steps. The l1 plan will use the unsafe but direct Road3

while the l↑ plan will take the longer but safer route of
provided by Road1 and Road2. This example illustrates the
trade-off possible between the plan satisfaction degree and
plan length.

Translating a Flexible Planning Graph to a CNF
wff
Under the classical definition of planning that underpins
plan extraction in Graphplan, and therefore Blackbox, all
actions in a planning graph have the same implied degree
of satisfaction and each must be considered as a candidate
during plan extraction. Under the flexible definition used in
FGP and FBB, in searching for a plan at a given
satisfaction degree only actions that possess an individual
satisfaction degree that is greater than or equal to this
degree can be considered as candidates. This is a direct
result of our interpretation of the conjunctive combination

of two fuzzy relations, Ri ⊗ Rj, as being the minimum
membership value assigned by either relation.

As standard SAT solvers have no facility for associating
a satisfaction degree with a literal in a formula, the
obligation of providing a SAT solver with a wff that can
lead only to a model with a given minimum satisfaction
degree rests with the translation process. To achieve a CNF
wff that can lead only to a plan with a given minimum
satisfaction degree, we need a procedure for extracting
from a flexible planning graph a structurally-valid
subgraph containing only actions at or above the current
degree of satisfaction for which we are searching. We
define the procedure for building such a subgraph in three
stages.

In Definition 1 we define the membership of a
candidate-subgraph at a given degree of satisfaction. This
set contains only actions with a satisfaction degree equal to
or higher than the degree at which we are searching.
However, it does not guarantee that the graph formed by its
members will be structurally valid. Definitions 2 and 3
achieve this condition. Definition 1 assumes that the set
flexible-graph contains the plan graph produced by the
flexible plan expansion process defined in the previous
section. The function satisfaction-degree: action → l i ∈ K
returns the satisfaction degree associated with an action.

Definition 1 (membership of candidate-subgraph)
∀ aj: ai∈ flexible-graph, aj∈ candidate-subgraph(li) ⇔
satisfaction-degree(aj)≥l i.

Under Definition 1, the candidate-subgraph may not be
structurally valid. By this we mean that it may contain
actions that depend upon propositions that are not asserted
by fellow members of the candidate-subgraph. In
Definitions 2 and 3 we provide the necessary conditions for
determining the subset of the candidate-subgraph that is
also structurally valid (sv).

Definition 2: (membership of sv-subgraph)
∀ ai: ai∈ candidate-subgraph(li), ai∈ sv-subgraph(li) ⇔
supported(ai, li).

The predicate supported defined in Definition 3 assumes
the existence of the following utility functions and
constants. Function graph-level: action → Ζ+ provides the
planning graph level occupied by an action. The set initial-
state contains all propositions in the initial state, and the
constant first-action-level is equal to the level in the
planning graph occupied by the first action level, that is the
level supported by the propositions in the initial state.

Definition 3: (membership of set supported)
supported(ai, li) ⇔ (∀ p: precondition(p, ai) ⇒
 ((∃ aj: asserts(aj, p) ∧ aj∈ candidate-subgraph(li) ∧
 (graph-level(aj) ≡ (graph-level(ai) -1)) ∧
 supported(aj, li)) ∨ ((graph-level(ai) ≡
 first-action-level) ∧ p ∈ initial-state)))) .

Definitions 1 through 3 are sufficient to provide us with
a structurally valid subgraph for a given degree of
satisfaction. If, when converted to a CNF wff, a SAT
solver can find a model for such a subgraph then a plan
exists with this or a higher degree of satisfaction. The rules
for translating a structurally valid subgraph to a CNF wff
are the same as those given by Kautz, McAllester &
Selman (1996).

1. The Initial state holds at layer 1, and the goals hold
at the highest layer of the graph.

2. Operators imply their preconditions, for example,
 (DRIVE(Truck1, City1, City3, li, t1) ⇒ ((at, truck1,
City1, κ↑, t0) ∧ (connects, R2, City1, City2, κ↑, t0))

3. Each fact at graph level a implies the disjunction of
all the operators at level a-1 that have it as an add-
effect, for example,

 (at, Truck1, City3, κ↑, t2) ⇒ (no-op(at, Truck1, City3, li,
t1), t2)∨ (DRIVE(truck1, City1, City3, li, t2))

4. Conflicting actions are mutually exclusive.
((¬DRIVE(truck1, City1, City3, li, t1) ∨
(¬DRIVE(truck1, City1, City2, l↑, t1))

In summary, with the addition of a procedure for
extracting a valid subgraph at a given degree of
satisfaction, the modifications to Blackbox's plan
extraction procedure are complete. The simplicity of the
modifications required reflects the elegance of the
Graphplan and Blackbox approaches with respect to
separating graph expansion from plan extraction.

Experimental Results

FBB is first evaluated against leading Boolean solvers to
establish the effect of the additional flexible machinery.
Table 2 shows the results obtained when running FBB,
FGP, Graphplan, STAN v4 (Long & Fox 1998), IPP v4
(Koehler et al. 1997), and BLACKBOX 3.6b (Kautz &
Selman 1999). FBB performs strongly against all the
Graphplan planners, including FGP. FGP and FBB are
implemented in Java™ and the other solvers in C. The
SAT solver used by FBB is implemented in C.

Problem Len. FBB FGP BBox GP STAN IPP

Rocket-a 7 36 14 5 75 33 47

Rocket-b 7 54 21 8 154 2 76

Log-a 11 63 8 6 1955 1 1513

Log-b 13 175 123 9 862 2 633

Log-c 13 392 145 20 - 704 _

Table 2: Boolean Problem Comparison (in seconds)
between FBB, FGP and Leading Solvers. A dash indicates
no solution found in 24 hours. Hardware used: Sun Ultra 5.

On this problem set FBB’s performance compares well
with the Graphplan based solvers, including FGP.
However, against vanilla Blackbox the performance is
disappointing. Profiling of the additional flexible

machinery indicated that this was contributing
approximately one second to the runtime of FBB on Log-c.
The bulk of the performance differential can be explained
by implementation differences, particularly in the use of
Java. We can conclude that on Boolean problems the
additional flexible machinery does not significantly
degrade performance.

Problem L Len FBB FGP
Flogs-1 l1 3 2 < 1

l 2 4 4 < 1
l ↑ 9 14 3

Flogs-2 l1 3 2 < 1
l 2 4 3 1
l ↑ 12 26 4

Flogs-3 l1 3 2 < 1
l 2 4 4 1
l ↑ 20 172 12

Flogs-4 l1 3 2 < 1
l 2 6 7 2
l ↑ 20 433 17

Flogs-5 l1 3 2 1
l 2 7 21 5
l ↑ 20 816 26

Flogs-6 l1 5 5 2
l 2 8 14 5
l ↑ 20 701 27

Flogs-7 l1 5 5 2
l 2 10 45 9
l ↑ 20 1149 33

Flogs-8 l1 5 5 2
l 2 12 175 16
l ↑ 20 1687 40

Flogs-9 l1 7 13 5
l 2 12 177 17
l ↑ 20 1687 42

Flogs-10 l1 7 16 6
l 2 15 907 42
l ↑ 20 3567 65

Flogs-11 l1 9 41 11
l 2 15 848 40
l ↑ 20 3858 66

Flogs-12 l1 12 114 20
l 2 17 1589 50
l ↑ 20 3708 67

Table 3: Flexible Problems (in seconds). Hardware used:
Sun Ultra 1.

In the second experiment, the performance of FBB is
compared with that of FGP on a range of flexible
problems. The domain used was a variant of the flexible
logistics domain introduced earlier. The test suite contained
12 problems designed to cover a range of variations in plan
length and plan quality. Early in the problem set, solutions
at each quality are both short and similar in length. The
solution length at each satisfaction degree is then raised in

turn to provide cases where the highest quality plan is
significantly longer than the lower quality plans, and so
forth. At the end of the test set the plans are again of a
similar but longer length. The results of this experiment are
shown in Table 3.

FBB’s performance is poor when compared with FGP’s,
which is contradictory to the Boolean results reported by
others. Two areas can be examined to identify the source of
this performance degradation. First, do the larger graphs
generated by a flexible planner exceed some threshold
beyond which the translation of a planning graph to a CNF
wff is more expensive than the relative performance
advantage of a SAT solver in the plan extraction process?
Second, is the implementation of FBB tested here
inefficient? Profiling FBB’s execution on Log-c revealed
the following apportionment of time between the solver’s
subprocesses:

• 2% graph construction
• 2% SAT solver
• 0.78% determining membership of the candidate

subgraphs
• 6.22% determining membership of the structurally

valid subgraphs
• 95% translating plan graphs to and from CNF
As graph translation should be polynomial with respect

to the size of a planning graph and given that it is taking
95% of the computational effort, the efficiency of the
implemented algorithm should be considered.

It is an open question as to whether the larger graphs
produced by a flexible planner favor the SAT-based or
CSP-based plan extraction strategy.

Conclusion

We have shown that, with relatively simple modifications,
the Blackbox framework can be adapted to solve the
f lexible planning problem. This is an interesting
development as the structurally valid subgraph procedure
that had to be developed to enable standard Boolean SAT
solvers to be exploited identifies clearly the additional
work needed to extract a plan from a flexible planning
graph.

The experimental results available are inconclusive.
Only by carefully tuning the CNF wff translation algorithm
within FBB will it be possible to determine if the larger
plan graphs generated by flexible planners favor SAT
based or CSP based plan extraction strategy.

This paper completes the first item of further work
identified in our FGP work reported earlier and it provides
a new solution strategy for the flexible planning problem. It
would be interesting to develop flexible planning in two
directions. First, the inclusion of the efficient plan graph
ideas from STAN (Long & Fox 1998) and IPP (Koehler et
al. 1997) would ease the burden of building and
maintaining the large plan graphs demanded by the flexible
approach. Second, it would be interesting to compare the
range of solutions generated by both flexible solvers with

those produced by SIPE-2 under Myers and Lee's (1999)
developments.

Acknowledgments

Peter Jarvis is supported by DARPA Contract F30602-97-
C-0067 under the supervision of Airforce Research
Laboratory - Rome. Ian Miguel is supported by the UK-
EPSRC grant number 97305803. The Authors thank Karen
L. Myers for insightful comments.

References

Andrews, S., Kettler, B., Erol, K., and Hendler, J. 1995.
UM Translog: A planning domain for the development of
benchmarking of planning systems. Technical Report,
Dept. Computer Science, University of Maryland, USA.
Blum, A., and Furst, M. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-
2):281-300.

Blum, A., and Langford, J. 1999. Probabilistic planning in
the Graphplan framework. Proceedings of the 5th European
Conference on Planning Systems, Durham UK 320-332.

Blythe, J., and Veloso, M. 1997. Analogical replay for
efficient conditional planning. Proceedings of the 15th
National Conference on AI 668-673.

Draper, D., Hanks, S., and Weld, D. 1994. Probabilistic
planning with information gathering and contingent
execution. Proceedings of the 2nd International Conference
on AI Planning Systems 31-36.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., and
Williamson, M. 1992. An approach to planning with
incomplete information. Proceedings of the 3rd
International Conference on Principles of Knowledge
Representation and Reasoning 115-125.

Ferguson, G., and Allen, J. 1998. TRIPS: Towards a
mixed-initiative planning assistant. Proceedings of AIPS
Workshop on Interactive Collaborative Planning.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 5(2).

Fox, M. 1987. Constraint-Directed Serach: A Case Study
of Job-Shop Scheduling. Pitman, Morgan Kaufmann.

Golden, K., Etzioni, O., and Weld, D. 1994. Omnipotence
without omniscience: Efficient sensor management for
planning. Proceedings of the 12th National Conference on
AI 1048-1054.

Goldman, R., and Boddy, M. 1994a. Conditional linear
planning. Proceedings of the 2nd International Conference
on AI Planning Systems 80-85.

Goldman. R., and Boody, M. 1994b. Epsilon-safe planning.
Proceedings of the 10th Conference on Uncertainty in AI
253-261.

Kautz, H., and Selman, B. 1999. Unify Sat-based and
graph-based planning. Proceedings of the 16th
International Joint Conference on AI 318-325.

Kautz, H., McAllester, D., and Selman, B. 1996. Encoding
plans in prepositional logic. Proceedings of the 5th
International Conference on Principles of Knowledge
Representation and Reasoning.

Koehler, J., Nebel, B., Hoffmann, J., and Dimopoulos, Y.
1997. Extending planning graphs to an ADL subset.
European Conference on Planning 273-285.

Kushmerick, N., Hanks, S., and Weld, D. 1995. An
algorithm for probabilistic planning. Artificial Intelligence
76(1-2):239-286.

Long, D., and Fox, M. 1998. Efficient implementation of
the plan graph in STAN. Journal of AI Research 10:87-
115.

Miguel, I., and Shen, Q. 1999. Extending FCSP to support
dynamically changing problems. Proceedings of the 8th
International Conference on Fuzzy Systems 1615-1620

Miguel, I., Jarvis, P., and Shen, Q. 2000. Flexible
Graphplan. In Proceedings of the 14th European
Conference on Artificial Intelligence (ECAI-2000), Berlin,
Germany.

Myers, K., and Lee, T. 1999. Generating qualitatively
different plans through metatheoretic biases. Proceedings
of the 16th National Conference on AI 570-576.

Onder, N., and Pollack, M. 1999. Conditional, probabilistic
planning. Proceedings of the 16th National Conference on
AI 577-584.

Pednault, E. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. Proceedings of
the 1st International Conference on Principles of
Knowledge Representation and Reasoning.

Pedrycz, W., and Gomide, F. 1999. An Introduction to
Fuzzy Sets: Analysis and Design. MIT Press.

Peot, M., and Smith, D. 1992. Conditional non-linear
planning. Proceedings of the 1st International Conference
on AI Planning Systems 189-197.

Pryor, L., and Collins, G. 1996. Planning for contingencies:
A decision based approach. Journal of AI Research 4:287-
339.

Smith, F., and Shen, Q. 1997. Choosing the right fuzzy
logic controller. Proceedings of the 7th International Fuzzy
Systems Association World Congress 3:342-347.

Smith, D., and Weld, D. 1998. Conformant Graphplan.
Proceedings of the 15th National Conference on AI.

Tate, A., Dalton, J., and Levine, J. 1998. Generation of
multiple qualitatively different plans. Proceedings of the
4th International Conference on AI Planning Systems 27-
34.

Veloso, M. 1992. Learning by analogical reasoning in
general problem solving. Ph.D. Dissertation, Carnigie
Mellon University, USA.

Warren, D. 1976. Generating conditional plans and
programs. Proceedings AISB Summer Conference 344-
354.

Wilkins, D. 1988. Practical Planning. Morgan Kaufmann.

