
Planning in Interplanetary Space: Theory and Practice∗

Ari K. Jónsson Paul H. Morris
Nicola Muscettola Kanna Rajan
NASA Ames Research Center, MS 269-2

Moffett Field, CA 94035-1000,
{jonsson,pmorris,mus,kanna}@ptolemy.arc.nasa.gov

Ben Smith
Jet Propulsion Laboratory
Pasadena, CA 91109-8099
smith@aig.jpl.nasa.gov

Abstract

On May 17th 1999, NASA activated for the first time
an AI-based planner/scheduler running on the flight
processor of a spacecraft. This was part of the Remote
Agent Experiment (RAX), a demonstration of closed-
loop planning and execution, and model-based state
inference and failure recovery. This paper describes
the RAX Planner/Scheduler (RAX-PS), both in terms
of the underlying planning framework and in terms of
the fielded planner.

Introduction
During the week of May 17th 1999, the Remote Agent
became the first autonomous closed-loop software to
control a spacecraft during a mission. This was done
as part of a unique technology validation experiment,
during which the Remote Agent took control of NASA’s
New Millennium Deep Space One spacecraft (Muscet-
tola et al. 1998; Bernard et al. 1999). The experiment
successfully demonstrated the applicability of closed-
loop planning and execution, and the use of model-
based state inference and failure recovery.

As one of the components of the autonomous con-
trol system, the on-board Remote Agent Experiment
Planner/Scheduler (RAX-PS) drove the high-level goal-
oriented commanding of the spacecraft. This involved
generating plans that could safely be executed on board
the spacecraft to achieve the specified high-level goals.
Such plans had to account for on-board activities hav-
ing different durations, requiring resources, and giving
rise to subgoal activities, all while satisfying complex
flight safety rules about activity interactions.

In this paper, we describe the Remote Agent Experi-
ment Planner/Scheduler from both the theoretical and
the practical perspectives. The architecture of the plan-
ning system is as shown in Figure 1. The domain model
describes the dynamics of the system to which the plan-
ner is being applied – in this case, the Deep Space One
spacecraft. A plan request, consisting of an initial state
and a set of goals, initializes the plan database. The
search engine then modifies the plan database to gen-
erate a complete valid plan, which is then sent to the
execution agent. The heuristics and planning experts
are not part of the core framework, but they are an in-
tegral part of the planning system that flew on board
Deep Space One. The heuristics provide guidance to

∗Authors in alphabetical order.

Planning
Experts

Search
Engine

Heuristics

Domain
Model

Plan Database
Goals

Initial state

Plan

Planning Engine

Knowledge base

Figure 1: The Planner/Scheduler architecture

the search engine while the planning experts provide a
uniform interface to external systems, such as attitude
control systems, whose inputs the planner has to take
into account.

Aadditional information about the theoretical and
practical aspects of RAX-PS can be found in (Jónsson
et al. 2000).

Theory

The RAX-PS system is based on a well-defined frame-
work for planning and scheduling that, in many ways,
differs significantly from classical STRIPS planning.
For instance:

• Actions can occur concurrently and can have differ-
ent durations.

• Goals can include time and maintenance conditions.

In this section, we will describe the PS framework from
a theoretical perspective.

Tokens, Timelines and State Variables

To reason about concurrency and temporal extent, ac-
tion instances and states are described in terms of tem-
poral intervals that are linked by constraints. This ap-
proach has been called constraint-based interval plan-
ning (Smith, Frank, & Jónsson 2000), and has been
used by various planners, including IxTeT (Ghallab &
Laruelle 1994). However, although our approach builds
on constraint-based interval planning, there are signifi-
cant differences. Among those are:

• The use of timelines to model and reason about con-
current activities

• No distinction between actions and fluents

• Greater expressiveness of domain constraints

From: AAAI Technical Report WS-00-07. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



Idle IdleThrust(B)

Engine

Turn(A,B) Point(B) Turn(B,C)

T
im

el
in

es

Time

Attitude

Figure 2: Plans as Parallel Timelines.

Humans find it natural to view the world in terms
of interacting objects and their attributes. In planning,
we are concerned with attributes whose states change
over time. Such attributes are called state variables.
The history of states for a state variable over a period
of time is called a timeline. Figure 2 shows Engine and
Attitude state variables, and portions of the associated
timelines for a spacecraft application (the attitude of a
spacecraft is its orientation in space).

In classical planning (Fikes & Nilsson 1971;
McAllester & Rosenblit 1991), and earlier interval plan-
ning, there is a dichotomy between fluents and actions.
The former specify states, and the latter specify transi-
tions between them. In terms of interval planning, this
has resulted in intervals describing only actions, and
fluent values being implicit. However, this distinction
is not always clear, or even useful. For example, in a
spacecraft domain, thrusting in a direction P can either
be regarded as a state that implies pointing towards P
or an action with pointing towards P as a precondition.
Moreover, during execution, the persistence of fluent
values over temporal intervals may be actively enforced
by maintaining and verifying the value. For these and
other reasons, we make no distinction between fluents
and actions in this planning approach, and use the same
construct to describe both fluents and actions.

From the point of view of execution, a state variable
represents a single thread in the execution of a concur-
rent system. At any given time, each thread can be
executing a single procedure P . A procedure P has nP
parameters (nP ≥ 0), each with a specified type. Each
state variable is also typed, i.e., there is a mapping
Procs : S → 2Π, where S is the set of state variables
and Π is the set of all possible procedures. Given a
state variable σ, Procs(σ) specifies the procedures that
can possibly be executed on σ.

Thus, a timeline consists of a sequence of intervals,
each of which involves a single procedure. We may think
of the interval and its procedure as a structural unit,
called a token, that has been placed on the timeline.
Although each token resides on a definite timeline in
the final plan, the appropriate timeline for a token may
be undetermined for a while during planning. We refer
to a token that is not on a timeline as a floating token.

A token describes a procedure invocation, the state
variables on which it can occur, the parameter values of
the procedure, and the time values defining the interval.
To allow the specification of multiple values, e.g, to ex-
press a range of possible start times, variables are used

to specify parameter, start and end time values for a
token. As a result, a token T is a tuple 〈v, P (~xP ), s, e〉,
where v is a variable denoting a state variable, P is the
name of a procedure (satisfying P ∈ Procs(v)), the el-
ements of ~xP are variables that denote the parameters
of the procedure (restricted to their types), and s and e
are numeric variables indicating the start and end times
respectively (satisfying s ≤ e).

Each of the token variables, including the parameter
variables, has a domain of values assigned to it. The
variables may also participate in constraints that spec-
ify which value combinations are valid.

Domain Constraints
In a complex system, procedures cannot be invoked ar-
bitrarily. A procedure call might work only after an-
other procedure has completed, or it might need to
be executed in parallel with a procedure on a different
thread.

To specify such constraints, each ground token,
T = 〈v, P (~xP ), s, e〉, has a configuration constraint
GT (v, ~xP , s, e), which we call a compatibility. It deter-
mines the necessary correlation with other procedure
invocations in a legal plan, i.e., which procedures must
precede, follow, be co-temporal, etc. Since a given pro-
cedure invocation may be supported by different config-
urations, a compatibility is a disjunction of constraints.
Therefore, we define GT (v, ~xP , s, e) in terms of pairwise
constraints between tokens, organized into a disjunctive
normal form:

GT (v, ~xP , s, e) = ΓT1 ∨ · · · ∨ ΓTn
Each ΓTi is a conjunction of subgoals ∧jΓTi,j with the

following form:

ΓTi,j = ∃TjγTi,j(v, ~xP , s, e, vj, ~zPj , sj , ej)

where Tj is a token 〈vj , Pj(~zPj ), sj , ej〉 and γTi,j is a con-
straint on the values of the variables of the two tokens
involved.

In general γTi,j may take any form that appropriately
specifies the relation between the two tokens. In prac-
tice, γTi,j is structured to limit its expressiveness and
make planning and constraint propagation computa-
tionally efficient. In the RAX-PS framework, γTi,j is
limited to conjunctions of:

• Equality (codesignation) constraints between pa-
rameter variables of different tokens.

• Simple temporal constraints on the start and end
variables. These are specified in terms of metric
versions of Allen’s temporal algebra relations (Allen
1984); before, after, meets, met-by, etc. Each
relation gives rise to a bound on the distance be-
tween two temporal variables. This bound can be
expressed as a function of the start and end vari-
ables of T and Tj .

• Constraints on how the token T can be instan-
tiated. These are represented as procedural con-
straints, which are an effective way to specify and
enforce arbitrary constraints.



Subgoal constraints must guarantee that each state
variable is always either executing a procedure or
instantaneously switching between procedure invoca-
tions. This means that each ΓTi contains a predecessor,
i.e., a requirement for a Tj on the same state variable
as T , such that T met by Tj . Similarly, each ΓTi must
specify a successor.

The concept of subgoals generalizes the notion of pre-
conditions and effects in classical planning. For exam-
ple, add effects can be enforced by using meets sub-
goals while deleted preconditions correspond to met by
subgoals. Preconditions that are not affected by the
action can be represented by contained by subgoals.

Plan Database

Having laid out the representation of the planning do-
main, we can now turn our attention to what the plan-
ner represents and reasons about. In RAX-PS, this is
a data structure called the plan database. At the most
basic level, the plan database represents 1) a current
candidate plan, which is essentially a set of timelines
containing interrelated tokens, and 2) a current set of
decisions that need to be made.

Formally, a candidate plan consists of the following:

• a horizon (hs, he), which is a pair of temporal values
satisfying −∞ ≤ hs < he ≤ ∞

• a timeline Tσ = (Tσ1 , . . . , Tσk), for each state vari-
able, with tokens Ti = 〈v, Pσi (~x), s, e〉, such that
each Pσi ∈ Procs(σ)

• ordering constraints {O1, . . . , OK}, enforcing hs ≤
e(Tσ1) ≤ s(Tσ2) ≤ · · · ≤ e(Tσk−1

) ≤ s(Tσk) ≤ he for
each timeline Tσ
• a set of constraints {C1, C2, . . . , CN}, each relating

sets of variables from one or more tokens; includes
temporal, equality and local procedural constraints

The constraints in a candidate plan give rise to a
constraint network, consisting of the variables in the
tokens and the constraints that link token variables in
different ways. This network determines the set of all
legal instantiations of the given tokens. As a result, any
candidate plan that has an inconsistent underlying con-
straint network cannot be part of a valid plan. Limited
plan consistency checking can therefore be done by con-
straint propagation (Mackworth & Freuder 1985), which
is a method for eliminating values that can be proven
not to appear in any solution to the constraint network.

In addition to a candidate plan, the plan database
may also contain a set of decisions that need to be made.
A decision corresponds to a flaw in a candidate plan,
an aspect of the candidate that may prevent it from
being a complete and valid plan. In this framework,
there are four types of flaws: uninstantiated variables,
floating tokens, open disjunctions of compatibilities, and
unsatisfied compatibility subgoals. Each flaw in the plan
database gives rise to choices for how that flaw can be
resolved. Resolving a flaw is a reasoning step that maps
the given database to another database. Categorized by

the types of flaws, the following is a list of the possible
choices for resolving a flaw:

• Variable restriction flaws are resolved by selecting
a non-empty subset of the variable domain and re-
strict the variable to that domain.

• Floating token flaws are resolved by selecting two
adjacent tokens on a timeline and inserting the float-
ing token between them.

• Open disjunction flaws are resolved by selecting one
item in the disjunction and making it true.

• Unsatisfied subgoal flaws are resolved by either find-
ing an existing token and using that to satisfy the
subgoal, or by adding a new token to satisfy the
subgoal.

It is important to note that it is not necessary to re-
solve all flaws in order to have a plan. In most cases,
however, we require that each token satisfy the appli-
cable compatibility specification, i.e, that the subgoals
from at least one of the disjunctions are satisfied. In
that case, we say that the token is fully supported.

Executable Plans

Based on the notions we have introduced here, we can
now turn our attention to the semantics of a candidate
plan, and the task of developing a formal definition of
what a valid plan is. Traditionally, valid plans have
been defined in abstract terms, based only on the can-
didate plan and the domain model. However, this ap-
proach is not realistic, as the validity of a plan in the
real world is inherently tied to the mechanism that ex-
ecutes it. To address this, we start by discussing the
basics of plan execution and then go on to derive a re-
alistic definition of what constitutes a valid plan.

From the point of view of the executing agent (called
the executive or EXEC) a plan is a concurrent program
that is to be interpreted and executed in a dynamic
system. Recall that the plan contains variables that
specify how and under which circumstances procedures
are to be instantiated. For variables that correspond
to system values, such as the current time, the EXEC
will sense actual system values, compare them with the
values specified in the plan, and then determine which
procedure should be executed next. If the EXEC fails
to match sensed values with the values in the plan, the
EXEC triggers a fault-protection response (e.g., put the
system in a safe state and start taking recovery actions).
The question of whether the EXEC succeeds in match-
ing values and selecting a procedure invocation depends
in part on how much reasoning the EXEC can perform
for this purpose. That, in turn, depends both on how
much reasoning the EXEC is capable of and how much
time it has before the next invocation must be acti-
vated.

Consider a candidate plan; tokens may not be fully
supported, and variables may be uninstantiated. In
order to instantiate the candidate, each flaw must be
resolved successfully. For an execution agent with suf-



ficient time and reasoning capabilities, such an under-
specified plan might be a viable plan. In fact, the lack of
commitment would allow the execution agent to choose
the flaw resolutions that best fit the actual conditions
during execution. The Remote Agent system took ad-
vantage of this by letting the EXEC map high-level
tasks into low-level procedures, during execution. This
freed the planner from generating low-level procedure
calls, and allowed the executive to choose the low-level
procedures that best fit the actual execution.

In general, executability depends on the execution
agent in question. It depends primarily on two aspects;
how flexible the candidate plan must be to cover possi-
ble system variations, and how restricted the candidate
plan must be for the executive to identify whether it
is executable. The latter is an important issue to con-
sider, as making this determination can be as expensive
as solving a planning problem.

To represent the abilities of a particular executive
agent, we use a plan identification function fI that iden-
tifies executable candidate plans, by mapping each pos-
sible candidate plan to one of the values of {T, F, ?}.
The intent is that if a candidate P can be recognized as
being executable, then fI(P) = T ; if a candidate is rec-
ognized as not being executable, then fI(P) = F ; and
if executability cannot be determined, then fI(P) =?.

We permit a great deal of variation in how different
executives respond to different candidate plans, but we
do require that a plan identification function behaves
consistently with respect to the two aspects mentioned
above. For example, the function should not reject one
candidate on the basis of being too restrictive and then
accept a restriction of that candidate. This leads us to
the following formalization of what constitutes a plan
identification function:

Definition 1 A plan identification function fI for a
given execution agent is a function that maps the set of
candidate plans to the extended truth value set {T, F, ?},
such that for any candidate plan P and any candidate
plan Q that extends the candidate P, we have:

• if fI(P) = F then fI(Q) = F

• if fI(P) = T , then fI(Q) ∈ {T, F}

• if a token in P is not supported, then fI(P) =?

The last condition is not strictly necessary, as some ex-
ecutives are capable of solving planning problems, but
in the interest of clarity, we will limit the execution
agents to solving constraint satisfaction problems.

Using this notion of plan identification functions, we
can now provide a realistic, formal definition of what
constitutes a plan, namely:

Definition 2 For a given executive, represented by a
plan identification function fI , a candidate plan P is a
plan if and only if fI(P) = T .

Planning process

We can now turn our attention to the plan generation
process itself. The input to the planning process is an

plan (P,D) {
if f(P) = T
return P

else if f(P) = F
return fail

else
given a flaw d from the flaw database D,
choose a resolution res(d) for the flaw
let (P’,D’) = apply res(d) to (P,D)
return plan(P’,D’)

}

Figure 3: The planning process. The plan database
consists of the candidate plan P and the set of flaws D.

initial candidate plan, which includes an initialization
token for each timeline, a set of floating tokens, and a
set of constraints on the tokens in question. Together,
these elements give rise to an initial plan database. The
goal of the planning process is then to extend the given
initial candidate to a complete valid plan. From the
point of view of traditional planning, the initial plan
database specifies both the initial state and the goals.
In fact, our approach permits a much more expressive
specification of goals. For example, we can request a
spacecraft to take a specified sequences of pictures in
parallel with providing a certain level of thrust.

The planning process we define is a framework that
can be instantiated with different methods for control-
ling the search, selecting flaws, propagating constraints,
etc. The planning process is a recursive function that
non-deterministically selects a resolution for a flaw in
the current plan database. An outline of the process is
shown in Figure 3.

This planning process is clearly sound, as any result-
ing plan satisfies the given plan identification function.
The planning process is also complete in the sense that
if there is a plan, then a plan can be found. Further-
more, if a given initial candidate plan can be extended
to some valid plan P (satisfying fI), then the planning
process can find some other valid plan (satisfying fI)
that can be extended to P . A still stronger complete-
ness criterion, that any given plan can be found, does
not hold in general. The reason is that a lenient iden-
tification function fI may return T even though the
planning process has not addressed all remaining flaws.
This highlights the importance of identifying properties
of soundness and completeness for new planning frame-
works such as this one.

Theorem 1 Suppose a domain model, a plan identifi-
cation function fI , and an initial plan P0 are given. Let
PT be a valid plan (i.e., fI(PT ) = T ) that extends P0.
Then, the planning process can generate a valid plan P ′

that extends P0, and can be extended to PT .

Practice
RAX PS extends the theoretical framework into a well-
engineered system. The system had to operate under
stringent performance and resource requirements. For



Model size: State variables 18
Procedure types 42

Plan size: Tokens 154
Variables 288
Constraints 232

Performance: Search nodes 649
Search efficiency 64%

Table 1: Plan size and performance of RAX PS

example, the Deep Space 1 flight processor was a 25
MHz radiation-hardened RAD 6000 PowerPC processor
with 32 MB memory available for the LISP image of
the full Remote Agent. This performance is at least an
order of magnitude worse than that of current desktop
computing technology. Moreover, only 45% peak use
of the CPU was available for RAX, the rest being used
for the real-time flight software. The following sections
describe the engineering aspects of the RAX PS system.
First we describe the planning engine, the workhorse on
which all development was founded. Then we describe
the mechanism for search control used to fine-tune the
planner.

RAX PS planning engine

As follows from the previously discussed theory, pro-
ducing a planner requires choosing a specific plan iden-
tification function fI , a specific way to implement non-
determinism and a flaw resolution strategy. In RAX PS
we designed the planner in two steps. First we defined
a basic planning engine, i.e., a general search proce-
dure that would be theoretically complete. Then we
designed a method to program the search engine and
restrict the amount of search needed to find a solution.
In this section we talk about the planning engine.

The first thing we need to clarify is what constitutes
a desirable plan for the flight experiment. RAX plans
are flexible only in the temporal dimension. More pre-
cisely, in a temporally flexible plan, all variables must
be bound to a single value, except the temporal vari-
ables (i.e., token start and end times, s and e). It is
easy to see that under these assumptions the only un-
instantiated constraint sub-network in the plan is a sim-
ple temporal network (Dechter, Meiri, & Pearl 1991).
This means that the planner can use arc consistency
to determine whether the plan can be instantiated and
that the executive can adjust the flexible plan to ac-
tual execution conditions by using very fast incremen-
tal propagation (Tsamardinos, Muscettola, & Morris
1998). All of this is translated into a plan identifica-
tion function fI defined as follows: When applied to
a candidate plan, fI checks its arc consistency. If the
candidate is inconsistent, fI returns F . If the candidate
is arc consistent, fI returns one of two values: T if the
candidate is fully supported and all the non-temporal
variables are grounded, and ? in any other case.

To keep a balance between guaranteeing complete-
ness and keeping the implementation as simple as pos-
sible, non-determinism was implemented as chronolog-
ical backtracking. Also, the planner always returned

(:subgoal
(:master-match (Camera = Ready))
(:slave-match (Camera = Turning_On))
(:method-priority ((:method :add)(:sort :asap))

((:method :connect))
((:method :defer)))

(:priority 50))

Figure 4: Search control rules for unsatisfied subgoal

the first plan found. Finally, the planning engine pro-
vided a default flaw selection strategy at any choice
points of the backtrack search. This guaranteed that
no underconstrained temporal variable flaw would ever
be selected, while all other flaw selection and resolutions
were made randomly.

Search control

By itself, the basic planning engine could not generate
the plans needed for the flight experiment. However,
RAX PS included additional search control mechanisms
that allowed very localized backtracking. This is re-
flected in the the performance figures in Table 1, where
search efficiency is measured as the ratio between the
minimum number of search nodes needed and the total
number explored.

Achieving this kind of performance was not easy and
required a significant engineering effort. We outline the
principal aspects of this effort in the rest of the section.

Flaw agenda management RAX PS made use of a
programmable search controller. Ideally, the “optimal”
search controller is an oracle that can select the correct
solution choice without backtracking. In practice this
is not possible and the control strategy can only make
flaw resolution decisions on the basis of the partial plan
developed so far. The search controller of RAX PS al-
lows programming an approximate oracle as a list of
search control rules. This list provides a prioritization
of the flaws in a database and sorting strategies for the
non-deterministic choices for each flaw selection. Fig-
ure 4 gives an example of a search control rule.

The rule applies to an unsatisfied subgoal flaw
of a 〈Camera, Ready, s, e〉 token that requires a
〈Camera, Turning on, sk, ek〉 token. Note that in the
DS1 model the Camera can reach a Ready state only
immediately after the procedure Turning on has been
executed. Therefore, in this case, matching the token
types in the subgoal is sufficient to uniquely identify
it. When the priority value associated with the flaw is
the minimum in the plan database, the planner will at-
tempt to resolve the flaw by trying the resolution meth-
ods in order. In our case the planner will first try to
:add a new token and try to insert it in the earliest
possible timeline gap (using the standard sort method
:asap). The last resolution method to try is to :defer
the subgoal. When this happens, the plan database will
automatically force start or end of the token to occur
outside of the horizon hs. In our case, the deferment
method will only succeed if the Ready token is the first



token on the timeline.

Search control engineering The rule language for
the search controller is designed to be extremely flexi-
ble. It permits the introduction of new sorting methods,
if the standard methods prove to be ineffective. Also, it
is possible to prune both on solution methods (e.g., only
:connect to satisfy a subgoal) and on resolution alter-
natives (e.g., schedule a token as early as possible and
fail if you cannot). Unfortunately, this meant that com-
pleteness could no longer be guaranteed. On the other
hand it allowed for a finely tuned planner. Designing
search control became a trade-off between scripting the
planner’s behavior and exploring the benefits of shallow
backtracking when necessary. Here are some issues that
needed to be addressed.

Interaction between model and heuristics: Ide-
ally, it is desirable to keep domain model and search
control methods completely separate. This is because
constraints that describe the “physics” of the domain
should only describe what is possible while search con-
trol should help in narrowing down what is desirable
from what is possible. Moreover, declarative domain
models are usually specified by domain experts (e.g.,
spacecraft systems engineers) not by problem solving
experts (e.g., mission operators). Commingling struc-
tural domain information with problem solving meth-
ods can significantly complicate inspection and verifi-
cation of the different modules of a planning system.

In our experience, however, such an ideal separation
was difficult to achieve. Model specifications that were
logically correct turned out to be very inefficient be-
cause they required the discovery of simple properties
by extensive search (e.g., a token being the first of a se-
quence of tokens with the same procedure). The stan-
dard method used in RAX-PS was to define auxiliary
token variables and use search control to enforce a spe-
cific value, which in turn would prune undesired alter-
natives through constraint propagation. Including the
control information within the model caused a signif-
icant level of fragility in domain modeling, especially
in the initial stages of the project when we still had a
weak grasp on how to control the search.

High-level control languages: The control rules
described above can be thought of as an “assembly
language” for search control; and the DS1 experience
confirmed that programming in a low-level language is
painful and error prone. However, this assembly lan-
guage provides us with a strong foundation on which
to build higher level control languages which are well
founded and better capture the control knowledge of
mission operators. The declarative semantics of the do-
main model also opens up the possibility of automati-
cally understanding dependencies that point to effective
search control. The synthesized strategies can then be
compiled into the low-level control rules. Work is cur-
rently in progress to explore methods to alleviate the
burden of control search programming.

Conclusion
In this paper, we have presented an overview of the Re-
mote Agent Experiment Planning/Scheduling system,
both from theoretical and practical points of view. Re-
search and development of autonomous planning sys-
tems, capable of solving real problems, continues among
the many scientists in the field. The work we have pre-
sented here is just another step in this development,
but it is a step that has taken autonomous planning to
interplanetary space.

References
Allen, J. 1984. Towards a general theory of action and
time. Artificial Intelligence 23(2):123–154.

Bernard, D.; Dorais, G.; Gamble, E.; Kanefsky, B.;
Kurien, J.; Man, G. K.; Millar, W.; Muscettola, N.;
Nayak, P.; Rajan, K.; Rouquette, N.; Smith, B.; Tay-
lor, W.; and Tung, Y.-W. 1999. Spacecraft autonomy
flight experience: The DS1 Remote Agent experiment.
In Proceedings of the AIAA Conference 1999.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal
constraint networks. Artificial Intelligence 49:61–95.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence 2:189–208.

Ghallab, M., and Laruelle, H. 1994. Representation
and control in IxTeT, a temporal planner. In Proceed-
ings of the Second International Conference on Artifi-
cial Intelligence Planning Systems.

Jónsson, A. K.; Morris, P. H.; Muscettola, N.; Ra-
jan, K.; and Smith, B. 2000. Planning in interplan-
etary space: Theory and practice. In Proceedings of
the Fifth International Conference on Artificial Intel-
ligence Planning and Scheduling.

Mackworth, A. K., and Freuder, E. C. 1985. The com-
plexity of some polynomial network consistency algo-
rithms for constraint satisfaction problems. Artificial
Intelligence 25:65–74.

McAllester, D., and Rosenblit, D. 1991. Systematic
nonlinear planning. In Proceedings of the Ninth Na-
tional Conference on Artificial Intelligence, 634–639.

Muscettola, N.; Nayak, P. P.; Pell, B.; and William, B.
1998. Remote Agent: To boldly go where no ai system
has gone before. Artificial Intelligence 103(1-2):5–48.

Muscettola, N. 1994. HSTS: Integrated planning and
scheduling. In Zweben, M., and Fox, M., eds., Intelli-
gent Scheduling. Morgan Kaufman. 169–212.

Smith, D. E.; Frank, J.; and Jónsson, A. K. 2000.
Bridging the gap between planning and scheduling.
Knowledge Engineering Review 15(1).

Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998.
Fast transformation of temporal plans for efficient exe-
cution. In Proceedings of the 15th National Conference
on Artificial Intelligence (AAAI-98), 254–261.


