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Abstract
Ordered Task Decomposition is a new approach to HTN
planning that appears to work quite well in a diverse set of
real-world planning problems.  This paper summarizes
what Ordered Task Decomposition is, describes our past
and current work on it, and describes our plans for future
work.

Introduction

Some of the requirements for a number of real-world
planning tasks are shown in Table 1. Most action-based
approaches to planning are limited by simplifying
assumptions that sometimes fail to meet real-world
requirements.

Examples of traditional action-based planning systems
include Prodigy [Veloso and Blythe, 1994], causal-link
planners such as UCPOP [Penberthy and Weld, 1992],
planning-graph planners such as IPP [Koehler et al.,
1997], and satisfiability planners such as SatPlan [Kautz
and Selman, 1996] and Blackbox [Kautz and Selman,
1999]. Table 1 lists some of the limitations of such
planning systems with respect to real-world planning.  For
example, most of these planners can only deal with
symbolic knowledge, which limits their applicability to
planning problems that require mixed symbolic/numerical
information-processing.  Furthermore, the exponential
time and space requirements of most of these systems
limits their ability to scale up to complex planning
problems. Hierarchical task network (HTN) planning
systems (e.g., SIPE [Wilkins, 1990] and O-Plan [Tate,
1994]) have done a better job of addressing the
requirements in Table 1, but they have tended to be large
and complex systems that require a high degree of user
expertise.

We have recently developed an approach called
ordered task decomposition which overcomes many of
these limitations. Ordered task decomposition is a variant
of HTN planning that does a goal-directed search that
proceeds forward from the current world state, planning
each step in the order that it will later be executed.

Relevant Previous Accomplishments

We have developed the underlying principles of ordered
task decomposition, [Nau et al., 1998; Nau et al., 1999],
and have successfully developed implementations of
ordered task decomposition in several domains, as
described below.

The Game of Bridge
Bridge Baron is a computer program that plays the game
of bridge.  It uses ordered task decomposition to plan
declarer play for bridge [Smith et al., 1998a; Smith et al.,
1998b]. In about 90 seconds on average, it produces
complete contingency plans for the possible moves that
the opponents may make at each point in the game.
Bridge Baron won the 1997 World Bridge Computer
Challenge (as reported in The New York Times and The
Washington Post), and thousands of copies have been
sold commercially.

Manufacturing Process Planning
The EDAPS  system is an integrated system for design
and manufacturing process-planning for microwave
transmit/receive modules [Smith et al., 1996].  By using
the same approach (and some of the same code!) as in the
Bridge Baron, it could generate process plans in only
about one or two seconds. This work led to follow-up
projects with Northrop Grumman, and results from this
work have also been used in NIST’s Process Specification
Language (PSL) project [Schlenoff et al., 1996].

Domain-Independent Planning
The SHOP planning system [Nau et al., 1999] is a
domain-independent implementation of ordered task
decomposition. A Lisp implementation is available at
http://www.cs.umd.edu/projects/shop  as
freeware, and we are developing a Java implementation.
SHOP has the following features:
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Table 1: Typical restrictions of traditional approaches to planning, compared with the capabilities often needed for real-world planning.

Capability Traditional restrictions   What is needed  Our approach   Our implementations
Scalability to
large
problems

Scalability limited by
exponential space/time
requirements

Fast enough to respond
to users in real time on
complex problems

Ordered task
decomposition

Bridge Baron and EDAPS
[Nau et al, 1998]; SHOP [Nau
et al., 1999]

Embeddability large monolithic systems lightweight, embedded
plan-inferencing tools

Implementation
as embedded
planner

Bridge Baron and EDAPS
[Nau et al, 1998]; HICAP
[Munoz et al., 1999a, 1999b]

Expressivity Purely symbolic
computations on logical
atoms

Mixed symbolic &
numeric computations
on arbitrary data
structures

Representational
capabilities of
ordered task
decomposition

Bridge Baron and EDAPS
[Nau et al, 1998]; SHOP [Nau
et al., 1999]

Contingency
planning

Perfect information; no
contingencies occur

Imperfect information;
need anytime access to
contingency plans

Explicit
parameterizable
contingency plans
using game trees

Bridge Baron [Nau et al,
1998]

Multi-agent
planning

The planner is the only
agent capable of causing
any change in the world

Need to model actions of
other agents (both
hostile and friendly)

Represent
external agents’
actions explicitly

Bridge Baron [Nau et al,
1998]

Incremental
retrieval

Plans generated from
scratch; adaptation of
previous plans not
supported

Fast template retrieval
and elaboration;
incorporation of doctrine
and prior experience

Hierarchical
template memory,
multiple indexing,
retrieval by
partial matching

HICAP [Munoz et al., 1999a,
1999b]

Decision
rationale

Reasoning only needs to
be intelligible to
researchers

Reasoning that is
intelligible to users

Storage and
explanation of
decision rationale

(none yet)

Knowledge
acquisition

Done manually Reduce user effort  for
acquisition and
maintenance

Semi-automated
acquisition and
maintenance

(none yet)

•  Simplicity:  the basic planning algorithm is only sixteen
lines long, and the entire Lisp implementation is less
than 1000 lines;

•  High representational power: SHOP combines HTN
decomposition, Horn-clause inference, and the ability
to do numeric computations;

•  Computational efficiency: in our tests on some
standard benchmark problems, SHOP ran several
orders of magnitude faster than other domain-
independent planning systems.

Military Operations Planning
In an ongoing collaboration on interactive plan authoring,
we have embedded SHOP as the automated planning
module in the HICAP system for authoring of
Noncombatant Evacuation Operation (NEO) plans
[Munoz-Avila et al., 1999a; Munoz-Avila et al., 1999b].
The basic structure of HICAP is shown in Figure 1.

HICAP dynamically elaborates plans, derived from
military doctrine on NEOs and represented as HTNs
(hierarchical task networks), via interactive case-base

Unstack(x,y)
Pre: on(x,y),
clear(x), handempty

Delete: on(x,y),
clear(x), handempty

Add: holding(x),
clear(y)



inferencing [Aha and Breslow, 1997; Breslow and Aha,
1997]. HICAP assists users with dynamical plan
elaboration by providing the following functionality:

•  manual editing of plans represented using HTNs using
a hierarchical task editor;

•  interactive plan expansion using a case-based reasoning
module called NaCoDAE [Aha and Breslow, 1997];

•  automated plan expansion using JSHOP, our new Java
implementation of the SHOP planning system;

•  a lessons delivery module that, by monitoring HICAP's
plan, can notify the user when lessons become
applicable, and recommend corresponding plan
elaboration operations [Weber et al., 2000].

We are currently extending HICAP’s capabilities as part
of DARPA’s Active Templates program [Dyer, 1999].

Discussion

We believe that the following are the primary advantages
of our ordered-task-decomposition approach:

•  A fast, simple, embeddable planning algorithm.  In
contrast to most AI planning systems (which search
backwards from the goal to reduce the amount of
backtracking), backward search is unnecessary in
ordered task decomposition, because the goal-directed
focus can be maintained using the HTN decomposition
itself [Nau et al., 1998].   This produces a significant
speed gain; for example, [Nau et al., 1999] describes
orders-of-magnitude speed gains versus “fast” AI
planners.  As described earlier, this approach has been
successfully used to build several high-performance

embedded systems that are small and easy to use.

•  Expressivity.  At each step in generating a plan using
ordered task decomposition, the planning algorithm has
already planned for all preceding steps, so it can
compute the current step’s complete input state. Thus,
it is not restricted to traditional plan representation
techniques (where states and operator preconditions
and effects are represented as sets of logical atoms, and
are evaluated via unification), but can use arbitrary
computer code to represent states, preconditions, and
effects.  This provides more expressive state and
operator representations.  For example, our
implementations of ordered task decomposition
(described earlier) perform mixed symbolic/numeric
computation and inferencing, incorporate mixed-
initiative interaction, perform “what if?” analysis and
contingency planning, and incorporate case retrieval
and modification.

•  The ability to do contingency planning.  In our
application of ordered task decomposition to the game
of bridge (described earlier), we used ordered task
decomposition to generate and evaluate game trees that
represent various contingencies that may arise in an
imperfect-information game.  We integrated this with a
user interface for mixed-initiative interaction with users
and external data input. The basic idea is to generate
and retain alternative plan branches for likely violations
to a plan’s conditions (i.e., so that they can be quickly
retrieved and executed), and to dynamically generate
plans corresponding to unlikely contingencies.

•  Incremental retrieval techniques. Incremental
retrieval techniques have recently been developed in
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Figure 1.  Architecture of the HICAP system for authoring of Noncombatant Evacuation Operation (NEO)
plans.



the conversational case-based reasoning (CCBR)
literature [Aha and Breslow, 1997; Munoz-Avila et al.,
1999a; Munoz-Avila et al., 1999b] for data structures
that are similar HTNs. We have adapted these
techniques in order to incorporate JSHOP, the new Java
version of our SHOP generative planner.

The primary limitations of our current work are as
follows.

•  Although we have implemented the abilities for
contingency planning and for reasoning about external
agents, we have only done so in a specific problem
domain (the game of bridge).  We still need to develop
a domain-independent generalization and formalization
of these techniques.

•  Our proposed approaches for incorporating decision
rationale and doing knowledge acquisition (see Table
1) have not yet been implemented.

•  More work needs to be  done to optimize the speed of
SHOP’s data structures, and to make it easier to debug
domain descriptions in SHOP. As an example, we
recently found that by making a simple modification to
how SHOP represents its current state of the world, we
could speed up SHOP by about an order of magnitude
on large problems.

We intend to address the above problems in our future
work, in order to extend the capabilities of SHOP and
HICAP.
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