
An Algebraic Representation of Calendars*
(Extended Abstract)

Peng Ning and X. Sean Wang and Sushil Jajodia
Department of Information and Software Engineering

George Mason University, Fairfax, Virginia, USA
{pning, xywang, jajodia}@gmu.edu

Abstract

This extended abstract uses an algebraic approach to
define granularities and calendars. All the granulari-
ties in a calendar are expressed as algebraic expressions
based on a single "bottom" granularity. The operations
used in the algebra directly reflect the ways with which
people construct new granularities from existing ones,
and hence yield more natural and compact granular-
ities definitions. The extended abstract also presents
granule conversions between granularities in a calendar.

Introduction
System support for time has long been recognized to
be important. Time is often represented in terms of
closely related granularities (e.g., year, month, day)
that are organized into calendars (e.g., Gregorian cal-
endar). Reasoning and processing of time are usually
performed on these representations. When the system
allows users to define new granularities and calendars
for the system to process, it is critical to have natural
and flexible representation mechanisms. This extended
abstract presents such a mechanism.

Natural representation is important not only for the
ease of use. In many cases, it also allows more compact
representations. As an example, consider the specifi-
cation of leap years. A year is a leap one if the year
(i.e., its number) is divisible by 4, but not divisible
by 100 unless it’s divisible by 400. A direct method
of "coding" the leap year information is to have the
above rule embedded in the definition of the granular-
ity year. Unfortunately, it seems that all current pro-
posals of granularity symbolic representations adopt an
"explicit" method, namely list all the years in a 400 year
period. Such a method is not scalable to granularities
with large periods. In particular, the enumeration will

*The work was partially supported by a grant from
the U.S. Army Research Office under the contract number
DAAG-55-98-1-0302 and a grant from the National Science
Foundation with the grant number 9633541. The work of
Wang was also partially supported by a Career Award from
the National Science Foundation under the grant number
9875114.
Copyright (~) 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

take more storage and manipulating large periods may
result in poor performance. In certain application sys-
tems such as a mobile computing environment, storage
and processing time are both important.

In this extended abstract, we develop an algebraic
representation for time granularities, which we call the
calendar algebra. Each time granularity is defined as a
mapping from its index set to the subsets of the time
domain (BDE+98). We assume that there exists a "bot-
tom" granularity known to the system. Calendar alge-
bra operations are designed to generate new granular-
ities from the bottom one or those already generated.
The relationship between the operand(s) and the result-
ing granularities are encoded in the operations. The
design of the operations aims at capturing the char-
acteristics of calendars both naturally and expressively.
For example, granularity month can be generated on the
basis of granularity day by several calendar algebra op-
erations. The first operation generates a granularity by
partitioning all the days into 31-day groups, the second
operation shrinks the second group of every 12 groups
(which corresponds to February) by 3 days, the third
step shrinks the fourth group of every 12 ones (which
corresponds to April) by 1 day, etc.. To define month
on the basis of day including all the leap year informa-
tion, we only need nine operations (see the Calendar
Algebra Operations section for details) without explicit
enumeration of all the months in a period of 400 years
(i.e., 4,800 months).

Calendars are then formalized on the basis of gran-
ularities defined by calendar algebra. The above map-
ping v~ewpoint of granularity represents granules using
indexes, e.g., integers. However, people are used to rel-
atively representations. For example, a particular day
is represented in terms of the day in a month, and the
month in a year. To formalize such representations, we
develop label mappings.

The process of finding some granules in one granular-
ity that has a particular relationship with a set of given
granules in another granularity is called granule conver-
sion. An example is to find all the business days in a
given month. Granule conversion is essential to many
applications like automatic evaluation of user queries,
mixed granularities and multiple calendars support, and

From: AAAI Technical Report WS-00-08. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

rolling up along a time hierarchy in time series analysis
or OLAP applications. We develop a generic method
to solve the general granule conversion problem.

Preliminaries

We adopt some notions from (BDE+98).
Definition. (Time Domain) ti me domain is a pai r
(T, <) where T is a non-empty set of time instants and
< is a total order on T.
Definition. (Granularity) granularity is a mapping
G from a subset of integers, I (index set), to the subsets
of the time domain such that for all i,j in I with i < j,
if both G(i) and G(j) are non-empty, then (1) each
element of G(i) is less than all the elements of G(j),
and (2) for all k in I, i < k < j, G(k) is non-empty.

Each non-empty set G(i) is called a granule of gran-
ularity G.

To simplify the algebra, we use an extended notion
of granularities. More specifically, a labeled granularity
is a pair (£:, G), where /: is a subset of the integers,
and G is a mapping from g to the subsets of the time
domain such that for each pair of integers i and j in £
with i < j, if G(i) ~ 0 and G(j) ~ then (1) each
element in G(i) is less than every element of G(j), and
(2) for each integer k in £ with i < k < j, G(k) #
When £: is exactly the integers, we call the granularity
"full-integer labeled".

We will still use G to denote labeled granularities
when no confusion arises.

Calendar Algebra Operations

In this section, we present a symbolic representation of
granularities. The design of the representation scheme
starts with the observation that granularities used in a
calendar are not isolated, but rather are closely related.
We thus design our symbolic representation based on
some algebraic operations, called calendar operations,
that capture these relationships. The symbolic repre-
sentation is thus called the calendar algebra. Calendar
operations generate new granularities by manipulat-
ing other granularities that are already generated. All
granularities that are generated directly or indirectly
from a single one (which will be the bottom granular-
ity) form a calendar, and these granularities are related
to each other through the operations that define them
(from the bottom granularity). In practice, the choices
for the bottom granularity include day, hour, second,
microsecond and other granularities, depending on the
accuracy required in each application context.

The calendar algebra consists of the following two
kinds of operations: the grouping-oriented operations
and the granule-oriented operations. The grouping-
oriented operations group certain granules of a granu-
larity together to form new granulesin a new granular-
ity, while the granule-oriented operations don’t change
the granules of a granularity, but rather make choices
of which granules should remain in the new granularity.

Certain calendar operations will only work on full-
integer labeled granularities, while others will be more
easily defined and implemented using more flexible la-
beling.

To define the calendar algebra, a label-aligned sub-
granularity relationship is needed. FOrmally, Gx is a
label-aligned sub-granularity of G2 if the label set £1
of Gx is a subset of the label set £2 of G2 and for each
i in/:1 such that Gl(i) ~ 0, we have Ga(i) = G2(i).

The grouping-oriented operations

The grouping operation Let G be a full-integer la-
beled granularity, and m a positive integer. The group-
ing operation Groupm(G) generates a new granularity
G~ by partitioning the granules of G into m-granule
groups and making each group a granule of the result-
ing granularity. For example, given granularity day,
week can be generated by week = Groupr(day). Note
here we assume that the day labeled 1 starts a week.

The altering-tick operation Let Gx, G2 be full-
integer labeled granularities, and l, k, m integers, where
G2 partitions 1 Gx, and 1 < l < m. The altering-tick
operation AlterS,k (G2, G1) generates a new granularity
by periodically expanding or shrinking granules of G1
in terms of granules of G2. Since G2 partitions G1,
each granule of Gx consists of some contiguous granules
of G2. The granules of G1 can be partitioned into m-
granule groups such that GI(1) to Gl(m) are in one
group, Ga (m + 1) to G1 (2m) are in the following group,
and so on. The goal of the altering-tick operation is
to modify the granules of GI so that the I th granule
of every aforementioned group will have [k[additional
(or fewer when k < 0) granules of G2. For example,
G1 represents 30-day groups (i.e., G1 = GrouP3o(day))
and we want to add a day to every 12tn month (i.e.,
to make December to have 31 days), we may perform
Alter~,x (day, G1).

More specifically, for all i = I + m ̄ n, where n is
an integer, Gl(i) denotes the granule to be shrunk or
expanded. The granules of G1 are split into two parts
at GI (0). When i > 0, G1 (i) expands (or shrinks)
taking in (or pushing out) later granules of Gg, and the
effect is propagated to later granules of G1. On the
contrary, when i < 0, G1 (i) expands (or shrinks)
taking in (or pushing out) earlier granules of G2, and
the effect is propagated to earlier granules of G1.

The altering-tick operation can be formally described
as follows. For each integer i such that Gl(i) ~ 0, let

bi and ti be the integers such that GI(i) U~=b, G2(j).
(The integers bi and ti exist because G~ partitions Gx.)
Then G’ = Alter~,k (G2, G1) is the granularity such that
for each integer i, let G’(i) = 0 if Gl(i) = 0, and other-

1G2 partitions G1 if each granule of G1 is a union of
some granules of G2 and each granule of G2 is a subset of a
granule of G1.

... -I 0 I 2 3 4 .-

) I I I f I I

II)llllJlllllllllllllllllllllllll

¯ - -I0-9 ... -5-4 ,,. 0 1 2... 5 6 ... 1011 ... 1516 .., 20 ..,

"" -I 0 1 2 3 4 "’"

I I I I I I f

¯ .. -9-8 ,.. -4-3 .,. 0 1 2 ... 5 6 ... 910 .,. 1415 ... 1819 ...

Figure h Grouping and altering tick operation

G""

G

wise let
tl

G’(i) = ~J G2(j),
j=b~

where

’ ! bi+(h-1).k, ifi=(h-1).m+l,bi = bi + h- k, otherwise,
%

t~ = ti + h- k,
and

i-I
h = L---~--J + 1.

Fig. 1 shows an example of a grouping operation
and an altering-tick operation. Granularity G’ is de-
fined by G’ = Group5 (G), while G" defined by G" =
AlterS,_ 1 (G, G’), which means shrinking the second one
of every two granules of G’ by one granule of G.

An extension of the above operation is also used:
When the parameter m is infinity (oo), the alter-
ing tick operation Alte~cc(G2,G1) means only al-
tering the granule Gl(1). For example, to add a
leap second to the last minute of 1998, we may use
Alter~,oo (second, minute), where x is the label of the
last minute of 1998.

Shifting operation Let G be a full-integer labeled
granularity, and m an integer. The shifting operation
Shift,n(G) generates a new granularity G’ by shifting
the labels of G by m positions. For each integer i, the
granule G’ (i) will be the granule G(i + m). The shifting
operation can easily model time differences. Suppose
granularity GMT-hour stands for the hours of Greenwich
Mean Time. Then the hours of US Eastern Time can
be generated from GMT-hour by

USEast-Hour ------ Shift-5 (GMT-hour).

Note. The grouping, altering-tick and shifting opera-
tions are collectively called basic operations. These ba-
sic operations are restricted to operate on full-integer
labeled granularities (i.e., "regular" granularities), and
the granularities generated by these operations are still
full-integer labeled ones.

Combining operation Let Gt and G2 be granulari-
ties with label sets £1 and £2 respectively. The combin-
ing operation Combine(G1, G2) generates a new granu-
laxity G’ by combining all the granules of G2 that are

included in one granule of G1 into one granule of G’. As
an example, given granularities b-day and month, the
granularity for business months can be generated by

b-month = Combine(month, b-day).

Anchored grouping operation Let G1 and G2 be
granularities with label sets £1 and £2 respectively,
where G2 is a label-aligned sub-granularity of G1, and
G1 is a full-integer labeled granularity. The anchored
grouping operation Anchored-group(G1, G2) generates
a new granularity G’ by combining all the granules of
G1 that are between two granules of G2 into one granule
of G’. Granularity G2 is called the anchor granularity
of G1 in this operation. The granules of G2 divide the
granules of G1 into groups, and each group is made a
resulting granule by the anchored grouping operation.

For example, each academic year at a certain uni-
versity begins on the last Monday in August, and
ends on the day before the beginning of the next aca-
demic year. Then, the granularity corresponding to the
academic years can be generated by AcademicYear =
Anchored-group(day, lasZMondayOfAugust).

Granule-oriented operations

Subset operation The subset operation is designed
to generate a new granularity by selecting an interval
of granules from another granularity.

Let G be a granularity with label set £, and m, n
integers such that m _< n. The subset operation G’ =
Subset~(G) generates a new granularity G’ by taking
all the granules of G whose labels are between m and
n. For example, given granularity year, all the years in
the 20th century can be generated by

20CenturyYear = SubsetiO99o~(year).

Note that G’ is a label-aligned sub-granularity of G,
and G’ is not a full-integer labeled granularity even if
G is. We also allow the extensions of setting m = -oe
or n = oo with semantics properly extended.

Selecting operations The selecting operations are
all binary operations. They generate new granular-
ities by selecting granules from the first operand in
terms of their relationship with the granules of the sec-
ond operand. The result is always a label-aligned sub-
granularity of the first operand granularity.

There are three selecting operations: select-down,
select-up and select-by-intersect.
Select-down operation. For each granule G2(i), there
exits a set of granules of G1 that is contained in G2(i).
The operation Select-down~(G1, G2), where k ~ 0 and
l > 0 are integers, selects granules of G1 by selecting l
granules starting from the kth one in each set of granules
of G1 that are contained in one granule of G2. For
example, Thanksgiving days are the 4th Thursdays of
all Novembers. If granularities Thursday and November
are given, it can be generated by

Select-down4 (Thursday, November).Thanksgiving = I

3

Note that Gt is a label-aligned sub-granularity of G1.

Select-up operation. The select-up operation
Select-up(G1,G2) generates a new granularity G’
by selecting the granules of G1 that contain one or
more granules of G2. For example, given granularities
week and Thanksgiving, the weeks that contain
Thanksgiving days can be defined by

ThanxWeek = Select-up(week, Thanksgiving)

Note that G’ is a label-aligned sub-granularity of G1.

Select-by-intersect operation. For each granule G2(i),
there may exist a set of granules of Gt each intersect-
ing G2 (i). The operation Select-by-intersec~ (G1, G2),
where k # 0 and l > 0 are integers, selects granules of
G1 by selecting l granules starting from the kth one in
all such sets, generating a new granularity G’. For ex-
ample, given granularities week and month, the granu-
larity consisting of the first week of each month (among
all weeks intersecting the month) can be generated by

FirstWeekOfMonth = Select-by-intersect~ (week, month).

Again, G’ is a label-aligned sub-granularity of G1.

Set operations The set operations are based on the
viewpoint that each granularity is a set of granules. In
order to have the set operations as a part of the calendar
algebra and to make certain computations easier, we re-
strict the operand granularities participating in the set
operations so that the result of the operation is always
a valid granularity: The set operations can be defined
on G1 and G2 only if there exists a granularity H such
that G1 and G2 are both label-aligned sub-granularities
of H. In the following, we describe the union, intersec-
tion and difference operations of G1 and G2, assuming
that they satisfy the requirement.

Union. The union operation G1 U G2 generates a new
granularity G’ by collecting all the granules from both
G1 and Gz. For example, given granularities Sunday
and Saturday, the granularity of the weekend days can
be generated by

WeekendDay = Sunday O Saturday.

Note that Gt and G2 are label-aligned sub-granularities
of G’. In addition, if GI and G2 are label-aligned sub-
granularity of H, then G’ is also a label-aligned sub-
granularity of H. This can be seen from the transitivity
of the label-aligned sub-granularity relationship (proof
is left to the reader).

Intersection and difference operations can be simi-
larly defined.

Syntactic restrictions on algebra operations

The granularities participating in a calendar operation
usually have to satisfy certain conditions. For exam-
ple, the set operations only apply to granularities that
are label-aligned sub-granularities of a common one.
Checking these preconditions can be difficult.

combining operation
anchored grouping operation

(operand 2)

I

Lair3 ~ combinin$ op~Itlion
anchored Smupin£ operation

(opermnd 2)

Stiba~¢ o~pearalk*n
Layer 2 scleclinI opei’atiol~|

(o~mad I)

l set operations

su~t ol~-~tionl
sele~fini ol~mfi~s

(operand 1)

Layer I i)
groupingope|i~oo

r,._.} ,,Iterln|-ti©k opcnition
shihln| ~

Figure 2: Transition between the three layers

Our solution is to use a syntactic restriction, namely
to use the explicit relationship derived from the oper-
ations themselves. Note that the preconditions of the
operations only use the following kinds of requirements:
(1) a granularity must be a full-integer labeled one, (2)
granularity must partition another one, and (3) a gran-
ularity is a label-aligned sub-granularity of another.

The above syntactic restriction actually gives a classi-
fication of the granularities that can be generated from
the calendar algebra. The granularities can be seen as
organized into three layers. The membership of a gran-
ularity in a layer is determined by the operations and
the operands used to define it. Fig. 2 shows the three-
layered partition of the granularities defined by the cal-
endar algebra and the transitions between the layers
resulting from calendar algebraic operations. Layer 1
consists of the bottom granularity and the granulari-
ties generated by only applying (may be repeatedly)
the basic operations (grouping, altering-tick and shift-
ing). Layer 2 consists of the granularities that are the
result of applying (may be repeatedly) the subset op-
eration and the selecting operations on the full-integer
labeled granularities in the first layer. Note that the
second operand used in the selecting operations can be
a granularity in any layer. Layer 3 consists of gran-
ularities that are the result of the combining and an-
chored grouping operations. Note that operand 1 for
the anchored grouping operation must be from layer 1
(a full-integer labeled granularity), while the combine
operation may take granularities of any layers.

Granularities in the three layers have distinct prop-
erties. All the granularities in layer 1 are full-integer
labeled granularities. All granularities in layer 2 may
not be full-integer labeled ones, but there is no gap
within each granule of every granularity, i.e., each gran-
ule is an interval of granules of the bottom granularity.
The granularities in layer 3, however, may contain gaps
within a granule.

Examples

In this subsection, we present some more example gran-
ularities represented by the calendar algebra. We as-

4

sume second is the bottom granularity. Then we may
have the following.

- minute = GrouPeo(second),

- hour = GrouP60(minute),

- day = GrouP24 (hour),

- week = GroupT(day),

- pseudomonth = A1ter~2,_l (day, Alterl2 1 (day,

Alter~il(day, A1ter1411(day, A]ter~i3<day,
GrouP31(day)))))), where pseudomonth is gen-
erated by grouping 31 days, and then shrink April
(4), June (6), September (9) and November (11)
one day, and shrink February (2) by 3 days,

12.400 2.100- month = A/ter~+12.39s,1(day, Alter12+12.99,_l (day,

Alter~2+*l~.3,1 (day, pseudomonth))), where the Febru-
ary of each leap year is adjusted appropriately,

- Monday = Select-down~ (day, week),

- Sunday = Select-down~ (day, week).

In the above examples, we assumed that second(i)
starts a minute, minute(I) starts an hour, etc. These
are actually realistic for the Gregorian calendar.

To study the expressiveness of the calendar algebra,
we define the concepts of periodical granularity and
finite granularity. A G granularity is said to be
periodical (wrt the bottom granularity B) if there exist
positive integers R and P, where R is less than the
number of granules of G, such that for each integer

i, if G(i)
k

= Ur=oB(jr) and G(i + R) ~ 0, then
G(i + R) k ¯

= Ur=0B(Jr +P). Assume B = day.
is easily seen that week is periodical with R = 1
and P = 7. Furthermore, year is also periodical
with R = 400 and P being the number of days in a
four-hundred year period. A granularity is said to be
finite if the number of its granules is finite.

Theorem The calendar algebra can represent all the
granularities which are either periodical or finite.

In addition to the periodical and finite granularities,
the calendar algebra can also represent other granular-
ities. In order to avoid certain granularities, we may
disallow certain operations and restrict the use of oper-
ations in certain orders. We omit the details here.

Labeling the granules

The mapping viewpoint of granularity reveals the na-
ture of the time granularities and time can be processed
based on the indexes of the granularities, which are
countable and easy to process with computers. How-
ever, human users are used to relative and textual rep-
resentation of granules. Although label mappings for
formally defined granularities were suggested(BDE+98)
so that granules may have textual representations, no
formal framework has been proposed before.

In this section, we introduce the notion of a label to
address this issue, realizing and extending the idea of
a label mapping. We assume that all the "words" used
in the textual representation of granules are enumer-
able, so they can be encoded as integers. For example,
the English words for months, i.e., January, February,
March, ..., and December, can be encoded as integers
1 to 12. As a result, we need only deal with integers for
the textual representation.
Definition (labels) Given a granularity G, let
Gk, Gk-1,..., G1 be a sequence of granularities, where
G is a label-aligned sub-granularity of G1. A vector
(jk,jk-1,... ,jl) in Nk is said to be a label of the gran-
ule G(i) if G(i) = GI(j~) is the j~h granule of all the

G .igranules of G1 that overlap the granule 2(32), which
is the jth granule of all the granules of G2 that If
any of the above j~h granule does not exist, then the
above vector is not a label for any granule.

As an example, consider the granularity Sunday
which is label-aligned subgranularity of Sunday. Con-
sider the granularity sequence year, month, Sunday.
Then (1998, 7, 2) corresponds to the second Sunday in
July 1998. Also, Sunday is label-aligned subgranular-
ity of day, and consider year, month, day. The vector
(1998, 5, 3) (i.e., May 3rd, 1998), which is the first
Sunday in May 1998, is a label for granularity Sunday.
However, the vector (1998, 5, 4) (i.e., May 4, 1998,
which is a Monday) is not a label, since it cannot be
mapped to any index of Sunday.

Granule Conversion

Granularity represents the unit of measurement for
temporal data. In order to process data measured in
different granularities, systems should have the ability
to convert the granules in one granularity to those in
another. For example, suppose a database stores dally
sales information. To get the sales data per business
month, the database application has to have the in-
formation that which day is in which business month.
We refer to the process of finding some granules in one
granularity in terms of the granules in another as gran-
ule conversion.

There can be many different semantics for granule
conversions. In this section, we propose a generic con-
version method on the basis of calendar regardless of
the semantics of the conversion. Our method is based
on three basic constructs, up conversion, down conver-
sion and next conversion (which is a conversion within
one granularity). We also identify an important class
of semantics of granule conversion, and demonstrate an
example for a general conversion with our method.

The generic method

In a given calendar, one granularity groups into an-
other2 if the latter is "defined only on" the former.
(Granularity G is "defined only on" granularity H if

~H groups into G if each granule of the G is exactly the
union of some granules of H (BDE+98).

4. noxt conversion
Month Week

Jan 1998t l l I I "’" i t a i

2. down conversmn ,, . up conversion

¯ s// i/

I x~" I "’" I "~¯ I l. findtheGLB

Day

Figure 3: A conversion between Month and Week

in the calendar, G are obtained starting from H using
algebra operations.) Hence, for each granule of the lat-
ter, there exist a set of granules of the former such that
both sets of granules cover the same part of the time
domain. Clearly, the greatest lower bound with respect
to defined only on relation (GLB) always exists. There-
fore, conversion between two granularities can be done
with their GLB as an intermediary. (In the worst case,
the bottom granularity will be this intermediary.)

In following, we present the three basic conversions.
Definition (Down conversion) Let G and H be granu-
larities, where G is defined only on H. Down conversion
from G to H, denoted L.JG, is a mapping from the in-
dex set of G to the subsets of the index set of H such
that for each index i of G, the down conversion [iJ G

H
consists of all and only the indexes of the granules of H
that group into G(i), i.e., G(i) = Uj~[ij~ H(j).
Definition (Up conversion) Let G, H be granularities,
where G is defined only on H. Up conversion from H
to G, denoted r.]/~, is a mapping from the index set of
H to the index set of G such that for each index i of H,
if there exists a granule G(j) that contains H(i), then
ri]GH = j; otherwise r i]/~ is undefined.

When granualrity G is defined only on granularity H
in a calendar, up and down conversion represent two
directions of the conversions between G and H. Down
conversion from G to H gets the indexes of the granules
of H that group into a certain granule of G, representing
the down direction, while up conversion from H to G
gets the index to the granule that contains a certain
granule of H, representing the up direction.

Using the granularity examples given earlier, we
can see that the down conversion from month to day
is a mapping such thatL-Jlllm°nthday = {1,2,...,31},

[olmonth _ {32,33,...,59}, etc. While the up con-"J day --
version from day to month is a mapping such that
[11 month r,)l month f~l month~/day = /"/day = ... = /~’~!day = 1,
[a~lmonth rqqlmonth r~o3month _ 2, etc.v..! day = !v~,! day /~-’! day --
Definition (Next conversion) Let G be a granular-
ity. Next conversion within granularity G, denoted
Nexta(.), is a mapping from Z x Z to the index set
of G such that for each pair (i, n)

- if n > 0 and there exists a granule G(j) which is the

nth granule of G whose index is greater than i, let
NextG(i,n) =

- if n < 0 and there exists a granule G(j) which is
the Inlth granule of G whose index is less than i, let
Nexta(i,n) =

- if n = 0 and G(i) is a granule of G, let Nexta(i, 0)=i;

- otherwise let NextG(i) be undefined.

General conversions
With down, up and next conversion, a general purpose
conversion can be performed with further consideration
of the conversion semantics. Let G1 and G2 be gran-
ularities involved in a granularity conversion problem.
The first step of the conversion would be to find the
GLB of G1 and G2 in the calendar. Let granularity H
be the GLB of them. With H as the intermediary, an
appropriate set of granules of G1 will be coriverted to
H by down conversion. Then a corresponding set of
granules of G2 can be found by up conversion. Finally,
the conversion problem is solved by the combination
of up, down and next conversion under the conversion
semantics.

For example, suppose we want to know the second
week after January 1998 (in month). As the first step,
we find that their GLB in the calendar is granularity
day. SO we use day as the intermediary for this con-
version. As the second step, the day that group into
January 1998 are collected by down conversion from
month to day. As the third step, the week containing
the last day of January 1998 is found by an up conver-
sion from day to week. Finally, the second week after
January 1998 is computed with a next conversion.

Three conversion semantics
Granule conversion is essential in applications related
to time, such as automatic evaluation of user queries
involving multiple granularities, rolling up or drilling
down along time hierarchy in OLAP applications and
time series analysis. Some conversion semantics are
very frequently used in these applications. For example,
when rolling up along a time hierarchy in an OLAP or
time series analysis application, the application must
know the relationship about how granules of a finer
granularity are contained in granules of a coarser granu-
larity in order to fulfil the analysis. When drilling down
a time hierarchy to estimate how data of a coarser gran-
ularity is distributed in the granules of a finer granular-
ity, say estimate the dally sales according to the stored
monthly sales, the application must use a similar rela-
tionship again in addition to the assumptions about the
distribution.

We abstract these conversion semantics into the fol-
lowing three categories:

- Covering. The granularity conversion should return
all the granules of the destination granularity such
that the time represented by the source granules con-
tains the time represented by each destination gran-
ule;

- Covered-by. The granularity conversion should re-
turn the smallest set of granules of the destination
granularity such that the time represented by the
source granules are convered by the time represented
by the destination granules.

- Overlap. The granularity conversion should return all
and only the granules of the destination granularity
such that the time represented by the source granules
overlaps the time of each destination granule.

Computation of down and up conversions

As discussed earlier, the computation of the up and
down conversions is very critical. Because of the index
manipulation nature of the calendar algebraic opera-
tions, the up and down conversion can be recursively
computed.

It’s been discussed that the granularities in a calendar
can be divided into 3 layers. In layer 1, all the granular-
ities are full-integer labelled granularities. There exist
simple formulas for the up conversion and the down
conversion for the shifting operation and the grouping
operation. Though the altering granule operation is a
bit more complex, there also exists simple formula for
the down conversion, and the up conversion can be done
on the basis of the down conversion. Yhrthermore, the
up conversion for the altering tick operation can be esti-
mated, and the difference between the estimated value
and the real up conversion is usually bounded by a small
number. Suppose the number of basic operations that
are involved in the conversion is n. The complexity of
the up and the down conversion in layer 1 is linear to
n if there is no up conversion for the altering tick oper-
ation. If there exists up conversion for the altering tick
operation, the complexity is O(n ̄ log2P) in the worst
case, where P is the number of granules in one period.
However, we usually have near linear algorithm if the
number of finer granularity granules in the granules of
the coaser granularity don’t vary very much. Therefore,
there exist efficient algorithms for the up and down con-
versions in the first layer.

Consider layers 2 and 3 of the calendar. In general,
the algorithm for the up and the down conversion are
not only affected by the number of operations involved,
but also by the correspondence of the granules of both
operand granularities, e.g., how many granules of the
first operand are contained in the granules of the sec-
ond operand in select-down operation. Because the in-
dexes of a second-layer or third-layer granularity are not
assumed to be contiguous, the conversion has to indi-
vidually manipulate the indexes. However, with further
knowledge, e.g., one or both operands are in layer 1 or
layer 2, the conversion algorithm can be more efficient.
If both operands of the selecting operations or the com-
bining operaton are not in the third layer, each operand
granularity doesn’t have inside gaps, so the processing
of the coarser granularity is simplified. If it is further
known that the finer operand is in layer 1, the fact that
the indexes of the finer operand are contiguous can be

utilized, and the complexity of the conversion is only
related to the number of operations involved.

Computation of next conversion

Next conversion is trival for layer 1 granularities be-
cause of the contiguity of their indexes (NextG(i, n)
i + n). However, it can be a difficult problem for layer
and 3 granularities, where indexes may not be contigu-
ous any more.

A desirable solution would be getting the result with
the information of the operations. For example, sup-
pose there is a granularity which stands for the first
day of every month. To get the nth granule after a
base granule, say i, we only need to get the nth month
after the month containing granule i, and finding the
result would be easy. In this case, the next conversion
for a granularity is translated into a trival one for a
granularity. However, we couldn’t find a general algo-
rithm to get the result in this way. In this abstract, we
will outline alternative ways. There are two straightfor-
ward ways to solve this problem in addition to making
use of the information of the operations.

1. Search for the nth granule by testing. The basic con-
struct is to determine whether an integer is a valid
index or not. To get the result, the algorithm tests
the integers one by one until the nth valid granule is
found.

2. Enumerate the valid indexes. This involves precom-
putation of valid indexes and storing them. Since all
the granularities are periodical (see earlier definition
or (BDE+98)), the valid indexes must be periodic.
So enumeration of one period is enough.

Obviously, the first method is only suitable for granu-
larity with dense indexes and small n. In other cases, it
will result in unacceptable performance. Although the
second method has good computation performance, it
doesn’t scale well when the period gets big. In the fol-
lowing, we propose several enhancements that can im-
prove the scalability, and sometimes make a trade off
between the computational efficiency and the storage
requirement to get overall performance.

Our first enhancement is to use a hash table to main-
tain the valid index information for a granularity. We
distinguish two kinds of hash tables, the first one is a
positive hash table, in which valid indexes within a pe-
riod are stored, and the second one is a negative hash
table, in which missing indexes (i.e. the integers that
are not valid indexes) are stored. It is easy to see that
the positive hash table and the negative hash table are
complementary. The positive hash table is used when
the indexes are sparse, while the negative hash table
is used when the indexes are dense. The hash based
method is suitable for granularities with both dense and
sparse index. The distinction of positive and negative
hash tables reduces the size of the enumeration by at
least a half. However, this may not solve the scala-
bility problem. Nevertheless, we can improve the scal-
ablity by sacraficing some computational efficiency. If

the hash table gets too big, we can reduce the size by
only storing a part of valid indexes. It would be desir-
able that the densities of the valid indexes are almost
the same between each consecutive hash entries.

An alternative enhancement is to use bitmap for the
valid indexes of a granularity. Since the indexes are pe-
riodic, bitmap is only necessary for a period. Each bit
in the bitmap corresponds to an integer. A bit is 1 if the
corresponding integer is a valid index, 0 if not. Finding
the nth granule after a base granule is just counting n
1 in the bitmap and finding the corresponding integer.
The advange of such representation is: only generalzied
granularities that are defined by select operations need
precomputed bitmap. If a granularity is defined by a set
operation, then the corresponding bitmap can be easily
composed with the bitmaps of the operands. Suppose
A and B are granularities with bitmaps a and b respec-
tively. Then the bitmaps for A U B, A n B and A - B
are a OR b, a AND b and a AND (NOT b) respectively.
To save the space, compression method, e.g. run length
encoding, can be utilized, which can make the counting
of ls even faster. Although bitmap method can save
space for granularities defined by set operations, it may
not scale well for those with long periods.

Related Work
Much work has been done on the problem Of gran-
ularity representation in temporal database area as
well as other areas like artificial intelligence and real
time systems. Some of them address the formalization
of time granularity systems (CR87; Dea89; MMCR92;
BWJ98). Our work is an instantiation of the general
framework proposed in (BWJ98).

MultiCal project (SS95) and TSQL2 (Sno95)
both language extensions to Structured Query Lan-
guage. Irregular mappings (granules can not be con-
verted by a simple multiply or divide), e.g. between
month and day, have to be specified by a piece of pro-
gram, e.g. a C function (Sno95; Lin97). Our represen-
tation improves this method by providing a set of cal-
endar operations to define the granularities in a declar-
ative way.

A representation of granularities that allows natu-
ral language expression was proposed in (LMF86)
the basis of structured collections of intervals. This
representation was later implemented in POSTGRES
(CSS94). As the foundation of the system, the primitive
collections, e.g. day, month, year, have to be enumer-
ated, though there exist some patterns in them. Our
work does not require explicit enumeration.

There are also other proposals for granularity repre-
sentation. In (LRW96), a granularity (called calendar
in (LRW96)) is modeled as a totally ordered set of
tervals with additional semantics, and several calendar
operations are introduced to generate user defined time
granularities. A system defined granularity is formed by
the relative pattern of its granules with respect to the
granules of another granularity. Similar to the primi-
tive collections in (LMF86), this is basically enumera-

tion. Our approach can achieve the same results with
a subset of operations without enumeration.

Conclusion
We proposed an algebraic representation of calendars
that favors the inter-granularity relationship. The for-
malization of the calendar turns out be useful in both
granularity conversion and the formal construction of
the labeling schemes. In addition, labels present a way
of constructing naming conventions for the granularities
in the calendar. As continuance of (BWJ98), this work
provides a more specific multiple granularity support
for time related applications.

References
C. Bettini, C.E. Dyreson, W.S. Evans, R.R. Snod-
grass, and X. S. Wang. Temporal Databases: Research
and Practice, volume 1399 of Lecture Notes in Com-
puter Science, chapter A Glossary of Time Granularity
Concepts. Springer, 1998.

C. Bettini, X.S. Wang, and S. Jajodia. A general
framework for time granularity and its application to
temporal reasoning. Annals of Mathematics and Arti-
ficial Intelligence, 22(1-2):29-58, 1998.

J. Clifford and A. Rao. A simple, general structure
for temporal domains. In proc. of the Conference on
Temporal Aspects in Information Systems, pages 23-
30, France, 1987.
R. Chandra, A. Segev, and M. Stonebraker. Imple-
menting calendars and temporal rules in next gener-
ation databases. In Proceedings of ICDE, pages 264-
273, 1994.
T. Dean. Using temporal hierarchies to efficiently
maintain large temporal databases. JACM, 36:687-
718, 1989.
H. Lin. Efficient conversion between temporal granu-
larities. Technical Report 19, Time Center, July 1997.

B. Leban, D. McDonald, and D. Foster. A representa-
tion for collections of temporal intervals. In Proceed-
ings of AAAI, pages 367-371, 1986.

J.Y. Lee, E. Ramez, and J. Won. Specification of cal-
endars and time series for temporal databases. In In-
ternational Conference on the Entity Relationship Ap-
proach (ER), pages 341-356, 1996.

A. M0ntanari, E. Maim, E. Ciapessoni, and E. Ratto.
Dealing with time granularity in the event caleulus. In
Proc. of the Int. Conf. on Fifth Generation Computer
Systems, pages 702-712, Tokyo, Japan, 1992.

R.T. Snodgrass, editor. The TSQL2 Temporal Query
Language. Kluwer Academic Pub., 1995.

M. Soo and R. Snodgrass. Mixed calendar query lan-
guage susport for temporal constants (release 1.1).
The MultiCal Project. Department of Computer Sci-
ence, university of Arizona, September 1995.

