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Abstract

In the last few years, the concept of time granularity
has been defined by several researchers, and a glossary
of time granularity concepts has been published. These
definitions often view a time granularity as a (mostly
infinite) sequence of time granules. Although this view
is conceptually clean, it is extremely inefficient or even
practically impossible to represent a time granularity
in this manner. In this paper, we present a practical
formalism for the finite representation of infinite granu-
larities. The formalism is string-based, allows symbolic
reasoning, and can be extended to multiple dimensions
to accommodate, for example, space.

Introduction
In the last few years, formalisms to represent and to rea-
son about temporal and spatial granularity have been
developed in several areas of computer science. Al-
though several researchers have used different defini-
tions of time granularity, they commonly agree upon the
overall view of a time granularity as a possibly infinite
sequence of time granules, where a time granule is a sub-
set of some fixed time domain. In (Bettini et al. 1998;
Bettini, Wang, & Jajodia 1998; Wang et al. 1997), for
example, a time granularity is defined as a mapping
from integer numbers to subsets of the time domain.
In (Wijsen 1999), we defined a time granularity as 
possibly infinite but computable partition of the nat-
ural numbers. Although all these definitions are con-
ceptually clean, they mostly do not address one im-
portant and practical question: How do we represent
these infinite structures in a finite way that is amenable
to manipulation by a computer system? Clearly, the
complexity of many problems involving granularities de-
pends on such effective representations (Wijsen 1998).

In the time granularity glossary (Bettini et al. 1998),
this problem is partially addressed by the concept of
"groups periodically into." The following example is
slightly adapted from that glossary. The following gran-
ularities G and H are such that H can be finitely rep-
resented in terms of G.
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It suffices to specify that the first granule of H consists
of the first two granules of G, that the second granule
of H coincides with the third granule of G, and that
this pattern repeats every three granules of G. (Bettini
& De Sibi 1999) further investigates the expressiveness
of extensions to this basic formalism.

A challenging and important issue that deserves more
attention is how to reason efficiently about such peri-
odical granularities. For example, given some granular-
ity lattice and a second time granularity H’ defined in
terms of G, can we easily compute the supremum and
the infimum of H and H’? In this paper, we study in
more depth such periodic patterns and related reason-
ing problems.

We propose a new, simple syntax for effectively de-
scribing infinite time granularities. The syntax uses
three symbols: | called filler, U called gap, and ~ called
separator. Granules are constructed from fillers and
gaps, and are delimited by separators. The repeating
pattern of H introduced above is denoted I | $ l $ ~. The
gap symbol U is used to denote gaps. It has been rec-
ognized that gaps are needed to represent some com-
mon real-life time granularities. A typical example is
the granularity "business week," which contains a rep-
etition of five-day periods separated by weekend gaps.
Moreover, our formalism accounts for a finite "offset"
preceding the infinite repetition of the finite pattern.
In this way, one can model, for example, that business
weeks used to contain 6 working days before the Satur-
day became a free day.

Figure 1 shows a comprehensive example. Time in-
stant 1 represents a Thursday, time instant 2 the Friday
after, and so on. For the time granularity J, from time
instant 3 on, one observes a repeating pattern consist-
ing of a weekend followed by a five-day working week;
every working week has a gap on Tuesday and Wednes-
day. This repeating pattern is denoted | $ ~ $ U I.J $ | ~.
The infinite repetition is preceded by an offset $ | I.
We represent a granularity as an ordered pair where
the first component is the offset, and the second the
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Figure 1: Representation of granularity.

repeating pattern. For the current example, this yields:

(ii~; in~nuunn~) 

Such a representation is called a granspec. Although
it is common practice to let the repeating pattern co-
incide with granule boundaries, our formalism allows
repeating patterns that start or end in the middle of
a granule. For example, the time granularity repre-
sented in Figure 1 can also be described as a repetition
of i B ~ l | i I U U preceded by the empty offset ¢:

(¢; l l+l I~IUU) 

In the latter granspec, the end of the repeating pattern
does not coincide with the end of a granule. So the same
granularity can be presented by different granspecs.
This raises some interesting questions that will be ad-
dressed in this paper: What is the shortest granspec?
How can we verify whether two distinct granspecs ac-
tually represent the same granularity? Other questions
concern the reasoning about time granularities in the
proposed formalism. In particular, we are interested
in performing certain reasoning tasks by the symbolic
manipulation of granspecs.

Time granularity constructs found in the literature
are typically one-dimensional. We indicate how our for-
malism can be extended to multiple dimensions. Such
extra dimensions could be temporal or spatial. For ex-
ample, temporal databases often use two time dimen-
sions, called transaction time and valid time. Spat|o-
temporal databases use spatial and temporal dimen-
sions. Still other dimensions are typical in OLAP (Wi-
jsen & Ng 1999). Another extension concerns mov-
ing from infinite strings to infinite trees, which may be
more natural for representing different granularity lev-
els. Such multi-layered temporal structures have been
investigated in the area of temporal logic (Montanari,
Peron, & Policriti 1999).

One may argue that in many practical situations, the
problem of infiniteness can be circumvented by fixing
some end date far ahead, say December 31, 2100. How-
ever, this line of reasoning misses two important points.
First, the representation with fixed end date may not
be more concise, and second, the end date complicates
certain reasoning tasks because it results in a special,
incomplete last granule for certain granularities.

This paper is organized as follows. We first propose
our notion of granularity. Regular granularities are then
defined as a class of granularities that can be described
by granspecs. In general, the same granularity can be

represented by different granspecs. We therefore intro-
duce a unique canonical granspec, which turns out to be
the most concise description. We indicate how certain
computations on regular granularities can be performed
by symbolic manipulation of granspecs. Finally, we in-
dicate two possible extensions. In the appendix, we give
two theorem proofs. Interestingly, in terms of automata
theory, a granspec induces an ultimately periodic word
on the alphabet { |, U, I}. This link with the theory of
combinatorics on words is interesting, as it allows the
application of well-established results (Theorem 13, for
example).

Granularity

We view time as isomorphic to the naturals. The set
of natural numbers {1,2,3,...} is denoted N. Our
starting point is a classical, set-theoretic approach
to time granularity (Clifford & Rao 1987), where 
given granularity constitutes a partition of the set of
granules of a finer granularity. But unlike other ap-
proaches, we take as definition for granularity not the
partition itself, but the corresponding equivalence re-
lation that can be constructed from it (Wijsen 1998;
1999). More precisely, we define a granularity as 
possibly infinite equivalence relation on (some subset
of) the naturals, in which the equivalence classes are
not interleaved w.r.t, the natural order. For example,
the equivalence classes for the time granularity of Fig-
ure 1 are {1, 2}, {3, 4}, {5, 8, 9}, {10, 11}, {12, 15, 16},...
These are the equivalence classes; the time granularity
itself is the corresponding equivalence relation, which
contains, for example, the pair (5,8) but not (5, 10),
meaning that 5 and 8 belong to the same granule, but
5 and 10 do not.

Definition 1 A granularity is an equivalence relation
R on some subset N C_ N such that whenever El, E2 C_
N are two distinct equivalence classes, then either

1. for every i E El, for every j E E2, i < j, or
2. for every i E El, for every j E E2, j < i.

[]

There is no explicit "index set" in this formalism, but
such index set can be easily derived. For the granularity
of Figure 1, for example, we obtain 1 ~ {1,2},2
{3, 4}, 3 ~ {5, 8, 9},... As we argued in previous work,
the absence of an explicit index set simplifies certain
reasoning issues. In particular, the common relation
"finer than" between time granularities coincides with
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set inclusion. The set of all granularities ordered by set
inclusion is a lattice.

Theorem 1 The set of all granularities, ordered by
C_, is a lattice. If R1,R2 are two granularities, then
inf{R1,R2} = R1 n R2 and sup{R1,R2} = N{R c_
N x N I R is a granularity and R1 U R2 C R}.

Note: the set of all granularities is closed for intersec-
tion, and the intersection of two granularities coincides
with the infimum. The supremum does not coincide
with union, however; the set of all granularities is not
closed for union. The lattice of granularities is infi-
nite. Other studies often assume a finite partial order
of granularities (Dyreson et al. 1998), corresponding to
real-life calendars.

Granspecs

A granspec is an ordered pair of finite strings over the
alphabet { $, 12, ~ }, the first string representing the off-
set, and the second the repeating pattern.

Every granspec defines an infinite string. Formally,
the relation between granspecs and the infinite strings
they represent is established by a function -~, such that
if a is any granspec, then a°° is the infinite string rep-
resented by ~. We say that a°° is the trace produced
by ~. For example, if a is the granspec ($ ; l i | U)
then| °° = $1|$12~|$H~||U...Thesametraceis
produced by the granspec 8 = (|~$|; LJI||). 
this case, we say that ~ and 8 are trace-equal, denoted
O~ --T 8.

Definition 2 We fix the alphabet { $, U, ~}. The sym-
bols i, 12, and I are called filler, gap, and separator
respectively. The symbols i and U are both non-
separators. A string is a (possibly infinite) sequence
of symbols from this alphabet. If w is a string, we
denote by w[i,j] the string w(i)w(i 1) ...w(j). Th
empty string is denoted e. String concatenation is de-
fined as usual. If w is a finite string and k E N,

k times

then wk = ~zw."..uYand w° = ~. The length of a
finite string w is denoted Iw]. If v is a finite string,
then 0v0 denotes the number of occurrences of | and
H in v; that is ~v0 denotes the cardinality of the set
{i e Nli < Ivl and v(i) # ~}. The last symbol of|
non-empty, finite string w is denoted tail(w).

A granspec is a pair (v ; w) where v and w are finite
strings and 0w0 > 1. We call v the offset and w the
repeating part of the granspec (v ; w).

The trace produced by the granspec (v ; w), denoted
(v; w)°°, is equal to the infinite string vwww... Two
granspecs c~ and 8 are said to be trace-equal, denoted
O~ --T 8, iff a~ = 8~. []

Every string with infinitely many non-separator sym-
bols represents a granularity. Formally, the relation be-
tween infinite strings and the granularities they repre-
sent is established by a function gran(.), such that if t is
any string with infinitely many non-separator symbols,
then |ran(t) is the granularity represented by t.

Intuitively, |ran(t) contains (i,j) if and only if the
i th non-separator symbol in t is a filler, the jth non-
separator symbol is a filler as well, and there is no sep-
arator between these two fillers. For example, the string

|~|nulinululU...

produced by the granspec a = ( n ; i | 12/) introduced
above, represents the granularity with as equivalence
classes {1}, {2,3}, {5,6}, {8,9},... The same granular-
ity is represented by the trace

Illl~Ul llUIIIU...

produced by the granspec 7 = (i ; n B IU). In this
case, we say that a and 7 are gran-equal, denoted a =G
7. Note incidentally a ST ~. In general, substituting
U for Hi, or vice-versa, in a string does not change the

granularity represented.

Definition 3 If t is an infinite string and k E No, then
O(t,k) denotes the number of occurrences of B or tt
among the first k symbols of t. That is, O(t, k) is equal
to 0t[1, k]~. This notation is also used for finite strings.

Every string t with infinitely many non-separator
symbols induces a granularity, denoted gran(t), as fol-
lows. For all i,j E N, (i,j) E gran(t) iff there exists
k, l E N such that

1. t(k) = t(l) 
2. k - C](t,k) = l - B(t,l), i.e., no separator occurs

between positions k and l, and

3. O(t,k) = i and B(t,l) 

Every granularity that can be expressed as gran(a°°)

for some granspec a, is called a regular granularity.
Two granspecs c~ and 8 are said to be gran-equal, de-
noted a =O 8, iff gran(a°°) = gran(8°°). [2

For example, the following table shows the string (call
it t) introduced in Figure 1:

i-D(t,i): 0 0 1 1 1 2
m(t,i): 1 2 2 3 4 4

t(i) n i I n i

i: 1 2 3 4 5 6

2 2 2 2 ...
5 6 7 8 ...

II II IA II ...

7 8 9 10 ...

We have t(7) = t(10) = | and 7-O(t,7) 
El(t, 10) = 2, i.e., no separator occurs between positions
7 and 10. B(t, 7) = 5 and B(t, 10) = 8, hence (5,8) 
gran ( t )’.

Theorem 2 If t is a string with infinitely many non-
separator symbols, then gran( t) is indeed a granularity.

For a granularity to be regular, it must show a lin-
early repeating pattern from some time instant on. This
seems to be the case for all common real-life granular-
ities, like days, business weeks, weeks, months, years,
and so on. The granularity with equivalence classes
{1,..., 22}, {32,..., 42}, {52,..., 62},..., for example,
is not regular.

In general, the same regular granularity can be rep-
resented by several granspecs, as we showed above. If
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always

always

if a, B canonical,
~ and hence aligned

(Theorem 8)

4~ ~
if c~, fl aligned
(Theorem 6)

Is=Gill

Figure 2: Overview of equivalences.

and/3 are two granspecs, then a = fl implies c~ --T fl,
and a ------T /3 in turn implies a --G /3. The inverse,
however, is not true. That is, a --G /3 does not imply
o~ ----~W ~, O/ ~---W /3 does not imply ~ =/3, and a ~-G /3
does not imply a = ft. The following theorem gives
some transformations that preserve --G or --=T.

Theorem 3 Let v, v’, w, w’ be plaeeholders /or a (pos-
sibly empty) string, and i E No. 1

(v~v’; w) =Q (v~v’;w) (1)
(v; w~w’) ----G (v; w~w’) (2)

(vu~lv’; w) =G (vlU%’; w) (3)
(v; wUi?w’) =--G (v; w?Uiw’) (4)

(v;~u9 =G (v; u) (5)
(~v; w) =G (v ; w) (6)

(v; ~w~U+) --o (v; lwU~) (7)
(v~u~; ~w) -G (vu~; ~w) (s)
(v~u~; u~) --G (v; U) (9)
(vw’ ; ww’) =--T (v; W’W) (10)

(v;wk) --T (v;w) (11)
We now address the following problem: Decide whether
two given granspecs a and/3 are gran-equal. To this
extent, we will define a unique canonical form, such that

and fl are gran-equal if and only if they share the same
canonical form. The canonical form is introduced in two
steps. First, we define aligned granspecs as granspecs
for which every separator is directly preceded by a filler
in the produced trace. We show that if two granspecs

and fl are aligned, then a ------G fl implies a --W ~.
In a second step, canonical granspecs are defined as
a restricted class of aligned granspecs. The steps are
summarized in Figure 2.

Alignment
We say that a granspec ~ is aligned if every occurrence
of ! in c~c¢ is immediately preceded by an occurrence of
|, and eventually followed by an occurrence of |.

Definition 4 A granspec a is aligned iff it satisfies the
following conditions:

XOf course, the repeating part must contain at least one
occurrence of | or U.

1. for every i E N, if a~(i) = ~ then for some j > 
~(j) = 

2. a°°(1) ~ ~; and
3. for every i E N with i > 1, if a~(i) = ? then

a°°(i- 1) = 
[]

Theorem 4 A granspec (v; w) is aligned if]

I. v(1) # 
2. for every i with I < i < Ivl, i~v(i) = ~ then v(i 1)

l;
3. /fw(1) = then v # e and ta il(v) = tail(w) = 
g. for every i with 1 < i <_ Iwl, i.t w(i) = ~ then

w(i-1) = I; and
5. if w = Ui for some i > 0 then v ~ v’~UJ for all

strings v’ and j > O.

The following theorem states that alignment can always
be achieved.

Theorem 5 For every granspec a, there exists an
aligned granspec /3 such that a --o ft.

Finally, we obtain the desired result.

Theorem 6 Let a and/3 be two aligned granspecs. If
a --O/3 then a =---T /3"

The proof of the latter theorem is given in the appendix.

Canonical
Two aligned granspecs can be distinct, and still be
gran-equal (and hence trace-equal by Theorem 6). 
now introduce a canonical form such that two distinct
canonical granspecs represent distinct granularities. In
particular, a canonical granspec is an aligned granspec
whose offset and repeating part do not end with the
same symbol, and whose repeating part is not itself a
repetition of some smaller pattern.

Definition 5 A granspec (v; w) is canonical iff

1. it is aligned,
2. w = uk for some u implies u = w and k = 1, and

3. if v ~ ~ then tail(v) ~ tail(w).

E)

A canonical form can always be achieved.

Theorem 7 (Existence.) For every granspec ~, there
exists a canonical granspec /3 such that ~ ----o/3.

PROOF. Let a be a granspec. By Theorem 5, there
exists an aligned granspec a’ such that a =G a’. By
repeated application of (10) and (11), we can obtain
from a’ a canonical granspec a" such that a" ------T O~t-
[]

For example,

granspec
(|; |1||~|)
(Ul3U2~; 15U2~)

(|~+; ~|3~|~)

canonical form
(e; | |~)
(u; |3+u~|~)
(+; |~++ |3+)
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The proof of the following theorem is given in the ap-
pendix. It states the desired result that every reg-
ular granularity is represented by a unique canonical
granspec.

Theorem 8 (Uniqueness.)Let a and /3 be two
canonical granspecs. If a --G /3 then a =/3.

Consequently, it can be easily checked whether two
granspecs are graa-equal: Rewrite both granspecs in
canonical form and test whether these canonical repre-
sentations are identical.

How does the length of a canonical graaspec com-
pare to its non-caaonical but gran-equal representa-
tions? The alignment requirement may lengthen certain
graaspecs. For example, ( $ U ; I $ ) is not aligned; each
aligned graaspec that is gran-equal to this granspec,
contains at least five symbols, for example, ( $ lU ; $ ~).
It is the case, however, that a canonical granspec is the
shortest among all graa-equal aligned granspecs.

Theorem 9 Let (v; w) be a canonical granspec, and
(v’ ; w’) an aligned granspec. If (v ; w) --G (v’ ; w’) 
Ivl < Iv’l and Iwt < Iw’l.
To conclude, if an aligned granspec is not canonical,
then its offset can be shortened by moving one or more
of its rear-end symbols to the repeating part, or its
repeating part can be shortened because it is itself a
repetition of some shorter pattern. Interestingly, our
results show that there is no other possibility.

Symbolic Computation

Theorem i states that the set of all granularities ordered
by "finer than" is a lattice. This lattice turns out to
be significant in reasoning about temporal functional
dependencies (Wang et al. 1997; Wijsen 1999). Other
reasoning problems may also involve the computation
of lower and upper bounds in this lattice. For example,
suppose we are given, for two production processes P
and Q, the number of failures. For production process
P, the number of failures is reported for every business
week, for example,

businessweekindex[ 1 2[3 4 "’" Inumber of failures 2 1 3 0 ...

For process Q, on the other hand, the number of failures
is given for every month. We want to know, given some
time interval, the total number of failures during this in-
terval, i.e., the number of failures in P during this inter-
val plus the number of failures in Q during this interval.
Clearly, for most time intervals, it is impossible to know
the exact total. Nevertheless, even though months do
not divide evenly into business weeks, there may still
be time intervals that evenly divide into months and
business weeks, and for which an exact sum can thus
be obtained. These intervals are exactly the granules of
the supremum of business week and month. How can
we effectively construct this supremum?

One can show that the set of all regular granulari-
ties ordered by set inclusion, which coincides with finer

than semantics, is a sublattice of the lattice shown in
Theorem 1. The bottom and top elements are repre-
sented by (e; U) and (c; I) respectively. Theorem 
does not provide us with an effective way to construct
the supremum. We show how our formalism allows the
computation of the supremum of two regular granular-
ities by symbolic manipulation of their graaspecs.

Combining Infinite Strings

We observe that an occurrence of U can be of two kinds:
it can occur within a granule, or between two granules.
For example, consider the string

tl =(I; UUlI) c~= IUUI~UUI~UUI~...

which also appears in Figure 3. In the above string, we
can insert a separator in front of any occurrence of u,
except for the two left-most ones, without changing the
granularity represented. The following string, where
such separators have been inserted, represents indeed
the same granularity:

I ULJ |~U~U I~U~U |~...

We therefore say that the first two occurrences of U
occur within a granule, while all subsequent occurrences
of U occur between two granules. This observation is
generalized in the following definition.

Definition 6 Let t be a string containing infinitely
many non-separator symbols. Let j E N. We say that
t is separable at j iff gran(t) = gran(t~) where t~ is the
string obtained from t by inserting in t a separator right
in front of the jth non-separator symbol; that is,

1. t’[1,j - 1] = t[1,j - 1],
2. t’(j) = t, and
3. t’(i) = t(i 1)forall i > j.

[]

Hence, the string tl shown in Figure 3 is separable at 5,
6, 8, 9, ..., but neither at 2 nor at 3.

Figure 3 shows the calculation of the supremum of
gran(tl) and gran(t2) for two infinite strings tl and t2.
The supremum is represented by the string s. In this
figure, the ith non-separator symbols of tl, t2, and s are
aligned in the same column, for each i. The i th non-
separator symbol of s is a filler if the i th non-separator
symbol of tx or t2 is a filler; otherwise it is a gap. More-
over, a separator in tl is copied in s if t2 is separable at
the corresponding position, and vice versa. For exam-
ple, the first separator in tl is not copied in s as t2 is
not separable at 5: The third separator in t2 is copied
in s as tl is separable at 7.

Definition 7 Let t be a string with infinitely many
non-separator symbols. We write t n for the string ob-
tained from t by removing all separators. That is,

1. (~t) m = tm,

2. (It) ~ = Is with s = t m, and
3. (Ut)m = Its with s = t°.

[]
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i : 1

tl°(i) : 
t2n(i) : 

2 3 4 5 6 7 8 9
U U 1 ~ U U 1 I U U

U 1 ~ 1 II I ~ 1 U |

s°(i) : u i i U I I i U a I

tl=(I; UUW000 andt2=(U~; ulna)°°

s=(mum; mu m000

Figure 3: Supremum construction.

°..

... (t,)
... (t2)
... (s)

Theorem 10 Let tl and t2 be two strings with in-
finitely many non-separator symbols. Let s be an in-
finite string. For the lattice of granularities ordered by
C_, we have sup{gran(tt), gran(t2) } = gran(s) ill for 
meN,

¯ sO(i)= { U| i/tlO(i)otherwise= t2°(i)= 

¯ s is separable at i iff both tl and t2 are separable at
i.

Combining Granspecs
We now discuss the computation of the supremum of
two granularities that are given under the form of two
granspecs, say a and/~. Basically, we can combine a00
and/~00 as explained in the previous section. The string
resulting from this combination will be ultimately pe-
riodic. The only difficulty concerns delimiting in this
string the offset and the repeating part. For example,
in Figure 3, the strings tl and t2 are produced by the
canonical granspecs ( I ; U U I ~) and (U ~ ; U I ~ I ) 
spectively. Note that both granspecs contain a single
non-separator occurrence in their offsets. The supre-
mum granspec, on the other hand, contains three non-
separator occurrences in its offset. It is produced by
the canonical granspec ( I U I ; I U I ~).

We assume that the two granspecs whose supremum
has to be computed, correspond on the number of
non-separator symbols in their offsets and repeating
parts respectively. This is without loss of generality,
as for any two granspecs a and/~, there exist aligned
granspecs a’ and/~’ such that cd and/~’ correspond on
the number of non-separator symbols in their offsets
and repeating parts respectively, and such that a’ and
/~’ are trace-equal to a and ~ respectively. For example,

a=(I; I~U) ----T a’=(I; I~UI~UI~U)

/~= (~; mzum) --T ~’=(m;~uim~unn)
The granspecs a’ and/~’ both have one non-separator
symbol in their offsets, and 6 non-separator symbols in
their repeating parts.

Theorem 11 Let al = (Vl ; Wl) and a2 = (v2 ; w2)
be two granspecs. There exist two aligned granspecs
at = (vl; w’l) anda’2 = (v~; wl2) such that ~v~ = ~v~,
~w;U = Iw~U, al =T a’l, and a2 --T a’~.

Given two granspecs a and 8, the following theorem
tells how to distinguish the offset and the supremum in
the string representing the supremum of gran(a00) and
gran(l~00 ).
Theorem 12 Let a = (v;w) and /~ = (x;y) be
two granularities where both w and y contain at least
one occurrence of l, and ~v~ = ~x~ and ~w~ =
~y~. Let s be an infinite string such that gran(s) 
sup{gran(a00), gran(B00) }. Let a be the smallest 
ber such that w(a) = l, and let b be the small-
est number such that y(b) = |. Let m = ~v~ 
max{ra(w, a), O(y,b)}. Let k ¯ N such that s(k) = 
and D(s,k) = m. That is, k is the position in s of
the mth non-separator. Likewise, let l ¯ N such that
s(l) = 1 and [2(s,l) = m+ ~w~. Then gran(s) 
gran((s[1, k 1]; s[k, l - 1])°°).
Note that Theorem 12 implies that for the computation
of the granspec of the supremum, it suffices to know the
first (l - 1) symbols of 

For example, let a = (v;w) = (I; UUI~) 
/~ = (x; y) = (U~; UI~I); see Figure 3. Then 
first filler in w is the third non-separator symbol of w,
and the first filler in y is the second non-separator sym-
bol of y. Hence, the value for m in Theorem 12 is
1 + max{3, 2} = 4. The 4th non-separator symbol of s
occurs at position 4 of s, hence k = 4. For the value
of l, note that m + ~w~ = 4 + 3 = 7, and the ~th non-

separator symbol of s occurs at position 8 of s (for s(7)
is a separator), hence l = 8. Consequently, the offset
for the supremum can be found as s[1, 4 - 1] = 1 U l,
and the repeating part as s[4, 8 - 1] = l U I ~.

Extensions
So far, we have represented a granularity by an infinite
string. We now sketch two natural extensions to infinite
strings that can be useful for granularity modeling.

The first extension is concerned with infinite trees. In
our framework, all granularities are expressed in terms
of one single base granularity. It is often more natu-
ral to define new granularities in terms of previously
defined ones. For example, one may take "day" as the
base granularity, define "month" in terms of "day," and
then define "year" in terms of "month." It seems natu-
ral to use trees, rather than flat strings, to model such
granularity layers. Significantly, in the area of tempo-
ral logic, multi-layered temporal structures have been
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used as the underlying structures of logics that, unlike
linear time temporal logic, can deal with different time
granularities (Montanari, Peron, & Policriti 1999).

The second extension deals with multiple dimensions.
These extra dimensions can be temporal or spatial. For
example, air traffic statistics may subdivide the con-
trolled airspace in regular tridimensional corridors and
compute the number of daily flight traversals per corri-
dor. This involves a four-dimensional granularity, with
one temporal (day) and three spatial dimensions.

For two dimensions, it suffices to replace strings by
"rectangular arrays" in granspecs. Aa example with an
empty offset:

I U ~ U/I I | I

U I ~ I

The produced two-dimensional trace is shown next:

:

I u
I I

u I
I LI
I I

U I
I LI
I I

U I

u I LI
I I I

I u I
u I u
I I I

I u |

I I I

I u I

u I LI
I I I

I U I

I I I

I U I
19 I LJ
I I I

I U I

I ..,

I ,.,

U ...

I ...

I ,.,

~J ,.,

I ...

I ...

1 2 3 4 5 6 7 S 9

One of the equiva-
lence classes is { (6, 2), (6, 4), (7, 2), (7, 3), (8, 2), 
Extensions to higher dimensions can be defined along
the same lines.

Conclusion
We have presented a new formalism for the finite repre-
sentation of infinite granularities with linearly repeat-
ing patterns, and possibly gaps within and between
granules. Granularities are expressed as strings over
a three-symbol alphabet. We have introduced a unique
canonical form which turns out to be the most concise
representation for a particular granularity. We showed
how certain reasoning tasks can be performed by simple
string manipulation. The formalism can be extended in
a natural way to multiple dimensions.
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Proof of Theorem 6
PaOOF. Assume c~ and f? are two aligned granspecs
such that a ST /~. Let n E N such that a~(n)
flee(n) and a~(i) = /3~(i) for every i < n. Let
m = O((~¢~,n - 1) rl (~°°,n - 1). Weconsider the
following cases (the roles of a and f~ can be inter-
changed):

1. (~°°(n) I and~°°( n) = I. Since17~ is alig ned,
/~°¢(n-1) : I = c~C¢(n-1). Then (m,m+l) E
gran(a°¢) while (m, m + 1) gran(~°¢), hence a i~
8.

2. a~(n) = ~ and/~¢¢(n) = U. Suppose a -=G ft. 
show by induction on i that a~(i) = ~(i) = U 
all i _> n + 1. Base i = n + 1. The situation is de-
picted in Figure 4. Clearly, a°°(i) ~ I because other-
wise c~ would not be aligned. Likewise, ]~(i) 
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Figure 4: Construction used in the base of Theorem 6.

[3(ot°°,j): m m m+l ... m+(i-n)
D(/3°°,j): m m+l m+2 ... m+(i--n)+l
~oo(j) I I u ... u ?
~(j) m u u ... u ?

j: n-1 n n+l ... i i+1

Figure 5: Construction used in the inductive step of Theorem 6.

because otherwise /3 would not be aligned. Sup-
pose c~°°(i) = |. Then (m + 1,m + 1) gran(c~°° )

while (m + 1,m + 1) gran(/3°°), hence c~~G /3,
a contradiction. We conclude a°°(i) = U. Sup-
pose /3°°(i) = |. Then (m,m+2) 6 gran(/3°°)

while (re, m+2) ~ gran(~°°), hence a ~G /3, a
contradiction. We conclude/3°°(i) = U. Inductive
step. By the induction hypothesis, a°°(j) =/3oo(j)
for all j 6 [n+l,i]. The situation is depicted in
Figure 5. Obviously, since a and /3 are aligned,
a°°(i+l) ~ ! and /3°° (i + l) ~ I. If~°~(i+l) 
I then (m + (i - n) + 1, m + (i - n) + 1) belongs 
gran(a°°) but not to gran(/3°°), hence a ~G /3, a con-
tradiction. Hence, a°°(i + 1) = U. If/3°°(i + 1) 
then (m, m + (i - n) + 2) belongs gran(/3°°) but
not to gran(a°°), hence a ~G /3, a contradiction.
Hence,/3°°(i + 1) = U. This concludes the induction
step. Hence, a°°(i) =/3°°(i) = U for all i >_ n 
But then a is not aligned, a contradiction. We con-
clude by contradiction that a ~G /3-

3. a°°(n) = | and/3°°(n) = U. Then (m + 1,m + 
gran(a°°) while (m + 1, m + 1) gran(/3°°), hence
a ~G/3.

1. [v I < ]x I. Hence, x = vz for some string
z # e. Hence, vwww .... vzyyy... Hence,
www .... zyyy... Let t = www... Hence, tail(y) 
t(Iz I + klyD for any k > 1, and tail(z) = t(Iz I + l[wl)
for any l _> 0. Since a and/3 are canonical, tail(z) 
tail(x) y£ tail(y). Hence, t(Iz I + kly[) # t(Iz I + llwD
for any k > 1,1 > 0. Hence, Izl+kly I # ]z[+llwI
for any k _> 1,1 > 0. Hence, kly I ~ llw ] for any
k _> 1,1 > 0. Let k = Iwt and l = lYl. So
Iwl" lYl # lYI" Iwl, a contradiction.

2. Ivl = Ixl. Hence, www... = yyy... By Theorem 13,
there is some string r such that w = r k and y = rt

for somek, l>_ 1. Ifk=l= lthenr=w=yand
a =/3. If k > 1 or I > 1 then a or/3 is not canonical,
a contradiction.

Proof of Theorem 8
Before we give the proof, we recall the following result.

Theorem 13 (Fine and Wilf, 1965) Let x,y E A*,
n = Ixl, m = [y], d = gcd(n, m). If two powers p and
yq of x and y have a common left factor of length at
least equal to n + m - d, then x and y are powers of the
same word.

The proof Theorem 8 is given next.
PROOF. Let a and/3 be two canonical granspecs such
that a--G /3. Let a = (v;w) and/3= (x;y). Since
a and /3 are aligned, a --W /3 by Theorem 6. Hence
vwww .... xyyy... Three cases can occur: Ivl < Ixh
Ivl = Ixt, or Iv[ > Ixl. The third case is similar to the
first one.
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