
Representing Absolute Time Expressions with Vagueness,
Indeterminacy, and Different Granularities*

Carlo Combi
Department of Mathematics and Computer Science

University of Udine
via delle Scienze 206, 33100 Udine, Italy

combi@dimi.uniud.it

Abstract

Absolute time expressions axe related to the specifica-
tion of the position of either a time point or an interval
on the time axis. The data model we sketch in this
paper allows us to represent in a seamless way expres-
sions with indeterminacy ("between 6 and 6:30 p.m.,
August 10, 1997", "from 5-5:45 to 8-8:15 p.m., Jan-
uary 11, 2000"), with different granularities ("on De-
cember 19, 1998", "at 2:30 p.m., September 23, 1998"),
with vagueness ("at the end of January 1998"), and
with granularities/indeterminacy/vagueness together
("from March to the beginning of May, 1998", "from
the end of June 1999 for 34-45 days"). Our data
model is mainly based on the integration of different
approaches: the framework proposed by Bettini and
colleagues for temporal granularities has been suitably
merged with the representation of temporal (fuzzy)
knowledge by the possibility theory. To deal with un-
certainty from temporal relationships, the data model
has been based on a multivalued logics.

Introduction

Absolute temporal expressions are those expressions,
which refer either to an absolute position of a point (or
an interval) on a time axis or to the measurement of 
distance between two time points, according to a given
metric, e.g., that of the Gregorian Calendar. Temporal
expressions can be given in natural language in many
different ways: (i) using different time granularities, i.e.
time units ("on December 19, 1998", "at 2:30 p.m.,
September 23, 1998","from January to March, 1998),
(ii) with indeterminacy, when the precise temporal lo-
cation of an event is not known ("between 6 and 6:30
p.m., August 10, 1997", "from 5-5:45 to 8-8:15 p.m.,
January 11, 2000"), (iii) with vagueness, when also 
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boundaries delimiting the time interval during which
an event happened are not completely known ("at the
end of January 1998", "from the beginning of March
1997 to the end of May 1999"), (iv) by mixing expres-
sions of the three previous types ("from March to the
beginning of May, 1998", "from the end of June 1999
for 35-45 days").
Research efforts in modeling such kind of expressions
and in reasoning on them come from different areas and
usually focus separately on one kind of temporal expres-
sions: we cite here temporal databases and temporal
reasoning (Bettini et al. 1998; Goralwalla et al. 1998;
Montanari et al. 1992), temporal constraints (Dechter,
Meiri, & Pearl 1991; Koubarakis & Skiadopoulos 1999),
and fuzzy sets (Dubois & Prade 1989; Loganantharaj 
Kurkovsky 1997; Godo & Vila 1995).
In this paper we sketch main features of the data
model we defined to manage in a seamless way abso-
lute temporal expressions possibly containing vague-
ness, indeterminacy and different granularities. Our
data model is based on the integration of different ap-
proaches: the framework proposed by Bettini and col-
leagues for temporal granularities has been suitably
merged with the representation of temporal (fuzzy)
knowledge by the possibility theory (Bettini et al. 1998;
Dubois & Prade 1989). To deal with uncertainty from
temporal relationships, the data model has been based
on a multivalued logics (Panti 1998). Although the pa-
per is described in a logic-based fashion, it has been
designed and implemented inside the framework of tem-
poral object-oriented databases, to support different ex-
pressions for valid times of temporal objects (Venuti
1998).
The rest of the paper is organized as follows: we first
briefly mention the main research areas related to the
data model we are presenting; we, then, describe basic
concepts of the data model; the paper ends with some
concluding comments.

Related work

Many different approaches and focuses may be distin-
guished in the literature dealing with temporal infor-
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mation in AI and databases; as regards the problem of
representing and reasoning on heterogeneous temporal
data, we mention here three different, and usually not
integrated, approaches:

¯ Managing different time granularities. There have
been different proposals from AI and database fields
for managing different time granularities, i.e. dif-
ferent time units, associated to temporal informa-
tion (Bettini et al. 1998; Goralwalla et al. 1998;
Montanari et al. 1992). The focus here is both on
managing (reasoning on, representing and querying)
temporal information given at different granularities
and on representing and classifying granularity sys-
tems, according to properties of their granularities.

¯ Temporal constraints and indeterminacy. Indeter-
minacy is present when it is not possible to pre-
cisely define the position of a time point or the dis-
tance between two time points. Constraint-based
reasoning techniques have been defined and applied
to classify and solve temporal constraint problems
of different kind (Dechter, Meiri, & Pearl 1991;
Koubarakis & Skiadopoulos 1999). Temporal con-
straints expressed by using different time granulari-
ties have been considered in (Bettini, Wang, and Ja-
jodia 1998).

¯ Representing and reasoning on fuzzy temporal knowl-
edge. Several works have been devoted to the prob-
lem of representing and managing approximate tem-
poral knowledge, based on Zadeh’s possibility theory
(Dubois & Prade 1989; Loganantharaj & Kurkovsky
1997; Godo & Vila 1995).

Modeling temporal information

Time domain and granularities

The basic time domain T, called also time axis, is iso-
morphic to the real numbers with the usual ordering
relation <. The set Gran of granularity functions is
related to the granularities of the Gregorian calendar
(years, months, days, hours, seconds). Our granular-
ity mappings consider granularities for both anchored
and unanchored time spans (Goralwalla et al. 1998):
for example, the granularity of months can be used for
expressing a certain period in a year (October, 1999),
as well as for expressing a duration (.for three months).
Granularity functions are based on the framework pro-
posed by Bettini and colleagues in (Bettini et al. 1998).
Each granularity function G is a temporal type, i.e. a
mapping from an index set IG, isomorphic to a sub-
set of integers I, to 2T. More precisely, Gran = {Y,
mean_Y, M, mean_M, D, mean_D, H, mean_H, Mi,
mean_Mi, S, mean_S}. The functions Y, M, ... rep-
resent the usual granularities of the Gregorian calendar
(they manage leap years, months with 28, 29, 30, or 31

days, and so on). The functions mean_Y, mean_M, ...
provide regular mappings, that will be used in model-
ing duration, i.e. unanchored time spans, based on the
(astronomical) mean length of a year. Instead of using
the notation #(i) to identify the ith tick (granule) 
the mapping (temporal type, or granularity) ~, we will
use the symbols (.), to denote the granule, and differ-
ent notations for different index sets, based on that for
dates and durations, e.g. YY/MM/DD/HH/Mi/SS for the
index set Is of seconds, YY/MM/DD for the index set ID of
days, nl y n2 m for the index set Imean_M of durations
expressed using months and years.

Example 1 The following notations for time granules
are equivalent:
Y(1996) = (1996)
M(1996.12 + 4) = (1996/4)
mean_Y(1) -- (1 
mean_M(1 * 12 + 3) = (1 y 3 m) 

The functions l and u: 2T -~ T, return, respectively,
the lower and upper bound of the considered granule.
The notation granule (IG, t), where IG is
one of the above time indexes, is a short-
hand for referring to the granule G(i) on T
containing the time point t: for example,
granule(IM, l((1997/1/13/O/O/O)) (1997/1).

Time instants and durations

A time instant refers to a point on the time axis, whose
location can be given with vagueness, indeterminacy, or
different granularities. Instants are represented by the
domain Inst. The position of an instant on the time
axis is given by a function called possibility distribution
7r: Inst x T --~ [0, 1] C R. Vt E T, ~r(i, t) is the numer-
ical value estimating the possibility that the instant i
is precisely t. When 7r(i, t) = 0, it is for sure that i 
different from t. It may be that there are several dis-
tinct time points tl, t2 such that ~r(i, tl) - 7r(i, t2) = 
In the following, we will use for the function ~r the
more common notation 7ri(t), instead of the notation
~r(i, t) (Dubois & Prade 1989). Two other functions
are derived from the possibility distribution ~r, named
poss_a f ter_Tr and poss_be f ore_Tr:

poss_afterJri (t) sup,<t~ri (s
poss_be .f ore_~ri( t ) sup,>tri( s)

Intuitively, these last two functions, given an instant i,
provide the numerical values estimating the possibility
that time points are after (before) the instant 
A duration is an unanchored time span: it represents
the distance between two time points. As for instants,
durations can be given with vagueness, indeterminacy,
or using different granularities. Formally, durations are
represented by the domain Dur. For durations, the

18



possibility distribution ~ estimates the possibility that
a given duration is represented by different distances be-
tween time points. The function ~: Dur× T --~ [0, 1] C_
R, returns the numerical values estimating the possi-
bility that different time points on T represent a given
duration.
According to a widely diffused approach in the litera-
ture on fuzzy sets, in the following we will use trape-
zoidal possibility distributions, represented by quadru-
ples (a, a., a*,~) (Dubois & Prade 1989). In the follow-
ing section, we will introduce different possibility distri-
butions for instants and durations given with different
granularities, with vagueness, and indeterminacy.

Granularity, vagueness, and indeterminacy in
representing instants and durations Time in-
stants and durations can be given with granularity, in-
determinacy, vagueness, or even mixing them in differ-
ent ways. We identify three main ways of defining an
instant or a duration:

1. at a certain granularity (e.g., "on December 15, 1998,
at 7:00:00 p.m.", "On September 3, 1998", "for 3
hours, 15 minutes and 23 seconds", "for 3 months
and 6 days");

2. with vagueness, using different granularities (e.g., "at
the end of May, 1999", "in the middle of 1997", "for
about 20 minutes");

3. with indeterminacy, using different granularities
and/or vagueness (e.g., "between 2:30:00 p.m. and
7:35:15 p.m. of December 13, 1997", "between
September 15, 1997 and November 1997", "between 2
p.m. of November 13, 1997 and the end of December
1997", "for 15 - 25 seconds", "for a time span lasting
between 3 minutes and 3 hours", "for a time span
lasting between 35 minutes and about one hour").

Constants for instants and durations given with differ-
ent granularities (case 1) are represented in the stan-
dard format for dates and time spans, as, for example,
YY/MM/DD, YY/MM/DD/HH, or YY/MM/DD/HH/Mi/SS for in-
stants, and N1 yy N2 ram, N1 yy N2 ram N3, or N1
yy N2 ram N3 dd N4 hh N5 mi N6 ss for durations,
where Ni is the number of considered time units. More
formally we can say that such constants correspond to
the application of the function g2i: 2T --+ Inst; the
intervals argument of this function are granules from
the calendar-related granularity mappings. For exam-
ple, the constant 99/03/21 is the result of the function
g2i((99/03/21)). We call Granl the set of all the con-
stants made by the previous function. We call i2g the
inverse function, which, given an instant belonging to
Gran_I, returns the corresponding granule.
Constants for instants and durations given with vague-
ness (case 2) are denoted by applying some qualifier
to the previous notations. The qualifiers for instants
are beginning, middle, end; the qualifiers for dura-

tions are about, almost. More formally we can say
that such constants correspond to the application of
suitable functions (corresponding to the previously in-
troduced qualifiers) from w to I nst. For example, the
constant middle(99/04) is the result of the function
middle((99~04)). We call Vag_I the set of all the con-
stants made by the previous functions.
The last situation (case 3) happens when the interval
of indeterminacy, i.e., the set of contiguous time points
with which the considered time point can coincide, is
explicitly given. The bounds of the interval of indeter-
minacy can be vague and/or given with different granu-
larities. Constants for instants and durations given with
indeterminacy are represented by two constants belong-
ing to Gran_I t2 Vag_I, included between the symbols
-<, >-. More formally we can say that such constants
correspond to the application of a suitable function
in_in (for indeterminate instant): Gran-IUvag-I - ~
Inst. For example, the constant ~middle(99/04),
99/05/21>- corresponds to the result of the function
in_in(middle((99/O4)),g2i((99/05121))). We call In-
det_I the set of all the constants made by the previous
function.

Example 2 Let us consider the following sentences:
"On December 13, 1998", "At the end of December,
1998", "between the end of December 1998, and Jan-
uary 15, 1999": the first one is modeled by the constant
1998/12/13 E Gran_I; the second one is modeled by
end(1998/12) E Vag_I: while the third one is modeled
by -< end(98/12),99/01/15 >- E Indet_I. 

We have now to deal with the definition of possibility
distributions able to represent instants and durations
given with different granularities, degrees of vagueness,
and indeterminacy.
In case of instants given at different granularities, the
trapezoidal possibility distribution is given as:

Vi E Gran_I 7q --d/
(l(i2g(i))-f(i), l(i2g(i)), u(i2g(i)), u(i2g(i))+.f’(i))

Several different definitions can be provided for the
functions f and f’; the basic idea is that these two func-
tions are related to the amplitude of the corresponding
granule, in order to have a "fuzziness" depending on
how coarse is the corresponding granularity. A possible
choice could be to define f and f~ in the same way as
follows:

Example 3 Let us consider the index set ID of days.
We can define possibility distributions associated to in-
stants defined on this index set as follows.
~rrz/~/VD --dr (I(i2g(YY/IOI/DD)) se4oo I(i2g(YY/NN/DD)),

i~ ,
u(i2g(YY/MM/DD)), u(i2g(YY/~4/DD)) °)
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where 86400 is the number of seconds in a day granule
(u(i2g(i)) -l(i2g(i)) 86400 for each i identified byan
element of the index set ID) and 12 is the value chosen
for the constant k(i), for each i.
On the basis of such kind of choices, the user is allowed
to suitably define possibility functions. Figure 1 illus-
trates, for example, the possibility functions associated
to the time instants 10:0:0 a.m. of December 15, 1998
(1998/12/15/10/0/0, at the granularity of seconds),
10:0 a.m. of December 15, 1998 (1998/12/15/0/0 at
the granularity of minutes), and 10 a.m. of December
15, 1998 (1998/12/15/10 at the granularity of hours).
It is worth notice that the possibility function associ-
ated to the instant given at the granularity of seconds
(the finest one in our granularity system) does not rep-
resent any fuzziness: time points within the considered
granule have possibility 1, while the time points outside
the granule have possibility 0, i.e. they cannot represent
the specified instant. []

~998/12/I$/10/0/0

........ ~99B/12/15/10/0

.... "~99B/12/15/10

%

L

~---~ <11D|1121151101110>) 
<119e1121151101011~) |

11991/11/11/10/0/0>1/~<1995112/15/11/010>)"~j

\
\
\
\
\
\

\
\
\

T

Figure 1: An example of possibility functions related to
time instants given at different granularities.

Let us now consider the second case, i.e. instants
given with vagueness. A simple choice is to adopt
functions, allowing one to perform a fuzzy partition of
the considered granule: a fuzzy partition for a gran-
ule X is composed by possibility functions ri such that
Vt E X ~i ~ri(t) = 1, where i is ranging on all the con-
stants, whose possibility functions compose the parti-
tion.

Example 4 Let us consider the following con-
stants, which identify an instant at the begin-
ning, in the middle, and at the end of Novem-
ber, 1997: beginning(1997/ll), middle(1997/ll),
end(1997/11). The following possibility functions can
be defined for these instants:

"JTbeg:L~,.~ing ( 199"r / 11) ~de/

(/((1997/11)), /((1997/11)),
/((1997/11)) + a, l((1997/11))+ 

~Tmiddle(1997/11) ~de f
(/((1997/11)) + a, 1((1997/11))+ 2a,
1((1997/11)) + 3a, t((199T/11)) 

7~.nd(1997/11) ~def

(t((1997/11)) + 3~, t((1997/11))+ 
~(0997/11)), u(0997/111))

where a is equal to u(i2~1(1997/11))--1(i29(1997/11))5 , i.e.,
6 ¯ 24 ̄  60 ̄  60 seconds, according to an equi-partition
of the granule, i.e. November 1997, among the three
considered possibility functions. Figure 2 graphically
represents the three possibility functions. []

-’-T

Figure 2: An example of possibility functions related to
time instants given with vagueness.

More generally, we can define the following possibil-
ity functions for instants belonging to Vag_I, consider-
ing an equi-partition of the considered granule for the
beginning, middle, and end qualifiers.

7rmiddle(i) ~--d/ ( L + ~-"~, L "[" 2 ,

L + 3-~, L + 4-~)

7rend(i) -~df (L "~ 3~"~, L + 4-~A, U, U)

where L = l(i2g(i)) and U = u(i2g(i))

Let us finally consider the possibility distribution re-
lated to the third case, i.e. instants given with inde-
terminacy. In this case, the possibility functions can
be obtained by combining those functions related to
the instants used to express instants with indetermi-
nacy. More precisely, we use the classical intersection
between possibility functions (Dubois & Prade 1989):

Vi, j E Gran_I U Vag_I

~rin_in( i,j) -~f possibly_a fter Jri N possibly_be f oreJr 

Example 5 Let us consider the instant
-~end(1998/ll), 1999/01/15~-, representing a time
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point located between the end of November, 1998 and
January 15, 1999. The related possibility function can
be obtained as intersection of the functions 7r°nd(tm9e/12)
and rrt99s/t/1s, as shown in Figure 3.

~rin_in(oua(ga/n).99/ot/15) =--dI
possibly-a fter-Trond(ge/n) fl possibly-be /oreJrg~/ot/15 =
(1(i2g(1998/11/19)), 1(i2g(1998/11/25)),
1(i2g(1999/1/16)), l(i2g(1999/1/16/2))) 

i

Figure 3: An example of possibility functions related to
time instants given with indeterminacy.

There are obviously some constraints in defining in-
stants with indeterminacy: intuitively, it is not possible
to define an interval of indeterminacy having the first
bound following the second one. More precisely, in our
case, the two possibility functions related to the bounds
of an interval of indeterminacy must satisfy the follow-
ing condition:

inf(t: ~ri(t) = 1) < inf(u: ~rj(u) = 

By this condition, we are sure that the resulting possi-
bility function is a usual trapezoidal function.

Time intervals

A time interval refers to a set of contiguous time points.
A starting instant, an ending instant, and a duration
identify an interval. Itvl is the domain of variables and
constants for intervals. For variables of interval type
the functions from(.), to(.) return values belonging to
the domain Inst; dur(.) returns a value belonging to
the domain Dur. Different functions allow us to define
interval constants on the basis of granules, instants, and
durations. These functions, we call interval construc-
tors, are left implicit in the following of the paper, us-
ing the symbol (...) for expressing intervals in different
ways. We will use the following notations, according to
the different natural language expressions used to define
an interval.

¯ Notation 1. (YY), or <YY/MM), or (YY/MM/DD), and 
on, when the interval is a granule of the Calendar,
e.g. (1994/I0); this notation is used to model inter-
vals given by sentences like "the year 1994", "Jan-
uary ’89". By these different notations we refer to
intervals given as granules at one of the granularities
of the Gregorian Calendar. The interval constructor
corresponding to this kind of notation is the function
gran_int: 2T --+ Itvl.

¯ Notation 2. (from(x), to(x)) when start-
ing and ending instants are given, e.g.
<end(94/10/10),95/3/2/15); this notation is
used to model intervals given by "from ... to ..."
sentences. This is the usual way to express intervals
in temporal databases (allowing only one granularity
without any vagueness). The interval constructor
corresponding to this kind of notation is the function
from_to: 2Inst -’~ Itvl.

¯ Notation 3. (from(x), dur(x)) when starting instant
and duration are given, e.g. (middle(94/10/10),
-<3 lx, 3 Ix 30 mi>-); this notation is used to model
intervals given by "from ... for ..." sentences. The
interval constructor corresponding to this kind of no-
tation is the function from_for: Inst x Dur ~ Itvl.

¯ Notation 4. (dur(x), to(x)) when ending instant and
duration are given, e.g. (33 Ix, 96/10); this notation
is used to model intervals given by "for ... to ..."
sentences. The interval constructor corresponding to
this kind of notation is the function for_to: Dur x
Inst -~ Itvl.

¯ Notation 5. (in, dur(x)), where in is a granule; this
notation allows one to express intervals given by "in
... for ..." , e.g., ((94/10),6mi3s). The interval con-
structor corresponding to this kind of notation is the
function in_for: 2T × Dur ~ Itvl.

¯ Notation 6. (from(x), dur(x), to(x)) when both
starting instant, duration, and ending instant are
given, e.g. (96/9/10, -<4 Ix 6 mi 3 s, 24 h 5 mi
2 s>-, 96/9/11); this is the more general notation,
allowing to express also all the intervals expressible
by the previous notations. The interval constructor
corresponding to this kind of notation is the function
from_for_to: 2Inst × Dur -+ Itvl.

Some constraints and relations exist between the possi-
bility distributions of instants and durations of an inter-
val: for example, given the possibility distributions for
the starting instant and for the duration of an interval,
the possibility distribution of the ending instant can be
computed by the fuzzy arithmetic addition of the two
given distributions (Dubois & Prade 1989). In general,
we have to define constraints which allow us to have
some kind of "consistency" between the possibility dis-
tributions of starting and ending instants, and duration.
A simple constraint consists in disallowing overlapping
distributions for starting and ending instants (Dubois
& Prade 1989);nevertheless, in this way we cannot ex-
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press, for example, intervals having starting and end-
ing instants in the same granule. A detailed analysis of
more general constraints between possibility distribu-
tions for instants and duration of an interval is out of
the scope of this paper, and will be the focus of future
works.

Temporal Relations

Formulas and predicates in our model return truth val-
ues of the set MV_logic = [0, 1] C It. The meaning of
the formulas ~A, A A B, A V B, A -~ B is given as
follows:

A A B --aj rain(A, B)

A V B -a/max(A, B)

A --~ B --ay min(1 - A + B, 1).

Relations between instants, durations, and intervals are
predicates in the previously introduced multivalued log-
ics. The basic idea in defining different relations is to
use possibility theory as the basis for the definition of
multivalued predicates: fuzzy sets allow us to repre-
sent approximate temporal information and to evalu-
ate predicates, which return (crisp) truth values that
range from "complete truth" to "complete falsity" in a
seamless way (Panti 1998). In the following, for space
restrictions, we briefly sketch the definitions of main
relationships between instants.

Definition 1 Let be i a generic (fuzzy) instant or du-
+ooration; we define measure of vri as [ 7ri I-ay f~oo 7ri(t)dt

On the basis of this definition, we are able to define the
following relations between instants (relations between
durations are defined similarly).

Definition 2 Let be i and j two elements of do-
main Inst; the relation before(i, j): Inst x Inst ~-~
MV_logic, is defined as

Definition 3 Let be i and j two elements of do-
main Inst; the relation after(i, j): Inst × Inst
MV_logic, is defined as

after(i,j) =d! 1 -- before(i,j)

Definition 4 Let be i and j two elements of domain
Inst; the relation equal(i, j): Inst × Inst ~ MV_logic,
is defined as

equal(i, j) =_~
1-max( be fore( i,~ )-a f ter( i,~ ),a #er( i,~ )-be [ore( 

l q-abs( ~ 

Further relations can be defined to perform comparisons
at different levels of granularity. Relations between in-
stants and durations can suitably composed to define
the usual interval relations, i.e. equal, meets, finishes,
overlap, and so on.

Conclusions

In this paper we have briefly described main features of
a data model, allowing one to represent absolute time
expressions involving different granularities, indetermi-
nacy and vagueness. The novelty of our work is related
to the seamless representation of such kind of tempo-
ral information; our approach is methodologically based
on the integration of granularity systems, which pro-
vide a tool for defining granularities and their relation-
ships, and possibility theory, which allow to represent
approximate temporal knowledge. Relations between
instants/durations/intervals are evaluated according to
a multivalued logics.
This is only a first step towards providing temporal
databases with the capability of expressing and query-
ing data with heterogeneous valid times; further work is
needed, for example, to define suitable query languages
and to design and implement efficient algorithms for
evaluating formulas and predicates on temporal data.
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