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Abstract

In this paper I define four sets of binary topological relations
between one dimensional regions in a one-dimensional space:
(1) boundary insensitive relations in a non-directed space, (2)
boundary insensitive relations in a directed space, (3) bound-
ary sensitive relations in a non-directed space, and (4) bound-
ary sensitive relations in a directed space.
For each of these sets of relations between exact regions I de-
fine a corresponding set of relations between approximations
of regions with respect to an underlying regional partition.
I discuss syntactic and semantic generalizations of relations
between exact regions to corresponding relations between ap-
proximations and show the equivalence of syntactic and se-
mantic generalization.

Introduction
Every temporal object and every spatio-temporal object is
located at a unique region of time bounded by the begin
and the end of its existence. In every moment of time
a spatio-temporal object, o, is exactly located at a single
region, x, of space (Casati & Varzi 1995). This region
is the exact or precise location of o at the time point t,
i.e., x = r(o) at t. Spatio-temporal wholes have tem-
poral parts, which are located at parts of the temporal re-
gions occupied by their wholes. Consider, for example, the
region of time, y, where the object, o, is located tempo-
rally, while being spatially located at the spatial region x.
If y is a maximal connected temporal region, i.e., o was
once spatially located at x for a while, left and never came
back, then y is bounded by the time instances (points) t1
and t2. Since time is a totally ordered set of time points
forming a directed one-dimensional space (McTaggart 1927;
Geach 1966), we have t1 < t2.

In knowledge representation we are interested in repre-
senting spatio-temporal reality as experienced by human
beings. In this context it is essential to represent spatio-
temporal location (Galton 1997). In this paper I concentrate
on representing temporal location. One way of represent-
ing temporal location is to represent qualitative relationships
between temporal regions occupied by temporal and spatio-
temporal objects and their parts (Allen 1983).
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Human knowledge is gained by observations and rea-
soning about observations. (Bittner 1999) argued1 that by
means of observation and measurement (a precise form of
observation) humans cannot know the exact spatial and,
hence, exact temporal location. Observations and measure-
ment yield knowledge about approximate spatio-temporal
location, i.e., knowledge about relations between spatio-
temporal objects and cells of regional partitions of space and
time. Regional partitions are sets of regions (cells) that do
not overlap but sum up the whole space. Regional partitions
are created by measurement and observation processes. Ap-
proximate location can be known by observing (qualitative)
relations between objects and the cells of the underlying re-
gional partitions.

Consider, for example, the measurement of temporal loca-
tion. Measurement of temporal location is based on clocks.
A clock creates a regional partition of the time-line. The
cells forming this partition are time intervals separated by
‘clock ticks’. Measurement of temporal location involves
counting time intervals and observing relationships between
time intervals and (temporal parts of) temporal or spatio-
temporal objects. No matter how fine the resolution of the
partition there are always partition cells that are disjoint to
(the exact region of) the observed object, there may be par-
tition cells that are completely covered by (the exact region
of) the observed object, and there always are partition cells
that are partly covered by (the exact region of) the observed
object. Consequently, observing spatio-temporal location
means observing relations between partition cells and re-
gions occupied by spatio-temporal objects, i.e., observing
approximate location rather than exact location. Other ex-
amples of regional partition in which approximate tempo-
ral location is observed is the partition of the time line into
past and future separated by the present moment, the hours
of the day, forenoon and afternoon, the four seasons. Con-
sequently, in the context of knowledge representation rea-
soning about approximate spatio-temporal location, i.e., ap-
proximations of spatial and temporal regions, is more im-
portant than reasoning about exact location, i.e., spatial and
temporal regions themselves.

In the remainder of this paper I omit the distinction be-
tween objects and spatial and temporal regions and the

1Based on (Carnap 1966).
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(functional) relation of (exact) location between them and
concentrate on the approximation of the exact regions (of
objects) with respect to an underlying regional partition.
Moreover, I concentrate on temporal regions and approxi-
mations of temporal regions. This paper builds on (Bittner
& Stell 1998) and (Bittner & Stell 2000), in which vari-
ous ways of providing qualitative approximations of regions
with respect to a partition of the plane as well as reasoning
about those approximations were described.

(Bittner & Stell 2000) showed that approximate qualita-
tive reasoning is based on: (1) Jointly exhaustive and pair-
wise disjoint sets of qualitative relations between exact re-
gions. These relations need to be defined in terms of the
meet operation of the underlying Boolean algebra structure
of the domain of regions. As a set these relations must form
a lattice with bottom and top element. (2) Approximations
of regions with respect to a regional partition of the underly-
ing space. (3) Pairs of join and meet operations on those ap-
proximations, which approximate join and meet operations
on exact regions. This this is reflected by the structure of
this paper:

I start with the definition of qualitative relations be-
tween temporal regions. I distinguish boundary sensitive
and boundary insensitive sets of relations and relations be-
tween regions in a directed and non-directed underlying one-
dimensional space. Based on the definition of approxima-
tions of temporal regions with respect to an underlying re-
gional partition I then generalize the definitions of relations
between temporal regions to definitions of relations between
approximations of regions. This provides the formal basis
for qualitative temporal reasoning about approximate loca-
tion in time. The conclusions are given in the end.

Relations between one dimensional regions

Boundary insensitive relations

RCC5 relations Given two regions x and y boundary
insensitive topological relation (RCC5 relations2) between
them can be determined by considering the triple of boolean
values (Bittner & Stell 2000):

(x ^ y 6= ?; x ^ y = x; x ^ y = y):

The correspondence between such triples and boundary in-
sensitive relations between regions on an undirected line is
given in the following table (Bittner & Stell 2000).

2I use the notion RCC in order to stress the correspondence be-
tween the relations defined in this paper and relations defined by
Cohn and his co-workers in terms of the region connection cal-
culus (RCC) (Cohn et al. 1997). Correspondence in this con-
text means that I am talking about regular regions that satisfy the
RCC-axioms (Randell, Cui, & Cohn 1992) and that similar re-
lations could be defined or have been defined in terms of RCC,
e.g., (Randell, Cui, & Cohn 1992; Cohn, Gooday, & Bennett 1994;
Cohn et al. 1997). I am going to use sub- and superscripts (e.g.,
RCC9

1 ) where the superscript refers to the number of relations
in the denoted set and the subscript refers to the dimension of the
regions and the embedding space.

x ^ y 6= ? x ^ y = x x ^ y = y RCC5
F F F DR
T F F PO
T T F PP
T F T PPi
T T T EQ

The set of triples is partially ordered by setting
(a1; a2; a3) � (b1; b2; b3) iff ai � bi for i = 1; 2; 3,
where the Boolean values are ordered by F < T. The
Hasse diagram is given in the diagram below. (Bittner &
Stell 2000) call this graph the RCC5 lattice to distinguish it
from the conceptual neighborhood graph (Goodday & Cohn
1994).

(T; T; T) EQ

��
�� I@@@

(T; T; F) PP (T; F; T) PPi

I@@@ ��
��

(T; F; F) PO

(F; F; F) DR

6

RCC9
1 relations Given two one dimensional regions x

and y. I assume that x and y are maximal connected one
dimensional regions, i.e., intervals. Boundary insensitive
topological relation between intervals x and y on a directed
line (RCC9

1 relations) can be determined by considering the
triple of truth values:

(x ^ y 6� ?; x ^ y � x; x ^ y � y)

where

x ^ y 6� ? =

(
FL if x ^ y 6= ? andx� y � x� y
FR if x ^ y 6= ? andx� y < x� y
T if x ^ y = ?

where

x ^ y � x =

(
FR if x ^ y 6= x and y � x � y � x
FL if x ^ y 6= x and y � x < y � x
T if x ^ y = x

and where

x ^ y � y =

(
FL if x ^ y 6= y andx� y � x� y
FR if x ^ y 6= y andx� y < x� y
T if x ^ y = y

with

x� y =

�
T ifL(x) ^ L(y) = L(x)
F ifL(x) ^ L(y) 6= L(x)

and

x� y =

�
T ifR(x) ^R(y) = R(x)
F ifR(x) ^R(y) 6= R(x)

L(x) (R(y)) is the one dimensional region occupying the
whole line left (right)3 of x. The intuition behind FL (FR)

3I use the spatial metaphor of a line extending from the left to
the right rather than the time-line extending from the past to the
future in order to focus on the aspects of the time-line as a one-
dimensional directed space. Time itself is much more difficult. For
example, it is not clear if the future already exists yet (Broad 1923).
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is “false because of parts ‘sticking out’ to the left (right)”4.
The triples formally describe jointly exhaustive and pairwise
disjoint relations under the assumption that x and y are in-
tervals in a one dimensional directed space. The correspon-
dence between the triples and the boundary insensitive rela-
tions between intervals is given in the following table.

x ^ y 6� ? x ^ y � x x ^ y � y RCC9
1

FL FL FL DRL
FR FR FR DRR
T FL FL POL
T FR FR POR
T T FL PPL
T T FR PPR
T FL T PPiL
T FR T PPiR
T T T EQ

For example. The intuition behind DRL(x; y) is that x and
y do not overlap and x is left of y. The intuition behind
POL(x; y) is that x and y do overlap without containing
each other and the non overlapping parts of x are left of y.
The intuition behind PPL(x; y) is that x is contained in y but
x does not cover the very right parts of y. Possible geomet-
ric interpretations of the relations defined above are given in
Figure 1.

Assuming the ordering FL < T < FR a lattice is
formed, which has (FL;FL;FL) as minimal element and
(FR;FR;FR) as maximal element. The lower part of the
Hasse diagram of this lattice is given in the diagram below.

(T; T; T) EQ

��
�� I@@@

(T; T; FL) PPL (T; FL; T) PPiL

I@@@ ��
��

(T; FL; FL) POL

(FL; FL; FL) DRL

6

x y

DRL(x,y) POL(x,y) PPL(x,y) EQ(x,y) PPR(x,y)

PPiL(x,y) PPiR(x,y)

DRR(x,y)POR(x,y)

Figure 1: Possible geometric interpretations of the
RCC9

1 relations.

Boundary sensitive relations
RCC8 relations In order to describe boundary sensitive
relations between regions x and y (Bittner & Stell 2000) use

4Notice that this dose not exclude that there are also ‘parts stick-
ing out’ to the opposite side.

a triple, where the three entries may take one of three truth
values rather than the two Boolean ones. The scheme has
the form:

(x ^ y 6� ?; x ^ y � x; x ^ y � y)

where

x^y 6� ? =

8>>>>><
>>>>>:

T if the interiors of x and y overlap;
i:e:; x ^ y 6= ?

M if only the boundaries x and y overlap;
i:e:; x ^ y = ? and Æ(x) ^ Æ(y) 6= ?

F if there is no overlap between x and y;
i:e:; x ^ y = ? and Æ(x) ^ Æ(y) = ?

and where

x^y � x =

8>>>>><
>>>>>:

T if x is contained in the interior of y;
i:e:; x ^ y = x and Æ(x) ^ Æ(y) = ?

M if x is contained in y but not its interior;
i:e:; x ^ y = x and Æ(x) ^ Æ(y) 6= ?

F if x is not contained within y;
i:e:; x ^ y 6= x

and similarly for x ^ y � y. The correspondence between
such triples and boundary sensitive topological relations is
given in the following table (Bittner & Stell 2000).

x ^ y 6� ? x ^ y � x x ^ y � y RCC8
F F F DC
M F F EC
T F F PO
T M F TPP
T T F NTPP
T F M TPPi
T F T NTPPi
T T T EQ

(Bittner & Stell 2000) define F < M < T and call the
corresponding Hasse diagram (diagram below) RCC8 lattice
to distinguish it from the conceptual neighborhood graph
(Goodday & Cohn 1994).

(T; T; T) EQ

��
�� I@@@

(T; T; M) NTPP (T; M; T) NTPPi

(T; T; F) TPP

6

(T; F; T) TPPi

6

I@@@ ��
��

(T; F; F) PO

(F; M; F) EC

6

(F; F; F) DC

6
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In this paper I concentrate on regions of one-dimensional
space and relations between them. In order to distinguish
sets of relations between one dimensional regions from rela-
tions between regions of higher dimension I use the notion
RCC8

1 rather than RCC8. Possible geometric interpretations
of their RCC8

1 relations are given in Figure 2.

yx

DC(x,y) EC(x,y) PO(x,y) TPP(x,y) NTPPi(x,y)

TPPi(x,y) NTPPi(x,y)

EQ(x,y)

Figure 2: Geometric interpretations of RCC8
1 relations be-

tween one-dimensional regions of a non-directed line.

RCC15
1 relations In order to describe boundary sensitive

relations between intervals on a directed line (RCC15
1 )5 we

define the relationship between x and y by using a triple,
where the three entries may take one of four truth values.
The scheme has the form

(x ^ y 6� ?; x ^ y � x; x ^ y � y)

where

x^y 6� ? =

8>>><
>>>:

T x ^ y 6� ? = T
ML x ^ y 6� ? = M and x� y � x� y
MR x ^ y 6� ? = M and x� y < x� y
FL x ^ y 6� ? = F and x� y � x� y
FR x ^ y 6� ? = F and x� y < x� y

and where

x^y � x =

8>>><
>>>:

T x ^ y � x = T
MR x ^ y � x = M and y � x � y � x
ML x ^ y � x = M and y � x < y � x
FR x ^ y � x = F and y � x � y � x
FL x ^ y � x = F and y � x < y � x

and similarly for x ^ y � y.
The correspondence between such triples, boundary sen-

sitive topological relations between intervals on a directed
line, and the 13 relations defined by (Allen 1983) is given in
the table below.

x ^ y 6� ? x ^ y � x x ^ y � y RCC15
1 Allen

FL FL FL DCL before
FR FR FR DCR after
ML FL FL ECL meets
MR FR FR ECR meetsi
T FL FL POL overlaps
T FR FR POR overlapsi
T ML FL TPPL starts
T MR FR TPPR finishes
T T FL NTPPL during
T T FR NTPPR during
T FL ML TPPiL startsi
T FR MR TPPiR finishesi
T FL T NTPPiL duringi
T FR T NTPPiR duringi
T T T EQ equal

5To be distinguished from RCC15 relations (Cohn et al. 1997)
between concave regions of higher dimension.

We define FL < ML < T < MR < FR and call the
corresponding Hasse diagram (the diagram below shows the
lower part) RCC15

1 lattice to distinguish it from the concep-
tual neighborhood graph (Freksa 1992). Possible geometric
interpretations of the lower RCC15

1 relations are given in
Figure 3.

(T; T; T) EQ

��
�� I@@@

(T; T; ML) NTPPL (T; ML; T) NTPPiL

(T; T; FL) TPPL

6

(T; FL; T) TPPiL

6

I@@@ ��
��

(T; FL; FL) POL

(F; ML; FL) ECL

6

(FL; FL; FL) DCL

6

x y

EQ(x,y)DCL(x,y) ECL(x,y) POL(x,y) NTPPiL(x,y)TPPL(x,y)

TPPiL(x,y) NTPPiL(x,y)

Figure 3: Geometric interpretations of the lower
RCC15

1 relations between connected intervals.

Approximations
Approximating regions
Boundary insensitive approximation Consider the set of
regions, R, of a one-dimensional space. By imposing a
partition, G, on R we can approximate elements of R by
elements of 
G

3 (Bittner & Stell 1998). That is, we ap-
proximate regions in R by functions from G to the set

3 = ffo; po; nog. The function which assigns to each re-
gion r 2 R its approximation will be denoted�3 : R! 
G

3 .
The value of (�3r)g is fo if r covers all the of the cell g, it
is po if r covers some but not all of the interior of g, and it
is no if there is no overlap between r and g. (Bittner & Stell
1998) call the elements of 
G

3 the overlap & containment
sensitive approximations of regions r 2 R with respect to
the underlying regional partition G.

Boundary sensitive approximation Consider one dimen-
sional non-directed space. We can further refine the approxi-
mation of regionsR with respect to the partitionG by taking
boundary points shared by neighboring partition regions into
account. That is, we approximate regions in R by functions

48



from G�G to the set 
4 = ffo; bo; nbo; nog. The function
which assigns to each region r 2 R its boundary sensitive
approximation will be denoted �4 : R! 
G�G

4 . The value
of (�4r)(gi; gj) is fo if r covers all of the cell gi, it is bo if
r covers the boundary point, (gi; gj), shared by the cell gi
and gj and some but not all of the interior of gi, it is nbo
if r does not cover the boundary point (gi; gj) and covers
some but not all of the interior of gi, and it is no if there is
no overlap between r and gi.

The Semantic of approximate regions Each approximate
region X 2 
G

3 (X 2 
G�G
4 ) stands for a set of precise

regions, i.e., all those precise regions having the approxima-
tion X . This set which will be denoted [[X ]]3 ([[X ]]4) pro-
vides a semantic for approximate regions.

[[X ]]3 = fr 2 R j �3r = Xg; [[X ]]4 = fr 2 R j �4r = Xg

Where ever the context is clear the superscript is omitted.

Approximate operations
The domain of regions is equipped with join and meet op-
erations, _ and ^. (Bittner & Stell 1998) showed that join
meet operations on regions can be approximated by pairs of
greatest minimal and least maximal operations on approx-
imations. In this paper I discuss the operations ^ and ^
on boundary insensitive approximations and boundary sen-
sitive approximations. A detailed discussion can be found in
(Bittner & Stell 1998).

Boundary insensitive operations Firstly we define oper-
ations ^ and ^ on the set 
3 = ffo; po; nog.

^ no po fo
no no no no
po no no po
fo no po fo

^ no po fo
no no no no
po no po po
fo no po fo

These operations extend to elements of 
G
3 (i.e. the set of

functions from G to 
3) by

(X ^Y )g = (Xg)^ (Y g)

and similarly for ^ .

Boundary sensitive operations We define the operations
^ on the set 
4 = ffo; bo; nbo; nog as:

^ no nbo bo fo
no no no no no
nbo no nbo nbo nbo
bo no nbo bo bo
fo no nbo bo fo

These operations extend to elements of 
G�G
4 (i.e. the set

of functions from G � G to 
4) by (X ^Y )(gi; gj) =
(X(gi; gj))^ (Y (gi; gj)).

The definition of the operations ^ is slightly more com-
plicated. In this case we need to take the approxima-
tion values referring to both boundary points (gi; gi�1) and
(gi; gi+1) into account. Let

N(gi) = f((X (gi; gi�1)); (Y (gi; gi�1)));
((X (gi; gi+1)); (Y (gi; gi+1)))g

be the set of pairs of approximation values of X and Y with
respect to gi. We define the operation X ^Y as follows:

(X ^ Y )(gi; gi+1) = (X(gi; gi+1)) (^
N(gi)) (Y (gi; gi+1))

where (^N(gi)) is defined as

^N no nbo bo fo
no no no no no
nbo no (N) (N) nbo
bo no (N) bo bo
fo no nbo bo fo

and (N) is defined as

(N) =

�
no if (bo; bo) 62 N

nbo if (bo; bo) 2 N
:

This definition corresponds to the definitions of operations
on boundary sensitive approximations of two-dimensional
regions in the plane discussed in (Bittner & Stell 1998).

Semantic and Syntactic Generalizations of
RCC*

(Bittner & Stell 2000) showed that there are two approaches
to generalizing RCC relations between precise regions to
approximate ones: the semantic and the syntactic.

Semantic We can define the RCC relationship between
approximate regions X and Y to be the set of relation-
ships which occur between any pair of precise regions ap-
proximated by X and Y . That is, we can define

SEM(X;Y ) = fRCC(x; y) j x 2 [[X ]] and y 2 [[Y ]]g:

Syntactic We can take a formal definition of RCC in the
precise case, which uses operations on R, and generalize
this to work with approximate regions by replacing the
operations on R by analogous ones for 
G or 
G�G.

In the remainder of this section I discuss syntactic and
semantic generalizations for RCC5 , RCC8

1 , RCC9
1 , and

RCC15
1 .

Generalization of RCC5 relations
Syntactic generalization If X and Y are approximate re-
gions (i.e. functions from G to 
3) we can consider the two
triples of Boolean values (Bittner & Stell 2000):

(X ^ Y 6= ?; X ^Y = X; X ^Y = Y );
(X ^ Y 6= ?; X ^Y = X; X ^Y = Y ):

In the context of approximate regions, the bottom element,
?, is the function from G to 
3 which takes the value no
for every element of G. Each of the above triples defines
an RCC5 relation, so the relation between X and Y can be
measured by a pair of RCC5 relations. These relations will
be denoted by R(X;Y ) and R(X;Y ).

Theorem 1 ((Bittner & Stell 2000)) The pairs
(R(X;Y ); R(X;Y )) which can occur are all pairs
(a; b) where a � b with the exception of (PP;EQ) and
(PPi;EQ).
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Correspondence of semantic and syntactic generaliza-
tion Let the syntactic generalization of RCC5 be defined
by

SYN(X;Y ) = (R(X;Y ); R(X;Y ));

where R and R are as defined above.

Theorem 2 ((Bittner & Stell 2000)) For any approximate
regions X and Y syntactic and semantic generalization of
RCC5 are equivalent in the sense that

SEM(X;Y ) = f� 2 RCC5 j R(X;Y ) � � � R(X;Y )g;

where RCC5 is the set fEQ;PP;PPi;PO;DRg, and � is
the ordering in the RCC5 lattice.

Generalization of RCC8

1
relations

Syntactic generalization Let X and Y be boundary sen-
sitive approximations of regions x and y. The generalized
scheme has the form

((X ^Y 6� ?; X ^Y � X;X ^Y � Y );
(X ^ Y 6� ?; X ^Y � X;X ^Y � Y ))

where

X ^Y 6� ? =

(
T X ^Y 6= ?
M X ^Y = ? and Æ(X) ^ Æ(Y ) 6= ?
F X ^Y = ? and Æ(X) ^ Æ(Y ) = ?

and where

X ^Y � X =

(
T X ^ Y = X and Æ(X) ^ Æ(Y ) = ?
M X ^ Y = X and Æ(X) ^ Æ(Y ) 6= ?
F X ^ Y 6= X

and similarly for X ^Y � Y , X ^Y 6� ?, X ^Y �
X ,and X ^Y � Y . In this context the bottom element,
?, is either the value no or the function from G � G to 
4

which takes the value no for every element of G�G.
Assume the partial order of the RCC8

1 -lattice.
Æ(X)^ Æ(Y ) 6= ? is true if and only if the least rela-
tion RCC8

1 -relation that can hold between x 2 [[X ]] and
y 2 [[Y ]] involves boundary intersection of Æ(x) and Æ(y)
at a boundary point, (gi; gj), of the underlying partition G.
Æ(X)^ Æ(Y ) 6= ? is true if and only if the greatest RCC8

1 -
relation that can hold between x 2 [[X ]] and y 2 [[Y ]] in-
volves boundary intersection at a boundary point in G. For a
detailed discussion of the 2D case see (Bittner & Stell 2000).

Each of the above triples defines a RCC8
1 relation, so

the relation between X and Y can be measured by a pair
of RCC8

1 relations. These relations will be denoted by
R8(X;Y ) and R8(X;Y ). Let X and Y be approximations
of one dimensional regions in one dimensional space. Then
the following holds:

Theorem 3 The pairs (R8(X;Y ); R8(X;Y )) which
can occur are all pairs (a; b) where a � b with the
exception of (TPP;EQ), (TPPi;EQ),(NTPP;EQ),
(NTPPi;EQ), (EC;TPP), (EC;TPPi), (EC;EQ),
(DC;EC), (DC;TPP), (DC;TPPi), EC;NTPP),
(EC;NTPPi), (TPP;NTPP), (TPP;NTPPi)6.

6This is an application of theorem 5 in (Bittner & Stell 2000) to
the one-dimensional case.

Correspondence of syntactic and semantic generaliza-
tion Let SEM(X;Y ) be a set of RCC8

1 relations defined
as SEM(X;Y ) = f� 2 RCC8

1 j �(x; y); x 2 [[X ]]; y 2
[[Y ]]g.

Theorem 4 If there are gi; gj 2 G such that (X(gi; gj)) =
(Y (gi; gj)) = bo then min(SEM(X;Y )) = PO7.

Assume (X(gi; gj)) = bo and (Y (gi; gj)) = bo.
Since bo^ bo = bo we have X ^Y 6= ? and possibly
X ^Y = X , i.e., R8(X;Y ) � PO. This conflicts with
min(SEM(X;Y )) = PO. We define the semantically cor-
rected syntactic generalization of RCC8

1 as:

SYN(X;Y ) = (R8
c(X;Y ); R8(X;Y ))

where R8
c(X;Y ) = PO if there are gi; gj 2 G such

that (X(gi; gj)) = (Y (gi; gj)) = bo and R8
c(X;Y ) =

R8(X;Y ) otherwise. The semantic generalization of
RCC8

1 relations is defined as SEM(X;Y ) = f� 2 RCC8
1 j

R8
c(X;Y ) � � � R8(X;Y )g.

Theorem 5 For any boundary sensitive approximations X
and Y of regular one dimensional regions, the syntactic and
semantic generalization of RCC8

1 are equivalent in the sense
that SYN(X;Y ) = SEM(X;Y )8.

Generalization of RCC9

1
relations

Syntactic generalization If X and Y are approximate re-
gions then we can consider the two triples of Boolean values:

(X ^ Y 6� ?; X ^Y � X; X ^Y � Y );
(X ^ Y 6� ?; X ^Y � X; X ^Y � Y ):

where

X ^Y 6� ? =

8>>><
>>>:

FL ifX ^Y 6= ? and
(X � Y ) � (X � Y )

FR ifX ^Y 6= ? and
(X � Y ) < (X � Y )

T ifX ^Y = ?

and where

X ^Y 6� ? =

8>>><
>>>:

FL ifX ^Y 6= ? and
(X � Y ) � (X � Y )

FR ifX ^Y 6= ? and
(X � Y ) < (X � Y )

T ifX ^Y = ?

and similarly for X ^Y � X , X ^Y � X , X ^Y � Y ,
and X ^Y � Y . We define X � Y as

X � Y =

8><
>:

T if L(X)^L(Y ) = L(X)
M if L(X)^L(Y ) 6= L(X) and

L(X)^L(Y ) = L(X)
F if L(X)^L(Y ) 6= L(X)

and similarly X � Y using R(X) and R(Y ), where L and
R are defined as follows.

7This is an application of theorem 6 in (Bittner & Stell 2000) to
the one-dimensional case.

8This is an application of theorem 7 in (Bittner & Stell 2000) to
the one-dimensional case.
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Firstly, we define the complement operation X 0 gi =
(X gi)

0 with no0 = fo, po0 = po, and fo0 = no. Assum-
ing that partition cells gi are numbered in increasing order in
direction of the underlying space, we secondly define L(Y )
and R(Y ) as

(L(Y ) gi) =

�
(Y gi)

0 if i � minfk j (Y gk) 6= nog
no otherwise

and

(R(Y ) gi) =

�
(Y gi)

0 if i � maxfk j (Y gk) 6= nog
no otherwise

:

Each of the above triples defines an RCC9
1 relation, so

the relation between X and Y can be measured by a pair
of RCC9

1 relations. These relations will be denoted by
R9(X;Y ) and R9(X;Y ).

Theorem 6 The pairs

(minfR9(X;Y ); R9(X;Y )g;maxfR9(X;Y ); R9(X;Y )g)

that can occur are all pairs (a; b) where a � b � EQ and
EQ � a � b with the exception of (PPL;EQ), (PPR;EQ),
(PPiL;EQ), (PPiR;EQ), and (EQ;DRR).

The pairs (PPL;EQ), (PPR;EQ), (PPiL;EQ),
(PPiR;EQ) cannot occur, since they are refinements of the
relations (PP;EQ), (PPi;EQ), which cannot occur in the
undirected case. The pair (EQ;DRR) cannot occur due to
the non-symmetric definition of FL and FR.

The pair (DRL;EQ) represents the most indeterminate
case. Since (DRL;EQ) is consistent with (EQ;DRR) and
(DRL;EQ) was chosen arbitrarily, (DRL;EQ) is corrected
syntactically to (DRL;DRR). The corrected relation will be
denoted by R9

c(X;Y ).

Correspondence of semantic and syntactic generaliza-
tion Let the syntactic generalization of RCC9

1 be defined
by

SYN(X;Y ) = (minfR9(X;Y ); R9
c(X;Y )g;

maxfR9(X;Y ); R9
c(X;Y )g);

where R9 and R9
c are defined as discussed above.

Proposition 1 For approximations X and Y syntactic and
semantic generalization of RCC9

1 relations are equivalent
in the sense that

SEM(X;Y ) = f� 2 RCC9
1 j minfR9(X;Y ); R9

c(X;Y )g �

� � maxfR9(X;Y ); R9
c(X;Y )gg;

where RCC9
1 is the set RCC9

1 relations and � is the order-
ing in the RCC9

1 lattice.

Generalization of RCC15

1
relations

Syntactic generalization If X and Y are boundary sensi-
tive approximations of intervals x and y in a directed one-
dimensional space then we can consider the two triples of
Boolean values:

(X ^Y 6� ?; X ^Y � X; X ^ Y � Y );
(X ^Y 6� ?; X ^Y � X; X ^ Y � Y ):

where

X ^ Y 6� ? =

8>>>>>>>>>><
>>>>>>>>>>:

T X ^Y 6� ? = T
ML X ^Y 6� ? = M and

(X � Y ) � (X � Y )
MR X ^Y 6� ? = M and

(X � Y ) < (X � Y )
FL X ^Y 6� ? = F and

(X � Y ) � (X � Y )
FR X ^Y 6� ? = F and

(X � Y ) < (X � Y )

and similarly for X ^ Y 6� ?; X ^ Y � X , X ^Y � X ,
X ^Y � Y , and X ^ Y � Y . In order to define L
and R, we define the complement operation X 0 (gi; gj) =
(X (gi; gj))

0 with

! no nbo bo fo
!0 fo bo nbo no

Assuming that partition cells gi are numbered in increasing
order in direction of the underlying space, L(Y ) is defined
as

(L(Y ) (gi; gj)) =

(
(Y (gi; gj))

0 if i � minfk j
(Y (gk; gl)) 6= nog

no otherwise
;

and R(Y ) is defined as

(R(Y ) (gi; gj)) =

(
(Y (gi; gj))

0 if i � maxfk j
(Y (gk; gl)) 6= nog

no otherwise
:

Each of the above triples provides a RCC15
1 relation,

so the relation between X and Y can be mea-
sured by a pair of RCC15

1 relations. These rela-
tions will be denoted by R15 and R15(X;Y ). The
pairs of relations (minfR15(X;Y ); R15(X;Y )g,
maxfR15(X;Y ); R15(X;Y )g) that can occur are all
pairs (a; b) where a � b � EQ and EQ � a � b with
the exception of pairs of relations that are refinements of
pairs of relations that cannot occur in the undirected case
(RCC9

1 theorem 6) or that cannot occur in the boundary
insensitive case (RCC8

1 theorem 3).

Correspondence of semantic and syntactic generaliza-
tion Corresponding to the generalization of the RCC8

1 and
the RCC9

1 relations syntactic corrections are needed in or-
der to generalize RCC15

1 relations between intervals, x and
y, to pairs of RCC15

1 relations between approximations X
and Y :

Firstly. Corresponding to the RCC8
1 case we de-

fine R15
c (X;Y ) = PO(L=R)9 if there are gi; gj 2

G such that (X(gi; gj)) = (Y (gi; gj)) = bo and
R15
c (X;Y ) = R15(X;Y ) otherwise. Secondly. Corre-

sponding to the RCC9
1 case the pair (DCL;EQ) represents

the most indeterminate case. Since (DCL;EQ) is consis-
tent with (EQ;DCR) and (DCL;EQ) was chosen arbitrar-
ily, (DCL;EQ) is corrected syntactically to (DCL;DCR).
The corrected relation will be denoted by R15

c (X;Y ).
9POL if R15(X;Y ) < EQ and POR otherwise.
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Let the syntactic generalization of RCC15
1 be defined by

SYN(X;Y ) = (minfR15
c (X;Y ); R15

c (X;Y )g;

maxfR15
c (X;Y ); R15

c (X;Y )g);

where R15
c and R15

c are defined as discussed above.

Proposition 2 For approximations X and Y syntactic and
semantic generalization of RCC15

1 relations are equivalent
in the sense that

SEM(X;Y ) = f� 2 RCC15
1 j minfR15

c (X;Y ); R15
c (X;Y )g

� � � maxfR15
c (X;Y ); R15

c (X;Y )gg;

where RCC15
1 is the set RCC15

1 relations and � is the or-
dering in the RCC15

1 lattice.

Conclusions
In this paper I defined methods of approximate qualitative
temporal reasoning. Approximate qualitative temporal rea-
soning is based on:

1. Jointly exhaustive and pair-wise disjoint sets of qualita-
tive relations between exact regions, which are defined in
terms of the meet operation of the underlying Boolean al-
gebra structure of the domain of regions. As a set these
relations must form a lattice with bottom and top element.

2. Approximations of regions with respect to a regional par-
tition of the underlying space. Semantically, an approxi-
mation corresponds to the set of regions it approximates.

3. Pairs of meet operations on those approximations, which
approximate the meet operation on exact regions.

Based on those ‘ingredients’ syntactic and semantic gener-
alizations of jointly exhaustive and pair-wise disjoint rela-
tions between exact one-dimensional regions were defined.
Generalized relations hold between approximations of re-
gions rather than between (exact) regions themselves. Syn-
tactic generalization is based on replacing the meet oper-
ation defining relations between exact regions by its min-
imal and maximal counterparts on approximations. Se-
mantically, syntactic generalizations yield upper and lower
bounds (within the underlying lattice structure) on relations
that can hold between the corresponding approximated exact
regions.

In the temporal domain I defined four sets of topological
relations between one dimensional regions:

RCC5 Boundary insensitive binary topological relations
between regions in a non-directed one-dimensional space.

RCC9
1 Boundary insensitive binary topological relations

between maximally connected regions (intervals) in a di-
rected one-dimensional space.

RCC8
1 Boundary sensitive binary topological relations be-

tween regions in a non-directed one-dimensional space.

RCC15
1 Boundary sensitive binary topological relations be-

tween maximally connected regions (intervals) in a di-
rected one-dimensional space.

For each of these sets of relations between exact regions I
discussed the syntactic and semantic generalization for the
corresponding approximations and showed the equivalence
of syntactic and semantic generalization. This provides the
formal basis for qualitative temporal reasoning about ap-
proximate location in time.
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