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Abstract

Spatio-temporal data sets arise when time-varying physical
fields are discretized for simulation or analysis. The study
of these data sets is essential for generating qualitative in-
terpretations for human understanding. This paper presents
Spatio-Temporal Aggregation (STA), a system for recogniz-
ing and tracking qualitative structures in spatio-temporal data
sets. STA algorithms record and maintain temporal events
and compile event sequences into concise history descrip-
tions. This is carried out at several levels of description,
from the bottom up, until a high level description of the sys-
tem’s temporal evolution is obtained. STA has been demon-
strated on a class of diffusion-reaction systems in two dimen-
sions and has successfully generated high-level symbolic de-
scriptions of systems similar to those produced by scientists
through carefully hand-tuned computational experiments.

Introduction
Spatio-temporal data sets arise when time-varying physical
fields are discretized for the purpose of simulation or anal-
ysis. The study of these data sets is essential in scientific
visualization, or generating qualitative interpretations.

A qualitative description of a physical field recognizes
several events: the existence of coherent objects, their per-
sistence through time, and their abrupt change. The classi-
fication of qualitative events based on topological and geo-
metric characteristics of the involved objects and the nature
of the transformations they undergo yields insight into the
aggregated behavior of the system.

This paper describes Spatio-Temporal Aggregation, or
STA, a temporal extension to Spatial Aggregation. This ex-
tension addresses systems that vary over time by recognizing
and tracking structures in spatio-temporal data sets. STA is
applied to a class of diffusion-reaction systems in two di-
mensions and it successfully generates high-level symbolic
descriptions about the systems. In addition, by comparing
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Figure 1: STA catalogs qualitatively distinct behavioral
classes, represented as spatio-temporal patterns, for a
diffusion-reaction system. The simulator generates multi-
ple system evolutions, each corresponding to a different set
of system parameter values and initial condition. Each evo-
lution is compiled into an event history. The classifier iden-
tifies behavioral classes from the set of event histories.

multiple system histories, STA classifies systems with dif-
ferent parameterizations into equivalence classes, each of
which contains members that exhibit qualitatively similar
behaviors. This method is applied to the Gray-Scott (GS)
model of glycolysis. It carries out an automated series of ob-
servations of temporal evolutions of this model, extracting a
set of behavior-based classes of temporal evolutions. The
approach has proved useful in that the classification scheme
it generates is similar to one previously obtained by a sci-
entist through carefully hand-tuned computational experi-
ments and qualitative assessment by human observers (Pear-
son 1993). The operation of this application is sketched in
Figure 1.

Other researchers have addressed the problem of gener-
ating high-level descriptions of physical systems. For in-
stance, Williams and Millar (1996) develop a method for
large-scale modeling and apply it to the thermal modeling of
a smart building. STA is similar to their work in that it mod-
els complex systems through decomposition, but differs in
that STA models more complex spatio-temporal dynamics,
and produces symbolic descriptions. Crawford, Farquhar
and Kuipers (1990) automatically generate qualitative differ-
ential equations from physical models. Their work consid-
ers temporal change, but not spatially distributed systems.
Hornsby and Egenhofer (1997) study qualitative represen-
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tations of change, such as an object’s continuation, sepa-
ration and fusion, and construct hierarchies of change, but
they do not attempt to apply these objects to continuous
fields. Forbus, Nielsen and Faltings (1991) developed the
CLOCK project, which uses qualitative spatial reasoning to
automatically analyze and qualitatively predict the behavior
of fixed-axis mechanisms, such as mechanical clocks. Their
approach is suitable for mechanical systems of rigid parts,
while ours is best suited for continuous fields that exhibit
high-level properties such as quasi-uniform regions.

The main contribution of this paper is a computational
system that analyzes very large sets of unstructured data to
produce descriptions of qualitatively distinct aggregate ob-
jects and events.

Spatio-Temporal Aggregation
STA significantly extends the functionality of Spatial Aggre-
gation (SA) in the temporal dimension. SA provides a uni-
form vocabulary and mechanism for representing and rea-
soning about spatial fields. For a full description of the SA
field ontology and operators see Yip and Zhao (1996) and
Bailey-Kellogg (1999).

Existing applications of SA abstract over domains such as
phase spaces and configuration spaces, in which time is only
implicitly represented. Others deal with physical spaces in
a fixed, steady state. In all these cases the field, as an ontol-
ogy, and all the conceptual layers built on top of it, are static.
Problems that use time are not necessarily outside the do-
main of Spatial Aggregation. For example, KAM (Yip 1989)
is used to study Hamiltonian systems, which describe fric-
tionless motion. These systems are studied in phase space,
where temporal variation is implicitly represented. More in
general, SA could be used to study time-varying systems as
simple static systems where time has been represented as
an extra spatial dimension. On the other hand, STA offers,
beyond such approaches, the ability to reason about time-
varying systems without having to compute and store the
entire space-time volume beforehand.

Sophisticated techniques have been developed to address
the problem of temporal tracking in fields (Silver and Wang
1997). It seems natural to find whether there is a general-
ization of these tracking approaches, which would let them
deal with not just one, but multiple abstraction layers.

The main addition made to the SA standard vocabulary by
STA is the update operator, which takes a field or an object
space and applies a set of transformations corresponding to
the passage of a time interval.

� Updates on Neighborhood Graphs: For a set of objects S,
a neighborhood graph is a relation R 2 S � S. When ob-
jects in space come into existence, cease to exist or change
positions, their adjacencies may be modified.

� Updates on Object Classes: Changes in adjacencies may
cause objects to cease to belong to a certain class or to
start belonging to a new class. Classes are connected sets
of objects; therefore, changes in R may affect classes.
Also, changes in the intrinsic properties of the objects
may also affect the way they are classified.
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Figure 2: STA application to the analysis of diffusion-
reaction systems. A field simulator generates system evo-
lutions, which are tracked by the particle system. A chain of
aggregation, classification and re-description is maintained
to track high-level objects. Qualitative changes are regis-
tered into event histories. The history aggregator and classi-
fier take multiple histories and identify behavioral classes.

� Updates on Re-described Objects: Changes in classes of
objects may affect the way higher-level objects are re-
described, depending on what features are kept in the re-
description process and which are abstracted away.

Kinetic Data Structures: Reasoning about
Change Detection

STA employs ideas from Kinetic Data Structures (KDS)
to maintain the consistency of neighborhood graphs, object
classes and re-described objects. KDS have been developed
in robotics to maintain a set of geometric relations among
distributed data (Basch, Guibas and Hershberg 1997). The
problem KDS address consists of determining under which
conditions the structure of certain geometric constructs is al-
tered given that the elements are subject to particular motion
laws.

Update Mechanisms
We enhance the static SA to include certificate-violation
based update mechanisms adapted from KDS. This is done
first at the neighborhood graph level, by associating the
graph (namely, its vertices and its adjacencies) with a set of
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certificates that establish how much deformation the graph
can take without undergoing a structural change. The clas-
sifier operator now does not only map objects to classes via
the neighborhood graph, but it also maps graph changes due
to certificate violations to class changes.

Application to Diffusion-Reaction Systems
We present a structure-identification algorithm for describ-
ing and classifying instances of diffusion-reaction systems
that exhibit highly organized spatio-temporal structure. Fig-
ure 2 illustrates the operation of the algorithm.

Tracking High-Level Structures
The existence of coherent structures in a field implies that
there are regions of approximately uniform characteristics.
Once those regions are identified, characteristics such as
topology and temporal behavior can be studied. The Field
Simulation module (see Figure 2) generates the field and its
changes, but is unaware of the existence of high-level struc-
tures.

Diffusion-reaction fields are sampled by the STA algo-
rithm using particle systems (see corresponding block in
Figure 2). Particles have the advantage of being persistent:
they have discrete identities and hence whatever happens to
them can be tracked in time with ease.

We use a simple algorithm that allows the particle system
to adapt itself to changes in the field, always maintaining
an adequate sampling. The algorithm is a modification of
a method introduced by Witkin and Heckbert (1994). It al-
lows particles to move across the field, repelling each other,
thereby occupying space uniformly. Moreover, they mod-
ify their distribution and density to compensate for under or
over-sampling.

The sampling particles are used to construct a spatial sub-
division. The subdivision is computed by dividing the space
into simplices whose vertices are the particles, and whose
edges constitute a neighborhood relation for the particles.
The simplices need to be small and non-sharp, so a Delau-
nay triangulation is used.

As the field varies in time, so does the position of the par-
ticles. This, in turn, causes the spatial subdivision to change:
some edges cease to exist and some new ones arise at every
time step. However, given the assumption that the under-
lying field changes slowly, the vast majority of edges and
triangles are preserved through successive time steps, even
though their shape is slightly changed.

The static construction of a neighborhood graph consti-
tutes the aggregation operator in SA. The corresponding
block in Figure 2 represents the enhanced STA aggregate
operation, which maintains the neighborhood graph as the
particle system changes.

Cluster boundaries are associated with field regions of
high gradient. Those regions are identified using iso-lines,
continuous zones of uniform or near-uniform field value.
The particle placement algorithm previously described is
used to approximate iso-line contours of uniform regions.
This algorithm requires the ability to determine class equiva-
lence between particles (the classification block in Figure 2).

Figure 3: Subdivision generated from a particle system that
samples a diffusion-reaction system

Figure 4: Successive snapshots of the evolution of a Gray-
Scott diffusion-reaction system

The extraction of structures from the spatial subdivision is
analogous to a pixel-based region growing algorithm, with
the difference that the element of aggregation is not the
pixel, but the sampling particle. The block that does this
is labeled redescription. In Figure 3 the result of carrying
out this process is exemplified.

STA records not only catastrophic events (such as object
collisions), but also events that involve a single object mod-
ifying its shape. We use a shape-recognition and classifi-
cation method called the Multiple Curvature Segmentation
Algorithm, introduced by Dudek and Tsotsos (1997). Ob-
jects are placed in a shape space, and they are clustered by
similarity. See the Shape Space Aggregation block in Fig-
ure 2.

Extracting Behavioral Descriptions
The STA algorithmic components we have described so far
take as input a time-evolving diffusion-reaction system and
produce the following descriptions:

� A detailed history of qualitatively significant events, in-
cluding births, deaths, collisions and fusions of objects,
and their changes in shape, and

� A summary of significant events that have taken place in
the history.

The last two blocks of Figure 2 indicate the final summa-
rization process of the STA application: multiple histories as

At step 88 body 3 was born

At step 88 body 2 was born

At step 88 body 1 was born

At step 88 body 0 was born

At step 229 bodies 0 (born 88), 3 (born 88) fused into body 1

At step 237 body 2 (born 88) fused into body 1

Table 1: A segment of a history: each entry is a time-
stamped event. Notice that two fusion events are recorded.
In them, the larger object preserves its identity, and the
smaller ones are said to have fused to it.
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Figure 5: Snapshots for DR system evolutions

Cluster 1: History (h)

Cluster 2: Histories (e) and (g)

Cluster 3: History (b)

Cluster 4: Histories (c), (d) and (f)

Cluster 5: History (a)

Table 2: Behavioral classes discovered by STA

generated above are compared, and then classified according
to behavioral similarity.

A Sample Session
We now present a short run of the history-generation part
of the program. It records the events that take place in an
evolving diffusion-reaction field. For instance, when a sys-
tem such as that shown in Figure 4 evolves, the program can
generate a history file such as that of Table 1.

The program can also compare several histories and group
them into classes of similar behavior. For the systems on
Figure 5, the groups in Table 2 were discovered. Compare
these with the classes discovered by Pearson (1993), shown
in Figure 6: cluster 4 corresponds to pattern (b); cluster 2 to
(c) and cluster (5) to (a).

Conclusions
This paper has described a novel computational system,
STA, for reasoning about time-varying fields such as
diffusion-reaction systems. STA extends Spatial Aggrega-
tion to make explicit the representation of time and temporal
change.

STA has been demonstrated on a complex dynamical sys-
tem that exhibits multiple, qualitatively different behaviors.
This demonstration accounts for approximately 83% of the
observations meticulously carried out by Pearson as docu-
mented in his 1993 paper. What this research contributes
that had not been done before is the automatic differentia-
tion of pattern classes by behavior.

STA makes use of various techniques, namely, operations
of abstraction of change, kinetic data structures and geomet-
ric shape classification. How well would these techniques

Figure 6: Patterns discovered by Pearson (1993) on the
Gray-Scott system

do if applied outside of this domain? We expect that a
straightforward application of STA to problems that require
extensive contextual and non-geometric knowledge would
not work as well. For example, tracking objects for com-
puter vision requires solving problems such as that of ob-
ject occlusion and representation from incomplete informa-
tion, not to mention the existence of multiple perspectives,
different levels of illumination and reflectance, etc. In or-
der to address those problems, STA needs to integrate ad-
ditional domain specific techniques from computer vision.
Similarly, the problem of examining weather patterns also
requires extensive domain knowledge. While this problem
seems more amenable to treatment from a STA perspective,
it would still require integrating specific techniques such as
those developed by Huang and Zhao (2000) with the STA
tracking mechanism.
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