
Spatial Representation and Reasoning using the N-Dimensional Projective
Approach

Jorge Pais and Carlos Pinto-Ferreira
Instituto Superior de Engenharia de Lisboa

Instituto de Sistemas e Robótica, Instituto Superior Técnico
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

jpais@isel.pt, cpf@isr.ist.utl.pt

Abstract

In this paper, we introduce a novel pictorial approach
for solving problems in n-dimensional Euclidean spaces
called the n-dimensional projective approach. The pro-
jective approach is based on a hierarchical and modu-
lar architecture, where its ground module is rooted on
geometrical concepts. The result is an effective and
consistent spatial approach able to solve problems in n-
dimensional spaces with a quadratic computational cost
in order to the number of domain entities and a linear
cost in order to the space dimensionality. The projec-
tive approach has been used in simulation of physical
real-world problems, where physical properties of enti-
ties exercise influence on results.

Introduction
The area of spatial reasoning is fruitful on research work
concerning one (Detcher et al. 1991) and two dimensional
spaces (Retz-Schmidt 1988). However, in what respects to
higher dimensional spaces (Coenen et al. 1988) few re-
search work has been developed. In fact, severe computa-
tional problems emerge when one or two-dimensional ap-
proaches are scaled up to higher dimensional spaces because
computation time and resources grow exponentially with the
number of topological relations needed to representing a do-
main. In qualitative spatial reasoning area some interesting
research work has been developed (Cui et al. 1992) (Gots
1996), but the effectiveness of this approach decreases ex-
ponentially in order to the number of domain entities (Nebel
1995). The authors had developed reasoning techniques to
improve the effectiveness of the qualitative spatial reason-
ing process (Pais and Pinto-Ferreira 1998). The usual ap-
proach to reasoning about space starts to define a symbolic
language L (Cui et al. 1992) that includes spatial relations
between pairs of domain entities based on connect relation-
ship (Clarke 1981). Based on these symbolic concepts, a
spatial reasoning process should be developed, which must
respect fundamental spatial properties like continuity within
a predefined granularity. The projective approach is a hier-
archical and modular architecture, where its projective rep-
resentation is defined in low levels and the reasoning process

Copyright c 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is implemented by higher levels of the projective architec-
ture(see Figure 1).

The remaining of this paper is structured as follows. In
section 2, we make a complete level description. Section 3
provides examples about a puzzle domain. Finally, section 4
describes conclusions and future work.

The N-Dimensional Projective Architecture

Figure 1: The projective architecture.

Geometrical Concepts –Ground Projective Level
The ground level defines the projective representation foun-
dations that are based on both kinds of concepts the topo-
logical like region and the geometrical like projective axis,
projective region vertex and projective axis vertex (Pais and
Pinto-Ferreira 2000). A region results from a topological
transformation of the original shape of a body into a bound-
ing box with edges parallel of all projective axis. Each
domain or world representation includes as many regions
as spatial entities exist in real-world R = fr1; r2; :::; rkg.
A n-dimensional space Sn is defined by an ordered set
of n projective axis Sn = fA1; A2; :::; Ang. Each pro-
jective axis is an ordered set of projective axis vertices
Ai = f#i

1
; #i

2
; : : : ; #img. Given each projective axis must

be a non-empty set of projective region vertices #id =
fV i

s;1; V
i
e;2; : : :g. A region is identified in each projective

axis by a line segment delimited by a start vertex (e.g. the
start vertex V i

s;1 of r1 upon the projective axis Ai) and an
end vertex (e.g. the end vertex V i

e;2 of r2 on Ai).

79

From: AAAI Technical Report WS-00-08. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



Primitive Positional Operators –Second Projective
Level
The primitive positional operators f�;�g define a minimal
model of the world upon a projective axis Ai and they have
the following meaning:

V i
s;1 � V i

s;2 iff V i
s;1 is closer than V i

s;2 from the projective
axis origin.

V i
e;1 � V i

e;2 iff both end vertices of regions r1 and r2 are
equidistant from the projective axis origin.

Derivable Positional Operators –First Symbolic
Level
The derivable positional operators define the first symbolic
level of the presented architecture. These operators must be
responsible to introduce spatial semantics to the projective
representation and they are asserted using the primitive po-
sitional operators, as follows:

left(V i
s;r) = 'is;r ) 8V i

x;m 2 'is;r : V i
x;m � V i

s;r

right(V i
s;r) = Æis;r ) 8V i

x;m 2 Æis;r : V i
s;r � V i

x;m

coincident(V i
s;r) = is;r ) 8V i

x;m 2 is;r : V i
x;m � V i

s;r

Spatial Relations –Second Symbolic Level
This level includes the spatial relations set fOutsideLeft,
OutsideRight, OutsideLeftCoincident, OutsideRightCoinci-
dent, CompletelyCoincident, CompletelyInside, InsideLeft-
Coincident, InsideRightCoincident, OverlappedLeft, Over-
lappedRightg applied to a region. These spatial relations are
presented formally in (Pais and Pinto-Ferreira 2000), which
are an extension set of the relations presented in (Clarke
1981) about the calculus of individuals. One important pur-
pose of this level is to provide a decoding system from verbal
knowledge (symbolic definitions) into projective geometri-
cal concepts and vice-versa.

Sub-Goal Generation –Third Symbolic Level
This level is responsible for the sub-goal generation (possi-
ble future views) reachable from the current state (present
view world) respecting spatial constraints. When we talk
about spatial constraints we understand them as physical
properties of obstacles or entities in system environment.
For example, an embodied system either could acquire (e.g.
high reflections on signal sonar could signify an impenetra-
ble entity, high red detection could imply untouchable enti-
ties) or could integrate (e.g. white colour could mean an im-
penetrable wall, red could be an untouchable fire) this sort
of knowledge. This level provides a real-time generation
of consistent sub-goals based on a method named projective
sub-goal generation (PSG). The PSG method classifies each
projective axis using three parameters, current state, transi-
tion from current state to goal state and goal state. Each one
of these parameters could take two different values for each
physical property, violation(V) or non-violation(N).

The evaluation result for each projective axis determines
the set of sub-goals reachable from the current state respect-
ing spatial constraints as is shown in Table 1. Conditions

Current Current Goal Sub-goal State

State ! Goal State for each Ai

N N N Goal State

N N V Impossible

N V N Goal or Current

N V V Goal or Current

V N N Goal State

V N V Permutations of Current

V V N Goal State

V V V Permutations of Current

Table 1: The projective sub-goal generation(PSG) method.

(N, N, N), (V, N, N) and (V, V, N) describe topological con-
figurations where the goal state is the next sub-goal. The
condition (N, N, V) is an inconsistent condition that never
happens in a consistent domain. With respect to (N, V, N)
and (N, V, V) the method provides an evaluation of the topo-
logical configuration over all other projective axis. If there
exists at least one projective axis that does not ocurr a prop-
erty violation then the next sub-goal can be defined as the
goal state; otherwise, it is the current state. With regards
to the critical conditions (V, N, V) and (V, V, V), both con-
ditions do not provide any clue to solve the property viola-
tion. However, this problem can be solved using a complete
sub-goal generation that is based on both steps, the gener-
ation of all permutations among regions responsible for the
property violation and the combination between each one
of these permutations and the non-violating regions. These
permutations might be interpreted as a breadth step into the
reasoning process that essentially should be based on depth
steps to find out solution paths with effectiveness. However,
breadth steps can be transformed in depth steps if the system
generates one permutation at a time and memorizes these
points on the reasoning process as backtracking points. Two
spatial properties of entities will be considered, untouchable
and impenetrable. These two properties create spatial con-
straints on the movement of spatial entities and consequently
a proposed problem has different solutions to respect the
spatial constraint satisfaction.

UntouchViolationToState(Ai , LR)
f FOR each one rx of LR DO
f IF (CompletelyInside(Ai; rx)

S

CompletelyCoincident(Ai; rx) 6= �) return V;
IF (OutsideRight(Ai; rx)) return V;
IF (OutsideLeft(Ai; rx)) return V;
IF (OutsideRightCoincident(Ai; rx)) return V;
IF (OutsideLeftCoincident(Ai; rx)) return V;
g return N; g

Figure 2: The untouch property violation within a state.

The untouchable property violation algorithm applied to a
projective axis Ai under a domain with a list of untouchable
regions LR, is shown in Figure 2. Algorithm presented in
Figure 2 handles both states current and goal addressed in
PSG method.

The algorithm shown in Figure 3 detects the untouchable
property violation on a transition between two states. Note
that in Figure 3, CAi and FAi represent the same projective
axis Ai on current and goal times.

Another physical characteristic addressed here is the im-
penetrable property, which makes a region incapable of be-

80



UntouchViolationToTransition(CAi , FAi, LR)
f FOR each one rx of LR DO
f IF (OutsideRight(CAi; rx) 6= OutsideRight(FAi; rx))

return V;
IF (OutsideLeft(CAi; rx) 6= OutsideLeft(FAi; rx))

return V;
g return N; g

Figure 3: The untouch property violation on a transition.

ImpenetrableViolationToState(Ai , LR)
f FOR each one rx of LR DO
f IF (CompletelyInside(Ai; rx) 6= �) return V;

IF (OutsideLeftCoincident(Ai; rx)\
OutsideRightCoincident(Ai; rx) 6= �) return V;

g return N; g

Figure 4: The impenetrable violation within a state.

ing pierced through another region. Assuming this defini-
tion, the algorithms shown in Figures 4 and 5 detect this
property violation in both situations, within a state and on a
transition between two states applied to the same projective
axis.

ImpenetrableViolationToTransition(CAi , FAi, LR)
f FOR each one rx of LR DO
f IF (OutsideLeftCoincident(CAi; rx) 6=

OutsideLeftCoincident(FAi; rx)) return V;
IF (OutsideRightCoincident(CAi; rx) 6=

OutsideRightCoincident(FAi; rx)) return V;
g return N; g

Figure 5: The impenetrable violation on a transition.

Note that, all algorithms are easily expanded to a n-
dimensional space for applying each one of these algorithms
repeatedly for all Ai in domain’s model.

A general topological property that should be stressed is
that, physical properties like the precedent one’s just are vi-
olated in a n-dimensional projective space when for all pro-
jective axis happen the property violation. Assuming that,
the hierarchical projective architecture behaves effectively
and consistently if the initial topological world description
guarantees a non-violation of properties.

For example, considering the two dimensional problem
illustrated in Figure 6. And also considering that none of
those regions share any physical property. Then this prob-
lem does not have spatial constraints and consequently the
higher level of our architecture could be applied without a
functional intervention of this level. It means that the final
state is the only sub-goal’s problem.

However if we introduce spatial constraints in the model,
for example considering regions r1 and r2 untouchable then
this level is able to produce all sub-goals shown in Figure
7. Each sub-goal is given to higher levels when they ask by
another sub-goal in both cases of failure or backtracking. At
the middle-left of Figure 7 we start to draw the initial state
and the evaluation result of the impenetrable property vio-
lation in order to (Current state, Transition, Goal State) for
each projective axis. This evaluation is shown closer to each
projective axis. After that, the PSG method gives as sub-
goal results all topological descriptions presented at right of
the initial state. The sequence of sub-goals that define a sub-
goal path from the initial state to the goal state are called

Figure 6: A two-dimensional puzzle problem.

Figure 7: AND-OR sub-goals.
AND sub-goals. As you can see in Figure 7, each sub-goal
path guarantees spatial constraint satisfaction. OR sub-goals
define start points to alternative sub-goal path solutions for
the reasoning process.

A careful analysis of the truth table presented in Table 1
and the results shown in Figure 7 ensures empirically that the
PSG methodology generates sub-goals with two important
characteristics, they should be as close as possible to the goal
state and the transitions among them never violate domain
properties.

Movement of Vertices –First Change Level
Just two atomic movement operators are able to generate
change over each projective region vertex along each pro-
jective axis.
MoveV ertexLeft(V i

x;r; #
i
n) moves a projective region

vertex V i
x;r from the current projective axis vertex #in to

its left projective axis vertex.

MoveV ertexRight(V i
x;r; #

i
n) changes a projective region

vertex V i
x;r from the projective axis vertex #in to the closer

projective axis vertex states on its right.
These operators are blind in order to respecting spatial con-
straints, because they are just based on pictorial levels of
knowledge(Pais and Pinto-Ferreira 2000).

Unconstrained Movement –Second Change Level
The one-dimensional unconstrained movement algorithm
takes advantage of both level functionality, the spatial re-
lations and the movement vertices defined on precedent sec-
tions.

Considering C1 and F1 as being the current and final pro-
jections over the unique projective axis A1 this algorithm is
shown in Figure 8. A problem withK regions then each pro-
jective axis includes 2�K projective region vertex. Then in
worst case, the number of steps of this algorithm that needs
to move a projective region vertex from one extreme to an-
other extreme over the projective axis are 2�K. As result,
the worst case complexity values O(2 � K � 2 � K) that
is a quadratic value in order to the number of projective re-
gion vertex. The n-dimensional algorithm NDimProjective-
Move just requires executing the one-dimensional algorithm

81



OneDimensionalSpatialMove(C1 , F1)
fWHILE (C1 6= F1)

FOR 8�1j 2 C1

FOR 8V 1

x;r 2 �1j
IF (V 1

x;r 2 F1)
fIF (Left(V 1

x;r 2 C1)) � (Left(V 1

x;r) 2 F1))
MoveV ertexRight(V 1

x;r; �
1

j );
ELSE

IF (Right(V 1

x;r 2 C1)) � (Right(V 1

x;r) 2 F1))
MoveV ertexLeft(V 1

x;r; �
1

j );
ELSE
f(x=s)? y=e: y=s;

IF (Left(V 1

y;r) 2 C1) � (Left(V 1

y;r) 2 F1))
MoveV ertexRight(V 1

x;r; �
1

j );
ELSE
IF (Right(V 1

y;r) 2 C1) � (Right(V 1

y;r) 2 F1)
MoveV ertexLeft(V 1

x;r; �
1

j ); g g g

Figure 8: The unconstrained movement algorithm.

so many times as the number of projective axis existing on
domain model. Consequently the resulting complexity of
the n-dimensional algorithm is O(N � 22 �K2). However
the complexity of this approach increases linearly with the
spatial dimension and it is quadratic in order to the number
of entities.

Constraint Spatial Movement –Third Change
Level
The action of this level is based on both functions of sub-
goal generation level and unconstrained spatial movement
level. The key idea is to give to the sub-goal generation
level a postponing pair of states to get a complete sub-goal
plan. This functionality is given by the GetPlan function
that returns either a complete sub-goal plan between two
states or an empty plan in case of failure. After that, this
level provides consecutive pairs of sub-goals to the uncon-
strained movement level, which carry out simple vertex mo-
tions, thus making the spatial planning problem easier.

ConstraintSpatialMove(InitialState, FinalState)
f Plan= GetPlan(InitialState, FinalState);

WHILE (Plan 6= Ø)
NDimSpatialMove(RemoveFirstSubGoal(Plan),

GetFirstSubGoal(Plan)); g

Figure 9: The algorithm of constraint spatial move.

The algorithm that implements this sequence of ideas and
underlies this projective level is shown in Figure 9. Note
that, RemoveFirstSubGoal function performs two actions,
at first it updates the plan performing the elimination of its
first sub-goal and at second it returns this sub-goal. But,
GetFirstSubGoal function just returns the first sub-goal of a
plan. For example, consider the upper sub-goal plan shown
in Figure 7. The complete spatial motion plan designed by

Figure 10: A plan solution for the puzzle problem.
this level is illustrated in Figure 10. This Figure demon-

strates a complete simulation solution for a practical prob-
lem with just two regions, for the sake of article length.
However, we simulate various problems with twenty or even
a hundred of regions and the system effectiveness does not
seem sensible to this increase. Thus, in practice and from
an empirical point of view we had confirmed the theoretical
complexity of the PSG method and in general the architec-
ture effectiveness.

Conclusions and Future Work
This paper provides a novel spatial approach just based on
pictorial concepts and also introduces a new view of space
granularity – the projective axis vertex. ¿From the projective
architecture emerges the potential to solve problems into a
constraint Euclidean space without a generation of inconsis-
tent topological descriptions that implies effectiveness and
computational adequacy. Examples in puzzle problems do-
main illustrate the first promising results of this approach
to solving real problems with effectiveness and continuity
on spatial change. In the future, other physical properties
should be developed and incorporated in order to reach a
more rich representation, such as, the gravity, the dimen-
sion, the shape, etc. When all of this research work will
be concluded, it could be applied in broad areas that can
go through robotics, spatial reasoning, assembly planning,
scheduling and vision.

References
Clarke, J.F.1981. A Calculus of Individuals Based on Con-
nection. Journal of Formal Logic 2, 204-218.
Detcher, R.; Meiri, I.; Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence 49, 61-95.
Retz-Schmidt, G. 1998. Various Views on Spatial Proposi-
tion. A.I. Magazine, 9(2), 95-105.
Coenen, F.; Beattie, B.; Shave, M.; Bench-Capon, T.; Diaz,
B. 1988. Spatial Reasoning Using the Quad Tesseral Rep-
resentation. Artificial Intelligence Review 12, 321-243,
Kluwer Publishers, Netherlands.
Ayres, F. 1967, Theory and Problems of Projective Geome-
try. Schaum’s outline series in Mathematics, McGraw-Hill.
Cui, Z.; Cohn, A.; Randell, D. 1992. Qualitative Simulation
Based on a Logical Formalism of Space and Time. In Pro-
ceedings of AAAI92, AAAI Press.
Gots, N.M. 1996. Topology From A Single Primitive Re-
lation: Defining Topological Properties and Relations In
Terms of Connection. Research Report Series, Report 96.23,
University of Leeds, England.
Nebel, B. 1995, ”Computational properties of qualitative
spatial reasoning: First results. In Proceedings of the 19th
German AI Conference, German.
Pais, J.; Pinto-Ferreira, C. 1998. Search Strategies for Rea-
soning about Spatial Ontologies. In Proceedings of 10th
IEEE International Conference On Tools with Artificial In-
telligence, (ICTAI98), Taiwan.
Pais, J.; Pinto-Ferreira, C. 2000. Qualitative Spatial Rea-
soning using a N-Dimensional+ Projective Representation.
In Proceedings of 15th European Meeting on Cybernetics
and Systems Research, Austria.

82


