From: AAAI Technical Report WS-00-09. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Behaviors for Non-Holonomic Box-Pushing Robots

Rosemary Emery and Tucker Balch
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
{remery, trb} @cs.cmu.edu

Abstract

We describe a behavior-based control system that enables a
non-holonomic robot to push an object from an arbitrary start-
ing position to a goal location through an obstacle field. The
approach avoids the need for maintaining an internal model
of the target and obstacles and the potentiaily high computa-
tional overhead associated with traditional path planning ap-
proaches for non-holonomic robots. The motor schema-based
control system was prototyped in simulation, then tested on
mobile robots. The approach was demonstrated in two push-
ing tasks: box pushing and ball dribbling. Using the same
generalized control system, a robot is able to successfully
push a box through a static obstacle field and dribble a ball
into a goal during RoboCup soccer matches. In both cases
the robot is able to react quickly and recover from situations
where it loses control of its target either due to its own motion
or interference with others. Quantitative experimental results
for reliability in box pushing are included.

Background and Related Work

Pushing is the basis for many useful tasks. In a construc-
tion scenario, for instance, bulldozer robots are essentially
performing a pushing task in which the target object is
soil (Singh & Cannon 1998). Pushing is also important
in other materials handling tasks such as assembly, con-
struction and cleaning. For pushing, a robot does not re-
quire lifting or gripping mechanisms and therefore is more
tolerant to load size and shape. Also, heavy, unliftable,
objects can be transported by multiple robots coordinating
their pushing efforts (Mataric, Nilsson, & Simsarian 1995;
Parker 1994).

Several of the “sub-skills” necessary for pushing are also
useful in other tasks. For example, pushing requires a robot
to align itself properly at the target with respect to a goal lo-
cation and then maintain control of that object while travel-
ling to the goal. The alignment phase of pushing can be used
to properly position a robot for picking up a target. If the
robot is non-holonomic, this alignment phase is non-trivial.

A number of researchers have investigated path and push
planning for non-holonomic robots; however, these solu-
tions tend to address static environments and they are com-
putationally more expensive than our approach (Latombe

Copyright © 2000, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

25

1991; Lynch & Mason 1996). Additionally, traditional path
planning approaches for a pushing task may require accurate
models of the environment or other global information that
is not easily available to a robot in real applications.

One alternative to path-planning is a behavior-based ap-
proach. This family of methods closely tie perception to
action which makes them appropriate for dynamic environ-
ments or environments for which no a priori world model
exists. In this work we use a motor schema-based ap-
proach which combines behavioral building blocks using
vector summation similar to potential field navigation meth-
ods (Arkin 1989; Latombe 1991).

Ours is not the first behavior-based approach to box push-
ing. Parker, and separately, Mataric, for instance, have in-
vestigated coordinated multi-robot box pushing (Mataric,
Nilsson, & Simsarian 1995; Parker 1994). However, ours
is the first to address the problem of pushing while avoid-
ing obstacles and simultaneously accounting for the non-
holonomic constraints of a tricycle-like robot.

The Problem

The Robot

The robots used in this work were constructed at the CMU
MultiRobot Lab as part of a project to build inexpensive,
autonomous robots for the study of multirobot systems op-
erating in dynamic and uncertain environments. The un-
derlying mechanical platform is a commercially available
non-holonomic robot composed of two parts: a differentially
steered motorized drive unit and a trailer. The trailer serves
as a mount for an on-board computer, image capture sys-
tem and power supply (left side of Figure 1). The drive unit
is roughly 42cmx23cm and the trailer is 43cm long and is
mounted to the center of the drive unit.

While the differentially steered drive unit can easily per-
form lateral movements by rotating, driving and then rotat-
ing back to its original heading, when paired with the trailer
the combined vehicle cannot. To avoid the robot’s field of
view becoming blocked by the trailer and to reduce impair-
ments in pushing, the robot’s low level software prevents
the drive unit from turning in place such that it is facing the
trailer (the trailer constraint). Thus, in order to achieve an ar-
bitrary heading the robot must, at some point, drive forward
with a minimum turning radius. A useful controller for this

Figure 1: Two pushing tasks. Left: The Minnow robot dribbling a soccer ball. Right: Sample box pushing task set up. The
robot (trajectory represented by black line) has lined up behind the block facing the goal and is ready to start pushing the block

to the goal location indicated by the open square.

robot must somehow account for these constraints.

The robot is fully autonomous with a Pentium MMX
processor-based single board computer that utilizes wire-
less Ethernet for communication. The robot uses color seg-
mentation of the images it receives to identify objects in its
world (Bruce, Balch, & Veloso 2000).

The Task

We define the pushing task for a robot as locating an object
(usually a box), and pushing it to a goal location through
an obstacle field. The robot and target’s starting positions
are arbitrary and the obstacles may be placed such that it
is necessary for the robot to navigate through them, both to
get to the target and while pushing the target to the goal.
Because the robot has a limited field of view, and it is not
provided the location of the target object a priori, it must
search the environment to find it. Additionally, the task is
complicated by the non-holonomic constraints of our robot.
An example starting configuration is presented on the right
in Figure 1.

The obstacles in the pushing task are static or moving
based upon the task’s context (e.g. box pushing or soccer).
Additionally, the goal location may be specified as a a loca-
tion in Cartesian coordinates or as a visual target. In the first
case the robot uses odometry to determine its position rela-
tive to the goal location and in the second, its vision system
is used to locate the goal as a position relative to its current
position.

Unlike a holonomic robot, a non-holonomic robot can-
not achieve all possible configuration states directly from its
current state. This complicates the pushing task because the
robot must find a path, preferably near optimal, from its cur-
rent state to the state that aligns it with the target object and
goal location. Furthermore, the presence of obstacles can
reduce the robot’s room for maneuverablility and thus pre-
vent a non-holonomic robot from finding a path that allows
it to achieve alignment. Fully holonomic robots, however,
are not so constrained and are therefore more likely to get to
the target object aligned correctly.

Approach

As discussed in above, the pushing task can be decomposed
into several subtasks. The robot must search for a target,

26

acquire it and then deliver it to the goal location. The robot’s
program for accomplishing the task can be represented as a
finite state machine diagram (Figure 2). In this approach,
referred to as perceptual sequencing, each state corresponds
to a suite of activated behaviors for accomplishing that step
of the task (Arkin & MacKenzie 1994). Transitions between
states, called perceptual triggers, are initiated by real-time
perception.

In the pushing task, the first state is for searching for the
target object. Once the robot locates the target it starts to
move towards it, using a reactive approach to maneuver such
that it will line up behind the target facing the goal location
(this step is critical for the non-holonomic robot). When the
robot is lined up reasonably well behind the target it will
switch to a pushing behavior where it moves towards the
goal while keeping the target under its control. Even so, the
robot may lose control of the target and even possibly lose
sight of the target. In the latter case the robot will return
to the searching state; panning until it sees the target again.
If the robot can still see the target but has lost control of it,
it returns to the acquiring state and will re-maneuver itself
until it is lined up behind the ball. These state transitions will
carry on until the robot has successfully delivered the target
to the goal location. At this point the robot will back up
and watch the target, going back into the scanning behavior
should the target be removed from view.

The finite state machine controlling the robot was im-
plemented using the Clay library of the TeamBots architec-
ture (Balch 1997; 1998). TeamBots is a Java-based collec-
tion of application programs and packages for multiagent
robotics research. The Clay library is a group of Java classes
which are easily combined to create motor schema-based
control systems (Arkin 1989). At the basis of Clay are per--
ceptual and motor nodes (schemas) that are combined to cre-
ate behavioral sequences. Perceptual nodes take information
from the robot’s sensors such as the location of objects of
interest and obstacles. These nodes are embedded in motor
schemas to produce vectors representing the desired trajec-
tory of the robot.

Behavioral assemblages are formed by combining one or
more motor schemas. In this work the motor schemas were
combined using linear superposition; each schema is as-
signed a weight indicating its contribution to the overall be-

havior. The approach is similar to potential field navigation
strategies; however, the complete field is never calculated —
only the vector at the robot’s position. Behavioral assem-
blages form the basis of the finite state machine with each
behavior assemblage corresponding to a state and perceptual
nodes triggering transitions between those states. Therefore,
the three states of Search, Acquire and Deliver shown in Fig-
ure 2 are equivalent to three distinct behavioral assemblages.

This control level computes desired robot headings and
the velocities at which the robot should achieve them. In
a lower software level these headings are transformed into
appropriate motor velocities for each of the drive unit’s two
wheels. The low level software only permits the robot to
turn in place a certain amount, after which it must complete
its turn by driving both wheels forward, the speed of which
depends on how close the robot’s current heading is to the
desired heading (this is to accommodate the constraints im-
posed by the trailer). As there is no encoder on the trailer,
the low level software is also responsible for maintaining an
estimation of the trailer’s angle with respect to the robot and
this is done using kinematic equations of motion for a tricy-
cle (Cameron 1993).

It is important to note that the vector computed by a be-
havioral assemblage is interpreted as a heading at which the
robot should be travelling. The velocity at which the robot
should achieve that heading is calculated separately. For
the Search behavioral assemblage the robot’s speed is set
at zero, while for the Acquire and Deliver assemblages the
robot’s speed is fixed unless the robot is very close to the
target or goal, in which case it slows proportionally as its
distance to the object in question decreases.

Motor Schemas for the Pushing Task

We will now introduce the primitive components of the
robot’s behaviors (the motor schemas) and their mathemati-
cal formulations. Next we describe how the motor schemas
are combined to form behavioral assemblages for accom-
plishing each step in the task. Finally the overall, sequenced
behavior is presented.

Each motor schema computes a direction and magnitude
corresponding to which way the robot should move, and
how critical it is that it move in that direction. Because the
schemas are combined using vector superposition, the mag-

secs target

lost control of target
but target still visible

o R

¢ 10 (ar]

Figure 2: Finite state machine used for behavior-based push-
ing tasks.

27

nitude directly impacts the influence a particular schema ap-
plies to the final direction of the robot.

Scan The Scan motor schema causes the robot to rotate
back and forth in place. In general, at every time step the
Scan motor schema creates a vector equivalent to a rotation
relative to the robot’s current heading. The robot will rotate
in place in an attempt to achieve the current desired heading;
however, if lower level software determines that the robot
cannot continue to turn in that direction without violating
the trailer constraint, it stops the rotation and a perceptual
schema is activated to inform the Scan motor schema that the
current heading vector is invalid. The Scan motor schema
then reverses its turn direction. This schema results in re-
peated clockwise rotation followed by counter-clockwise ro-
tation until an exit condition is met.

The Scan motor schema is parameterized by X, the num-
ber of degrees to rotate in each direction. The mathematical
formulation for this schema is as follows:

current heading +/- X -degrees
1.0

Vecan =

[Vecanll =

Go-To-Target The Go-To-Target motor schema is imple-
mented as a linear attraction. The magnitude of the attrac-
tion varies with distance to the target; 1.0 outside of a con-
trolled zone, decreasing linearly from 1.0 to 0.0 at the dead
zone’s boundary, and finally 0.0 within the dead zone. The
parameters Cy and D; (shown in Figure 3) are used to spec-
ify the radii of the controlled and dead zones respectively.
Mathematically:

vector from center of robot
to target object

1 forr>C;

él;_l;_)Ll for D; < r < Cy

0 fOl‘TSDl

Vgo— to—target =

”Vgo—to-—target“ =

Controlled Zone

Figure 3: Parameters used in the calculation of Go-To-
Target.

Swirl-Obstacles At all times the robot is avoiding obsta-
cles. Avoidance is implemented using circumnavigation or

“swirling” around each obstacle (Figure 4). The appropri-
ate direction for circumnavigation depends on whether the
robot is attempting to reach the target (acquire) or the goal
location (deliver) (Balch 1998). The Swirl-Obstacles motor
schema creates a vector perpendicular to the line from the
robot to each obstacle it detects in the appropriate direction.
The magnitude of each of these vectors is zero beyond a con-
trolled zone and infinite within a dead zone. Between the

two it increases linearly until it reaches a maximum value at -

the dead zone boundary. The vectors corresponding to each
obstacle are then summed to form the output of this schema.

The parameters for the Swirl-Obstacles schema are Co
and D-, the controlled and dead zone radii (defined simi-
larly to C; and D, as shown in Figure 3). The mathematical
formulation for Swirl-Obstacles is:

Vi = vector from center of target to
obstacle rotated +/- 90 degrees
such that rotation sweeps through
object swirling with respect to
0 forr>Cy
Vil = C=t forDy <1 < Cy
oo forr < Dy

N
i=1

Vewirl—obstacles =

-

— ~

- ~
el \\
~
iy -~ \
/ ~ v
/ / / Obstacle \ \
\ []
\ /
\ /
\ /
\ \ \\ /, / J y
~ -
~ 4
~ s Goal
~ P [e]

Figure 4. Example vector field calculated using the Swirl-
Obstacles formulae.

Dock The Dock motor schema is used to lead the robot
around the target and into the appropriate position and orien-
tation for pushing. This behavior is critical to ensure proper
alignment of the robot and trailer for our non-holonomic ve-
hicle.

Dock constructs a vector that varies in direction from
directly towards the target object to a perpendicular for
circumnavigation. Outside of a wedge-shaped controlled
zone, Dock returns only the perpendicular vector compo-
nent, while within the controlled zone it returns a linear
combination of the two vectors. The formulation of Dock
is similar to the docking behavior described by (Arkin et al.
1989).

The parameter of this schema is 6,4, Which is used to
describe the angular width of the controlled zone (as shown

28

on the left in Figure 5). The right image in Figure 5 shows
a sample vector field computed using this approach. The
mathematical construction of Dock is as follows:

VRtoT vector from center of robot to target

Voerp Vriog +/- 90 degrees depending
which way robot should swirl
towards target

Vieak = { Vperp for |0r| > lemaxl

anerp + (1 - a)VRtoT for |0r| < Igma:r:
—_ 07‘
« - omaa:

Push The Push motor schema enables the robot to control
the target while moving from its initial position to the goal
location. This motor schema first determines the robot’s dis-
tance from the target and then, based on that distance, con-
structs a vector to describe the robot’s desired heading. If
the robot is far away from the target it returns a vector that
will place the robot just behind the target, and if the robot
is close to the target it returns a vector that places the robot
just in front of the target’s current position and facing the
goal. Thus, as the robot gets close to the target it is contin-
ually trying to get to a point in front of the target that also
gets it closer to the goal location. As the robot drives to this
position, it pushes the target in front of it.

The parameters for this schema are Ds, the distance from
the target at which this schema switches from calculating a
point between the robot and a target to a point between the
target and the goal, and A, the absolute distance from that
calculated point to the target. Letting r be the distance from
the robot to the target as in the previous sections, mathemat-
ically:

Vriog = vector from center of target to goal

Vrior = vector from center of robot to target

Vv VRtoT — AVTtog forr > D3
push VRtoT + AVrriog forr < D3

Behavioral Assemblages

This section describes how the primitive behaviors (mo-
tor schemas) are combined into more complex behavioral
assemblages capable of solving components of the push-
ing task. Table 1 lists the parameters used for each motor
schema as well as the gains used to linearly combine those
schemas into assemblages.

Search The Search assemblage enables the robot to search
for the target object. Due to the wide field of view of the
robot’s camera and the relatively large distance at which it
can detect a target, in-place scanning allows the robot to
see most of its environment and successfully search for and
identify a target.

The Search assemblage was formed using only the Scan
motor schema with the scan parameter X set to 90 degrees.
This allows the robot to rotate a total of 180 degrees; the
maximum allowed by the trailer constraint.

Figure 5: The Dock motor schema. Left: Parameters used in the calculation of Dock. Right: Example vector field calculated

by the Dock schema.

Recall that the movement direction for the robot is deter-
mined through combination of the output vectors of active
motor schemas, and that the speed of the robot is determined
separately. In the Search assemblage there is only one active
schema, Scan, and the speed is set to zero. The net result is
a scan-in-place behavior.

Acquire The Acquire behavioral assemblage positions the
robot in a location that enables it to deliver the target to
the goal. To accomplish this, the robot must navigate to a
specific position and orientation with respect to the target
and goal. Our approach is to combine the Dock and Go-To-
Target schemas to generate the alignment part of this assem-
blage. Dock directs the robot around the target to the proper
side for pushing while Go-To-Target draws the robot to the
target. These two motor schemas are blended such that at
a far distance from the target, the robot is using only the
Go-To-Target schema and at a close distance only the Dock
schema. In between these distances, the outputs of the two
schemas are linearly combined. Dock is weighed higher as
the robot gets closer to the target.

In addition to the alignment vectors, the Acquire behav-
ioral assemblage also includes the Swirl-Obstacles motor
schema. This schema is included to help prevent collisions
with obstacles.

The alignment phase of the Acquire behavioral assem-
blage is parameterized by C and Dy, the radii of the con-
trolled and dead zones, defined similarly to Cy and D; as
shown in Figure 3. Mathematically, with r defined as for the
Go-To-Target schema:

Valignment = ,ngo—to—target + (1 - ,B)Vdock
1 forr> C4

g = ¢ forDy<r<Cy
0 forr < Dy

Deliver The Deliver behavioral assemblage, activated
when the robot has acquired the target object, is used to
move this object from its original location to the goal lo-
cation. This assemblage combines the Push and Swirl-
Obstacles motor schemas in order to allow the robot to ac-
complish its task while avoiding obstacles.

29

Table 1: Experimental motor schema parameter and gain
values.

[Behavioral Assemblage | Motor Schemas Gain J
Search Scan 1.0
X = 90degrees
Acquire Go-To-Target 0.3x6
Cq = 1.5m Cl = 0.0m
D4 =0.7m D1 = 0.0m
Dock 0.3%(1 - 8)
0 maz = 68degrees
Swirl-Obstacles 03
Cz =1.2m
D; =0.75m
Deliver Push 0.3
A =0.223m
D3 = 0.8m
Swirl-Obstacles 03
02 =1.2m
Dz = 0.75m

Experimental Setups

Two types of pushing tasks were investigated: box pushing
and ball dribbling during a soccer game. The generalized
control system was first developed and tested in the Team-
Bots simulator. Once the system was working well in simu-
lation, it was run on mobile robots. Further refinement was
required due to small differences between the simulated and
physical robots.

The box pushing experiments involved locating an or-
ange box of size 25.5cmx17cmx10cm and pushing it to a
30cmx30cm goal location. In experiments, five black boxes
served as obstacles. The environment in which this task took
place was quite noisy with other types of obstacles present
and variable lighting conditions. The robot used odometry
to the goal location’s center which was given a priori. This
set up is illustrated in Figure 6.

The second task is ball dribbling for robotic soc-
cer. The CMUHammerhead team, competing at RoboCup
2000 (Balch, Stone, & Kraetzschmar 2000), made use of
the generalized control system described here for the team’s
forwards and a modified version for the halfback and goalie.

The RoboCup field measured 5mx9m with two goals each
having a width of 2m and a depth of 0.9m. The team mem-
bers used their cameras to locate the center of the goal on
which they should score. Three teammates and four oppo-
nents constitute seven moving obstacles that were identified
by color. The target was an orange soccer ball (approxi-
mately 10cm in radius). This task is more challenging than
simple box pushing because the the obstacles are not static
and the robot has much less control of the ball than it does
over a box. Ball handling sticks were added to the robot to
provide more positive control. Even so, the ball often rolled
away from the robot and opponents frequently attempted to
steal it away.

Results

In both tasks calculation of the pushing behavior’s output
takes about 15ms per control cycle. Additional computa-
tional requirements include: 20ms used by the lower level
software to translate control system output into appropriate
motor velocities, 50ms to communicate those velocities to
the drive unit, and about 12ms to handle vision processing.
Thus, on average the control system runs at about 10Hz,
with the main overhead being serial communication between
the computer and the drive unit.

In the box pushing task the robot was able to repeatably
navigate to a box and deliver it to the goal location (Fig-
ure 6). Once delivered, the robot waited until the box is
removed before starting to search for it again. If the box is
removed from the robot or it is lost during travel, the robot
would successfully recover and re-acquire the box.

To quantitatively evaluate the reliability of the the box
pushing controller, the task was repeated 30 times. At the
beginning of each experimental trial the robot was started at
the goal location facing in a random direction. The test envi-
ronment was about 5m in diameter. For each trial, the target
box was placed at a random location between 1.0m and 2.5m
from the goal location. Obstacles were placed roughly in a
circle around the goal location.

During the evaluation the robot would occasionally travel
outside of the arena boundary and interact with other objects
in the room. These objects were not painted black so they
were not recognized by the vision system as obstacles. The
robot, however, was able to recover in the majority of cases
by detecting a collision and backing up.

Out of 30 trials, the robot failed to deliver the box to the
goal four times; twice because of collisions with outside ob-
jects, once because of problems with the longer carpet pile
at the edge of its environment, and once because it could
not locate the box. Of these failures, only the last one (fail-
ure to find the box) indicates a problem with the pushing
controller itself. Thus the controller failed only once in 27
trials, or about 4% of the time.

A summary of the results is provided in Table 2. The
average time taken to complete runs was calculated using
the successful 26 runs. During some of the trials the robot
bumped one of the black obstacles. This is not considered
a failure mode because the robot is able to sense this condi-
tion using a bump sensor (based on motor current detectors)
and recover. “Re-acquiring the box” is defined as the robot

30

losing the box during the Deliver portion of its behavior and
having to go back into Acquire to realign itself.

Table 2: Results from box pushing trials.

Average time to complete run 50.02s
Standard Deviation 26.12s

Maximum time to complete run 134.44s
Minimum time to complete run ~ 24.07s

Runs box lost and re-acquired 9
Runs bumped black obstacles 10
Runs stuck on carpet 3 (with 1 non-recovery)
Runs bumped outside object 7 (with 2 non-recoveries)
Runs failed to find target 1

The performance of this behavior-based control system
in ball dribbling was evaluated during actual robotic soc-
cer matches. At RoboCup 2000, the CMUHammerhead for-
wards scored a total of nine goals in seven games. In order to
score these goals the forwards had to acquire the ball several
times and successfully navigate both to the goal and around
the goalie. Figure 7 illustrates one of the CMUHammer-
heads in action.

Limitations

Our approach to box-pushing works quite well in practice.
However, because it is based on local information only, there
is no guarantee of completeness — it is possible for the robot
or the target object to become stuck in a potential well or
box canyon. One way to address this would be to integrate
a traditional planner with the behavior-based approach; the
planner would take over when a lack of progress is detected.
This hybrid approach would enable the robot to benefit from
the speed of a behavior-based solution most of the time, but
still provide guarantees of completeness in more complex
environments.

We do not explicitly model the coefficient of friction be-
tween the robot and the object it is pushing. Therefore,
the robot can make too sharp a turn and lose control of the
pushed object. During the Deliver phase, the relationship
between the gains for the Push motor schema and the Swirl-
Obstacle schema dictate whether the robot is likely to make
a sharp turn and lose the target or not. If the Swirl-Obstacle
gain is large in proportion to the Push gain, the robot might
make a more aggressive turn to avoid an obstacle than is
necessary. In practice we set these gains empirically. Fortu-
nately, loss of the target object is not an unrecoverable fail-
ure. Because the robot can detect when control of the target
object is lost, we can invoke a recovery procedure to recap-
ture it. Loss and recovery of the target occurred in 9 of the
26 successful box-pushing trials.

Conclusions

We describe a behavior-based approach for controlling non-
holonomic robots in a pushing task. The controller does not
plan a route, but rather calculates an instantaneous heading
and speed for the robot based on current sensor readings.
The simplicity of the approach enables control commands
to be computed quickly (15ms on a 266Mhz Pentium). This

Figure 6: Results from a box pushing task. Starting at the left picture, the robot acquires the box and pushes it to the goal. Once
the box is at the goal the robot backs up. The robot’s path is shown by the black line.

Figure 7: CMUHammerhead forward dribbling a ball into the goal during a game. As the forward travels towards the goal it

maneuvers around its opponents.

control system enables a robot to find a target object, navi-
gate to it, then push the target back to a goal location while
simultaneously avoiding obstacle hazards. Non-holonomic
constraints of the robot are addressed by a docking behavior
that directs the robot around the target and into the correct
position and orientation for successful pushing.

The approach is tested on two very different types of tar-
gets in static and highly dynamic environments. In box
pushing experiments, the system demonstrated 96% reliabil-
ity in accomplishing the task. The system was also demon-
strated at RoboCup-2000, an international robot soccer com-
petition. At RoboCup, the robots using our approach scored
nine goals in seven games.

In the future this work should be extended to determine
the extent of the control system’s tolerance to differences in
friction, shape and size of target objects. This solution to the
pushing task will also be used as a building block for future
cooperative work in foraging-like tasks.

Acknowledgements

The authors thank Ashley Stroupe and Kevin Sikorski for
their contributions during the early development of the push-
ing behavior and Rande Shern for his construction and main-
tenance of the Minnow robots. We also thank Jim Bruce,
Scott Lenser and Zia Khan for their contributions to the vi-
sion system. Finally we thank Manuela Veloso for her on-
going encouragement and advice.

This work was funded by DARPA under the Mobile Au-
tonomous Robot Software Program.

References

Arkin, R., and MacKenzie, D. 1994. Temporal coor-
dination of perceptual algorithms for mobile robot navi-

31

gation. 1EEE Transactions on Robotics and Automation
10(33):276-286.

Arkin, R.; Murphy, R.; Pearson, M.; and Vaughn, D. 1989.
Mobile robot docking operations in a manufacturing en-
vironment: progress in visual. perceptual strategies. In
Proceedings IEEE International Workshop on Intelligent
Robotics and Systems (IROS ’89), 147-154.

Arkin, R. 1989. Motor schema-based mobile robot naviga-
tion. International Journal of Robotics Research 8(4):92—
112.

Balch, T.; Stone, P.; and Kraetzschmar, G., eds. 2000. Pro-
ceedings of the 4th International Workshop on RoboCup.
Balch, T. 1997. Clay: Integrating motor schemas and rein-
forcement learning. Technical Report GIT-CC-97-11, Col-
lege of Computing, Georgia Institute of Technology.
Balch, T. 1998. Behavioral Diversity in Learning Robot
Teams. Ph.D. Dissertation, College of Computing, Georgia
Institute of Technology.

Bruce, I.; Balch, T.; and Veloso, M. 2000. Fast and cheap
color vision on commodity hardware. In Workshop on In-
teractive Robotics and Entertainment, 11-15.

Cameron, J. 1993. Modeling and Motion Planning for
Non-Holonomic Systems (Boltzmann Hamel Equations).
Ph.D. Dissertation, Georgia Institute of Technology.
Latombe, J. C. 1991. Robot Motion Planning. Dordrecht,
The Netherlands: Kluwer.

Lynch, K. M., and Mason, M. T. 1996. Stable pushing:
Mechanics, controllability and planning. Internation Jour-
nal of Robotics Research 15(6):533-556.

Mataric, M.; Nilsson, M.; and Simsarian, K. 1995. Cooper-
ative multi-robot box-pushing. In Proceedings IROS-1995.

Parker, L. E. 1994, Heterogeneous Multi-Robot Coopera-
tion. Ph.D. Dissertation, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA.

Singh, S., and Cannon, H. 1998. Multi-resolution planning
for earthmoving. In Proceedings International Conference
on Robotics and Automation.

32

