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Abstract 
The development of robots able to accept, via a friendly 
interface, instructions in terms of the concepts familiar to 
the human user remains a challenge. Designing and 
building such intelligent robots can be seen as the problem 
of integrating four main dimensions: human-robot 
communication, sensory motor skills and perception, 
decision-making capabilities and learning. Although these 
dimensions have been thoroughly studied in the past, their 
integration has seldom been attempted in a systematic way. 
For the common user, a sufficiently practical interface must 
include spoken language. These issues are being studied at 
our institute in the framework of the project CARL 
("Communication, Action, Reasoning and Learning in 
Robotics"). The AAAI Hors d'Ouevres competition seemed 
to be an interesting setting for evaluating and demonstrating 
the project's robot, naturally called 'Carl'. This paper 
describes the "body and soul" of Carl as well as the lessons 
learned from the participation in the competition.  

1. Introduction   

The development of robots that don’t have to be 
programmed in the classical way and, instead, can accept 
instructions at the level of concepts of the human user will 
be a major breakthrough. If a flexible manufacturing 
system is supposed to produce a variety of products and in 
small quantities, then industrial robots will tend to play the 
role of craftsmen. Both service robots and flexible 
industrial robots will need to use sensors extensively in 
order to develop a high level understanding of their tasks. 
   Robot decision-making at the task level is, therefore, a 
central problem in the development of the next generation 
of robots. As the modularity and reconfigurability of the 
hardware are enhanced, the number of action alternatives 
at the task-level increases significantly, making 
autonomous decision-making even more necessary. 
   The development of task-level robot systems has long 
been a goal of robotics research (Lozano-Pérez et al., 
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1989; Borenstein and  Koren, 1990). It is of crucial 
importance if robots are to become consumer products. 
The idea, that was already present in automatic robot 
programming languages since the 1970's, has been taken 
up in recent years by other researchers (Seabra Lopes, 
1997). 
   The viewpoint in early artificial intelligence research was 
to evaluate an agent's intelligence by comparing it's 
thinking to human-level thinking. The development of 
human-level intelligence is probably a too ambitious goal 
for the current state of art. We believe that it is more 
reasonable to develop useful robotic systems with 
hardware and intelligence tailored for specific applications. 
This will provide experience on how to integrate different 
technologies and execution capabilities and, eventually, 
will enable us to scale up to more general robot 
architectures. 
   Currently, the major effort involved in developing useful 
intelligent robots is, we believe, in the integration of the 
different capabilities related to intelligence (Seabra Lopes 
and Connell, edrs., 2001). 
   The author is currently involved in a project titled 
“Communication, Action, Reasoning and Learning in 
robotics” (CARL). 
   CARL is based on the hypothesis that a combination of 
reactivity with reasoning is more likely to produce useful 
results in a relatively near future than the purely reactive or 
behavior-based approaches. This is especially true for 
robots that are expected to perform complex tasks 
requiring decision-making. 
   The integration of reactivity with reasoning has proved 
to be difficult to achieve. Traditional architectures have 
focused on traditional problems  like reasoning, represen-
tation, and NLP and alternative architectures have focused 
on problems such as real-time perception and motor 
control. There have been few, if any, satisfying attempts to 
integrate the two. The position (and driving hope) of the 
CARL project is that most of the encountered difficulties 
are the result of not addressing properly the learning and, 
especially, the interface issues. 
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   In the traditional approach to building intelligent 
systems, the human devises a formal language and uses it 
to specify the needed representations of the world. As the 
application becomes more and more complex, the 
programmer’s task becomes overwhelmingly difficult. 
Automatic programming languages, embedding various 
planning capabilities, have been developed in order to 
simplify the programming problem. Programming by 
human demonstration and learning techniques (Morik et 
al., 1999) have been used for the same purpose. None of 
these approaches alone solved the problem. Robot 
programming is a bottleneck for robot development. The 
real underlying problem seems to be the grounding 
problem (Harnad, 1990). 
   To correctly address symbol grounding in the context of 
task execution, the first thing to notice is that most symbols 
are inherent to the tasks. In that case, the human user, who 
defines the tasks, will be a primary source of information 
for the symbol grounding process. The human will be 
simultaneously the user and the teacher. The 
communication interface between human and robot is, 
therefore, of primary importance. 
   If we are developing intelligent robots with significant 
decision making capabilities, the use of spoken natural 
language seems unavoidable. It seems unavoidable because 
no other alternative is practical enough for the common 
(naïve) user. 
   The paper is organized as follows. Section 2 describes 
the hardware configuration and software architecture of 
our robot, Carl. Section 3 describes the basic capabilities 
developed for Carl to support situated behavior and 
interaction. Section 4 describes the global management 
system of the robot. Section 5 describes the learning 
module. In the concluding section, some lessons learned 
from our participation in the Hors d'Oeuvres competition 
will be presented. 

2. Carl, the robot 

2.1. Hardware configuration 
Carl is the name of the robot of the CARL project. It is 
based on a Pioneer 2-DX indoor platform from 
ActivMedia Robotics, with two drive wheels plus the 
caster. It includes wheel encoders, front and rear bumpers 
rings, front and rear sonar rings and audio I/O card. The 
platform configuration that was acquired also includes a 
micro-controller based on the Siemens C166 processor and 
an on-board computer based on a Pentium 266 MHz with 
PC104+ bus, 64 Mb of memory and a 3.2 Gb hard drive. 
The operating system is Linux. A Sony EVI pan-tilt 
camera was added. 
  On top of this mobile platform, we added a fiber glass 
structure that makes Carl approximately 85 cm high (see 
Fig. 1). This fiber structure carries a DA-400 v2 directional 
microphone from Andrea Electronics and a speaker. In a 
normal stand-up position near the robot, the mouth of a 

person is at a distance of 1 m from the microphone array. 
This is enough for enabling speech recognition in a quiet 
environment. This was, actually, the main motivation for 
adding the fiber structure: with the microphone installed 
directly in the Pioneer 2-DX base, the speech signal 
coming from a person in normal stand-up position would 
not be recognizable. For robust navigation, a set of 10 IR 
sensors was added to the fiber structure. The structure also 
includes a recipient for small objects, equipped with an IR 
sensor for detecting the presence of objects. In the Hors 
d’Ouevres competition, this was used for transporting 
food. 
   With this platform, we hope to be able develop a 
completely autonomous robot capable, not only of 
wandering around, but also of taking decisions, executing 
tasks and learning. 

2.2. Software architecture 
The control and deliberation architecture of Carl (Fig. 2) 
reflects the goals of our project. Human-robot 
communication is achieved through spoken language 
dialog. A set of Linux processes, making up the speech 
processing module, handle speech recognition, natural 
language parsing and speech synthesis. Another Linux 
process handles general perception and action, including 
navigation. High-level reasoning, including inductive and 

 
Fig. 1 – Current look of Carl 
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deductive inference, is mostly based on the Prolog 
inference engine (we use a freeware implementation with a 
good C-language interface, SWI Prolog). Another module 
of the architecture provides Carl with learning capabilities. 
A central manager coordinates the activities at the high 
level. All these modules are described in special sections 
below. 
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Perception 
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Logical 
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Learner & 
Memorizer 

Memory 

 
 

Fig. 2 – Software architecture of Carl – current form 

3. Processes for situated activity 

Carl is a prototype of a robot capable of performing actions 
in the real world according to spoken instructions from 
humans. Perception, navigation and spoken language 
processing are basic capabilities for such a robot. 

3.1. Perception and navigation 
For robustly navigating in complex unstructured 
environments, such as an office or home environment, 
robots will benefit from using multiple sensor modalities. 
For instance, legs of chairs and tables are extremely hard to 
detect and locate by a robot only equipped with sonars. 
   The navigation strategy of Carl is based on the fusion of 
vision, sonar and infra-red sensing information. Vision 
information is used to build a local map of the robot's 
neighborhood. Since the only camera of Carl is the EVI 
camera, Carl does not perform any sort of stereo vision 
processing. Nevertheless, a single camera can be used to 
detect free space on the floor in front of the robot and, 
actually, build a top-view map of that free space, provided 
that the floor color is approximately constant in the robot's 
environment. 
   Fig. 3  illustrates the computation of the projection of an 
(X,Y) point on the floor to a plan parallel to the camera. 
Given the variables identified in the figure, the projection 
is computed by the following formulas: 
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Based on this, the local map is built and maintained. By 
local map it is meant simply a structure storing the 
coordinates of points that represent, with a certain 
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(a) - Y projection (side view) 
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(b) - X projection 

Fig. 3 - Meaning of main geometric variables 
involved in the generation of a map of free space 

based on vision information 

  
(a) Acquired image                   (b)  Free space 

 
(c)  Top view of free space in the visible area 

Fig. 4 - Example of the process of generating a top 
view of free space on the floor in front of the robot 
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resolution (e.g 30 mm), the boundary of the free space 
around the robot. The process is as follows: 
1. An image of the scene in front of the robot is captured. 

(e.g. Fig. 3a.) 
2. Free space in the image is detected - this is done by 

scanning the image from bottom to top until, in each 
column, a pixel is found out of the intensity interval of 
the floor; this is considered as the border of an obstacle. 
(In Fig. 3b, occupied space is marked black; note that the 
foot and the chair legs are easily detected. ) 

3. Based on the above equations, a top view of free space is 
generated (Fig. 3c). Note that only the base of each 
obstacle (laying on the floor) is correctly located; this is 
enough for obstacle avoidance, since the base of the 
obstacle appears to be closer to the robot Whatever 
appears to be further way can be ignored. 

4. The top view image is segmented into a grid; scanning 
this grid from bottom to top, the first cells that are found 
occupied (the average pixel intensity is on average 
below or above the floor intensity range) can be marked 
as potential obstacles in the local map. 

5. As the robot moves around, the positions of these points 
relative to the robot are updated and those that are too 
far (e.g. more than 1.2 m) are removed; previously 
recorded points that are again in the view field of the 
robot are also removed, so that new points, 
corresponding to the current perception, can be recorded. 

 
   The top view image is also used to update a global map. 
The global map of Carl is currently a grid-based map. The 
grid resolution is 100 mm. Each time the robot sees that a 
given cell of the global map is free, according to the 
mentioned top view, an occupancy indicator for that cell is 
incremented. However, the map building and path 
planning capabilities of Carl were not demonstrated in the 
AAAI Competition. 
   During navigation, each obstacle point in the local map 
exerts a certain virtual force in the speed and direction of 
movement of the robot. The approach is based on the 
Virtual Force Field (VFF) concept of Borenstein and 
Koren (1991).  
   Provided that contrast between floor intensity and 
obstacle intensity is sufficient, Carl can navigate based on 
vision only. However, sometimes an obstacle can really be 
confused with the floor. Therefore, complementary sources 
of information are taken into account, namely sonar and 
infra-red sensing information. 
   Obstacles "seen" by sonars and infra-red sensors are also 
handled through the same VFF-like approach. The speed 
and angle values obtained by applying VFF to vision, 
sonar and infra-red data are combined to produce values 
that are finally applied to adjust the robot's trajectory. 
   This way, Carl is able to robustly navigate in complex 
human environments. In this sense, the environment that 
was set up for the AAAI reception was quite easy, since it 
contained almost no furniture. 

3.2. Spoken language processing 
A spoken language interface enables humans to 
comfortably instruct their robots. The spoken language 
processing modules address the well known problems 
presented in Table I. The current interface of Carl builds 
on work described in previous papers of our group (Seabra 
Lopes and Teixeira, 2000). 
   In this project, human-robot communication is modeled 
as the exchange of messages, much like is done in multi-
agent systems. Se set of performatives or message types in 
our Human-Robot Communication Language (HRCL) is 
inspired in KQML, the outer language of ACL (Labrou 
and Finn, 1997). Table II lists the currently supported 
performatives. 
   For spoken language input, a grammar for a subset of the 
English language has been specified using the APSG 
(Augmented Phrase Structure Grammar) formalism. For 
each performative, a certain number of grammar rules has 
been written. In total, approximately 50 phrase structure 
rules are being used together with a vocabulary of 
approximately 100 words. This allows the grammar to 
accept over 12000 different sentences. 
   A set of public domain tools is being used by the project 
for spoken language processing. Speech recognition and 
speech synthesis are handled by Linux processes based on 
IBM ViaVoice. Natural language parsing and phrase 
structure construction are handled by another Linux 
process based on the CPK NLP suite (Brondsted,1999). 
   One of the problems of current spoken language systems 
is the lack of robustness of the speech recognition process. 
Variations in environment noise, speaker language accent 
or speaker tone of voice, have dramatic consequences on 
the recognition performance. For our experiments, HMM 
speech models (of ViaVoice) have been trained for a set of 

Table I – Spoken language processing sub-problems 
 Speech Language Semantics 
Input Speech 

recognition 
Language 
parsing 

Semantics 
extraction 

Output Speech 
synthesis 

Language 
generation 

Semantics 
construction 

 
Table II – Currently supported performatives  

(S=sender, R=receiver) 
Performative Description 
Register(S,R) S announces its presence to R 
Achieve(S,R,C) S asks R to perform action C in its 

physical environment 
Tell(S,R,C) S tells R that sentence C is true 
Ask(S,R,C) S asks R to provide one instantiation of 

sentence C 
Ask_if(S,R,C) S wants to know if R thinks sentence C is 

true 
Thanks(S,R) S expresses gratitude to R 
Bye(S,R) S says good-bye to R 
Dye(S,R) S (human master) asks R (robot) to close 

execution processes 
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four speakers. With this training and in a reasonably silent 
environment, Carl is able to recognize utterances well 
enough to enable dialogue. 
  Of course, the utterance must be acceptable by the 
grammar. The large grammar that is being used stretches 
the limits of current technology. However, large as it 
appears to be, it still covers only a small part of the English 
language. For instance, in the tell, ask and ask_if 
performatives, only sentences based on the verb to be are 
accepted, for example: “The professor is in Portugal”; 
“The car of Peter is at the University”; or “The chairman 
of the conference is a professor”. 
   The final step in processing an utterance is the extraction 
of the semantics from the phrase structure description 
produced by the CPK parser. This is done by a Prolog 
program designed and implemented by our group. The 
semantics of a sentence is a relational description. For 
instance, the Prolog clause given in Fig. 5 extracts the 
semantics of sentences that are based on the verb to be and 
include a prepositional phrase. A recursive call extracts the 
semantics of the noun phrase, producing NP1sem and 
additional relations in list L1. A similar call handles the 
other noun phrase. Finally, the semantics is given by the 
relation is_(NP1sem,What), with other complementary 
relations given in list L3. Many other clauses of this type 
handle the different cases allowed by the grammar. As an 
example, the semantics of "Professor Carlos is at the 
university of Aveiro", would be represented by the 
following list of relations, as computed by the program: 
[  is_(X, at(Y)),  is_(X, professor),  obj_name_(X, carlos), of_(Y, 
Z), is_(Y, university), obj_name_(Z, aveiro)  ]. 

4. Execution management 
The central manager is an event-driven system. Events 
originating in the speech interface, in sensors or in the 

navigation activity as well as timeout events lead to state 
transitions. Such apparently different activities as dialog 
management and navigation management are integrated in 
a common unified framework. 
   It is mostly implemented in Prolog, in order to have easy 
access to the Prolog inference engine. Some parts of the 
manager are written in C language, either for reasons of 
efficiency or for access to the Unix inter-process 
communication facilities. 
   The central manager is essentially a state transition 
function (Fig. 6) specified as a set of Prolog clauses. Each 
clause, specifying a transition, has a head of the following 
form: 
 

state_transition(State,Events,Restrictions, 
                                               SpeechAct,Actions,NewState) 

 
State is the current state; Events is a list of events that will 
cause a transition to NewState, provided that the Restrictions 
are satisfied. These events can be speech input events, 
navigation events, timing events, robot body events.  
SpeechAct, if not void, is some verbal message that the 
robot should emit in this transition. Actions are a list of 
other actions that robot should perform. These can be 

 

State
Transition
Manager

State

Events sources:
- speech input
- navigation
- robot body
- timing

Actions:
- speech output
- navigation
- grammar adaptation
- internal update

 
Fig. 6 - The central manager module - an event-driven process 

state_transition( 
  State, 
  [no_biscuits], 
  ( member(State,[explore,wander,stay]) ), 
  nothing, 
  [ retract_all_times,assert_go_to_refill_time, 
    execute_task(go_to_refill_area) ], 
  going_to_refill 
).                    
 
state_transition( 
  interacting, 
  [ heard(tell(Phrase)) ], 
  true,  % no restrictions 
  acknowledge_told_fact(Phrase), 
  [ execute_motion(stop),retract_all_times, 
    memorize_told_fact(Phrase),assert_last_heard_time], 
  interacting 
).       

Fig. 7 – Examples of state transitions 
 

semantics( 
  tell(phrase(NP1,verb(be),prep(P),NP2)), 
  is_(NP1sem,What), 
  L3 
):- semantics(NP1,NP1sem,L1), 
    semantics(NP2,NP2sem,L2), 
    What =.. [P,NP2sem], 
    append(L1,L2,L3).                                            

Fig. 5 - A semantics extraction rule 
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actions related to navigation, but also internal state update 
and dynamic grammar adaptation. 
   Fig. 7 shows two examples of state transitions. The first 
one is a transition from a normal motion state (explore or 
wander) or stay state to a state in which the main activity of 
the robot is to go to the refill area. The triggering event is 
the absence of biscuits in the food tray of the robot. This 
activity, event and state transition were introduced for the 
AAAI competition. The second state transition in Fig. 7 is 
a transition to the same state, in this case the interacting 
state. The triggering event is the reception of an instance of 
the tell performative. The robot immediately stops and 
acknowledges, then memorizes the told information. The 
time of this event is recorded, so that the robot may later 
recognize that the interaction is over, if it didn't finish with 
an explicit "good bye" from the human interactant. 

5. Learning 

Learning and grounding are key concerns in our project, as 
already pointed out. 
   For a given robot, the idea is to integrate, in a so-called 
“construction phase”, a variety of processing and inference 
capabilities. In contrast, the initial body of knowledge 
should be minimal. After this phase is concluded (after the 
robot is born!), a life-long learning process can start. The 
robot learns new skills, explores its environment, builds a 
map of it, all this with frequent guidance from human 
interactants. 
   Some of the "innate" capabilities / knowledge, that 
should be integrated during the construction phase are: 
1. Wandering around in the environment while avoiding 

obstacles; this would be the only "innate" physical 
behavior. (see developments in section 3.1) 

2. Natural language processing (see section 3.2), 
supported by a fairly comprehensive vocabulary of 
English words; the meanings of most words are 
initially unknown to the robot. 

3. Basic speech processing (section 3.2). 
4. A small dictionary of words and their meanings for 

identifying the robot's sensors and basic movements; 
these are the initially ground symbols over which the 
robot will incrementally build its knowledge. 

5. Ontologies for organizing and composing behaviors, 
map regions, dialogues, task plans, episodic memory, 
etc. 

6. Knowledge of basic mathematical functions, that the 
teacher can use for teaching new concepts or 
behaviors. 

7. Logical deduction (the Prolog engine is being used). 
8. Capabilities for task planning and execution 

monitoring. 
9. Capabilities for learning numerical functions. 
10. Capabilities for learning symbolic classification 

knowledge. 
11. Capabilities for explanation-based learning and case-

based reasoning. 

   
   Part of these capabilities have already been integrated in 
the current Carl prototype. Others, related to explanation-
based/case-based learning, will be supported in the near 
future, through the integration of modules previously 
developed by the research team (Seabra Lopes, 1997 and 
1999ab). 
   It should also be noted that on-line lifelong learning in 
robotics has seldom been described. Moreover, the few 
known systems demonstrating on-line learning, still are 
mostly limited to sub-symbolic learning. 
   In the case of Carl, recent efforts in this field are mainly 
aimed at building something that demonstrates on-line 
symbolic learning. The perfection of the architecture is not 
a priority yet, as this is still groundbreaking work. Two 
main learning tasks are being addressed. 
 
- learning facts about the world through interaction with 

humans 
- on-line human-supervised learning for object 

recognition and symbol grounding 
 
   The architecture of the learning module is illustrated in 
Fig. 8. Semantic information extracted from tell messages 
received from the human interactant are stored in a 
database of logical assertions (actually, the Prolog 
database). Here is an example of a dialog that leads to 
learning: 
 

[Learning a new fact:] 
H – Hello, Carl! 
C – Hi, would you like some food? 
H – Thank you! 
C – You are welcome. 
H – Professor Doty is in Portugal. 
C – Ok. 
[Later, provide the learned information:] 
H – Where is the professor? 
C – Portugal. 
[Or:] 
H – Is the professor in France? 
C – No. 

 
   Of course, this is learning of mostly non ground 
information. Nevertheless, this sort of functionality, if 
robust, may be useful for real-world applications. 
 

Logical
Assertions

Example
Patterns

Learned
Functions

Logical
Asserter

Query
Answerer

Inductive
Learner

 
 

Fig. 8 - The learning and memorization module 

 6



 
   The learning module of Carl also includes an inductive 
learner that we want to use for learning ground concepts. 
The particular task is the lifelong learning of object 
recognition knowledge. For instance, when Carl meets an 
obstacle, he may decide to ask: 
 

"Is this a person?" 
 
   Based on the obtained answer (“yes” or “no”) and the 
visual feedback, Carl may store a classified example. A 
collection of labeled examples like this, will enable a 
supervised learning algorithm to induce the concept of 
“person”. 
   The inductive learner that was developed, based on plain 
backpropagation neural networks, allows for the 
concurrent learning of multiple concepts. It works as a 
learning server for the robot. Although our focus is now on 
object recognition, it can also be used for synthesizing 
behaviors based on data collected in training sessions 
conducted by human teachers (Seabra Lopes and Teixeira, 
2000) 
   The complete cycle of lifelong learning from examples 
has not been demonstrated yet. Current efforts are 
concerned with automated feature extraction for improving 
the learning performance. 

6. Lessons learned / Conclusion 

Carl is a prototype robot that demonstrates the integration 
of communication, perception/action, reasoning and 
learning. It is an on-going project. Nevertheless, Carl is 
already able to: navigate in complex unstructured 
environments; enter in dialogue with a human being; and 
to learn some information from the human being. Current 
work is particularly concerned with the grounding 
problem. 
   The interesting evaluation opportunity provided by the 
AAAI Hors d'Ouevres Competition, in Seattle, has shown, 
in the first place, that it is extremely hard to have 
successful speech recognition in a crowdy and, therefore, 
noisy reception. During the reception, Carl almost didn't 
enter in dialog with humans due to the environment noise. 
It did say "Hello, would you like some food?", but almost 
never heard the reply, as it would, if the environment was 
quiet. This seems to show that it is still difficult to have 
talking robots being used in real-world applications. 
   Of course, this does not mean that the technology won't 
improve. Therefore, we will continue with our line of 
research on human-assisted learning, that we consider a 
basic ingredient for future intelligent robots. 
   From the point of view of navigation and collision 
avoidance, the AAAI reception was not particularly tuff. 
Although it was crowdy, humans are sufficiently large to 
be easily detected and avoided by robots. Carl would be 
able deal with more complex environments. 
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