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Abstract

Some dynamic supply chain problems are instances of a class
of distributed optimization problems that intelligent agents
were made to address. Agents are thus a natural enabling
technology for such problems. In this paper we describe the
use of TAEMS agent technologies on a sterilized dynamic sup-
ply chain management problem.

Introduction

The intelligent agent paradigm is a natural fit to certain
classes of dynamic supply chain problems because the
paradigm focuses on coordinating the activities of loosely
coupled distributed entities, e.g., raw material suppliers,
shippers, manufacturers, distribution centers, and retailers
(where each of these is represented by an agent). One goal
of the paradigm is to enable agents to meet deadlines and
resource constraints but also to be flexible, robust, respon-
sive, and adaptive. With agents these behaviors are ob-
tained without centralization and without assuming com-
plete static knowledge a priori. Accordingly agents are well
suited to dynamic supply chain problems in which frequent
and timely adjustments to the flow of goods and production
schedules are needed in order to leverage conditions in the
marketplace or to take advantage of opportunities as they
arise.

In this paper we present the use of TAEMS (Decker &
Li 1998; Lesser, Horling, & et al ) agent technologies on
a sterilized version of a dynamic supply chain problem. In
this application the agents work to manage the production
schedule and material flow of a small build-to-order produc-
tion line. It is important to note that the focus of this work is
not on agent-based bidding schemes or price determination
but is instead on reasoning about actual orders, production
schedules, and material flow. This research also does not
make strong assumptions about statistical characteristics of
demand or product orders — the focus is not on setting up a
steady state manufacturing schedule.

In this application we focus on the problem domain of
manufacturing goods for the outdoor recreational market
sector — specifically backpacks and sleeping bags. The ac-
tors in our example will include retailers and a fictitious
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manufacturer called “MountainMan.” Any resemblance to
actual retailers or manufacturers in this sector or other mar-
ket sectors is purely coincidental. The example itself is
based on a real world situation though the work presented
here is simulated and the problem specification should be
viewed as an educated assessment of a real world situation.

It is important to emphasize that the focus of this work
is not on negotiation protocols or market mechanisms —
it is on the distributed optimization problem that occurs
when agents have multiple interacting activities and the ac-
tivities have individual deadlines and individual resource
constraints.  Even if we could build a single central-
ized representation of the problem space, the hybrid plan-
ning/scheduling (with interacting time limits, interacting re-
source constraints, and utility interactions) problem is in-
tractable for any but toy problems. In this setting, provably
optimal solutions require exhaustive search. Now consider
what happens when the problem space is distributed and put
into a dynamic setting. It is this space in which we oper-
ate. Complete discussion is beyond the scope of the paper
(Wagner, Raja, & Lesser 2002) — the point is to understand
that a large class of supply chain management problems fall
into this very difficult problem space that has more in com-
mon with distributed scheduling than it does with market
mechanisms or research whose focus is on communication
protocols.

In this paper we examine the production scheduling prob-
lem of a small volume manufacturing line that produces
build to order goods for private label customers. The line
is managed by an agent that interacts with other agents that
represent retailers. The retailer agents, raw material supplier
agents, etc., all potentially need to solve the same class of
problem as the manufacturing agent in this paper — we focus
primarily on the small volume production line for simplicity
and clarity. As shown in Figure 1 the small volume pro-
duction line is an off-shoot from the primary production line
of MountainMan. Generally with private label production
a large order is produced via the primary production line
and subsequent smaller orders, which are caused by unan-
ticipated demand or customized variants of the goods, are
routed to the smaller production line. The small volume pro-
duction line supports small private label jobs, such as orders
generated by unanticipated sales, that would interrupt the
flow of the primary production line if scheduled for that line.



Primary Lines

Figure 1: Primary and the Build-to-Order Production Lines

This is particularly true for custom variants or restocking or-
ders in part because such orders are small but still require
different fabric, fasteners, etc., but also because such orders
generally have short term deadlines. In other words, when a
retailer requests a small volume they generally want it in a
few days rather than the period of weeks for which primary
production line is geared. This type of production has differ-
ent requirements than the standard main stream production
operations. While minimizing raw and finished goods in-
ventories are important for all manufacturing processes, this
is particularly true for private label goods as the customer
base is very limited (generally just one) and often portions
of the raw materials are specific to the private label purchase.
Additional requirements for the line include ending the day
with the “tables empty” (no work-in-progress), maintaining
zero inventory on finished goods, and building products to
order only.

In our implementation, agents are situated at each of the
involved sites. For example, one agent is located at Moun-
tainMan and one agent is located at each retailer. The Moun-
tainMan agent’s job is to interact with the retailer agents
and to determine production schedules for the MountainMan
small volume production line accordingly. Note that the
overall supply chain, shown in Figure 2, involves raw ma-
terial flows, shippers, and distribution centers. In this paper
we focus on the problem of coordinating production to meet
dynamic demand at the retailers. Recent work includes as-
signing agents to shippers and reasoning about the implica-
tions of raw material flow to production scheduling, though
aspects of this work are beyond the scope of this paper. The
general flow of events across the agents is that when inven-
tory levels fall below the specified threshold at a retailer,
the retailer’s agent places orders with MountainMan for re-
placement goods. The MountainMan agent reasons about
the new order and how it relates to currently scheduled pro-
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duction in terms of temporal constraints and overall value. It
can then negotiate over delivery time with the retailer agent
in order to optimize MountainMan’s mix of goods. The use
of agents for this example is what enables the retailers and
MountainMan to coordinate dynamically and automatically
to optimize their activities.*

In the next section we provide a high-level view of TEMS
agents and TAEMS technologies. In the section after that we
return to the details of the application and illustrate the use of
TAMS agents for managing MountainMan’s dynamic sup-
ply chain problem. We then discuss chains of interactions
and identify selected related work, discuss limitations, ex-
perimental plans, and future work.

TAMS Agents

We use the expression TAEMS agents to describe our agent
technology because the cornerstone of our approach is a
modeling language called TEMS (Task Analysis Environ-
ment Modeling and Simulation). TZEMS is a way to repre-
sent the activities of a problem solving agent — it is notable
in that it explicitly represents alternative different ways to
carry out tasks, it represents interactions between activities,
it specifies resource use properties, and it quantifies all of
these via discrete probability distributions in terms of qual-
ity, cost, and duration. The end result is a language for rep-
resenting activities that is expressive and has proven useful
for many different domains including the BIG information
gathering agent (Lesser et al. 2000b; 2000a), the Intelligent
Home project (IHome) (Lesser et al. 1999), the DARPA
ANTS real-time agent sensor network for vehicle tracking

The issue of what criteria over which to optimize is deliber-
ately unspecified. If we assume that MountainMan and the re-
tailers have no direct relationship then MountainMan’s goal is to
optimize over its own local criteria. In general this is simply to
maximize profit but other secondary items might be to keep the
line fully utilized or to use particular machines on a regular basis.
For this example the exact optimization criteria is unimportant be-
cause all of these aforementioned issues can be mapped into the
TAMS quality attribute over which the MountainMan agent opti-
mizes. Subsequent sections contain more information on TAEMS
and TZEMS agents.




(Vincent et al. 2001; Horling et al. 2001), distributed hos-
pital patient scheduling (Decker & Li 1998), distributed col-
laborative design (Decker & Lesser 1995), process control
(zZhang et al. 2001), agents for travel planning (Wagner et
al. 2001), agent diagnosis (Bazzan, Lesser, & Xuan 1998;
Horling, Benyo, & Lesser 1999), and others.

Figure 3 shows a TAMS task structure like that used by
the MountainMan agent in this application. The structure
is a hierarchical decomposition of a top level goal which
is simply to Produce. The top level goal, or task, has
two subtasks which are to Make Bags and Make Back
Packs. Each of these tasks are decomposed into subtasks
and finally into primitive actions. Note that most of these
are omitted from the figure for clarity. The details are shown
for the Make BElI Jasper pack task — it consists of four
primitive actions that are picking zippers and fasteners, cut-
ting the webbing, cutting the fabric, and sewing the pack.
The inter dependence of these tasks is modeled in TEMS
using an enables non-local-effect. The dotted edges (en-
ablements) from tasks like cutting and picking to the sewing
tasks indicate that these tasks must be performed first and be
performed successfully for the sewing task to be performed.
Note that all of the primitive actions (leaf nodes) also have Q
(quality) and D (duration) discrete probability distributions
associated with them. For simplicity in this paper we do not
use uncertainty and all values will have a density of 100%.
Picking the zippers thus takes 10 minutes (.16 hours) and
generates a quality of one. Cutting the webbing has a sim-
ilar allocation while cutting the fabric takes longer (1/2 an
hour) and produces a higher quality (four). Sewing the packs
takes over an hour and also produces a higher quality (four).
The sum() function under the Make BElI Japser task
is called a quality-accumulation-function or gaf. It describes
how quality (akin to utility) generated at the leaf nodes re-
lates to the performance of the parent node. In this case we
sum the resultant qualities of the subtasks — note that the cut-
ting of the fabric and the sewing operations dominate how
well the bags are made in this application. Quality is a de-
liberately abstract concept into which other attributes may
be mapped. In this paper we will assume that quality is a
function of the amount of profit generated by the production
of a given good.

In the sample task structure there is also an element of
choice - this is a strong part of the TAEMS construct and
important for dynamic supply chains. The Make Back
Packs task, for example, has two subtasks joined under
the sun() qaf. In this case the MountainMan agent may
perform either subtask or it may perform both depending on
what activities it has time for and their respective values.
The explicit representation of choice — a choice that is quan-
tified by those discrete probability distributions attached to
the leaf nodes — is how TAMS agents make context depen-
dent decisions. In supply chain applications this is how the
MountainMan agent sees that it has a choice of which prod-
ucts to produce and when.

By establishing a domain independent language (TAEMS)
for representing agent activity, we have been able to de-
sign and build a core set of agent construction compo-
nents and reuse them on a variety of different applica-
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Figure 3: Sample TAEMS Task Structure for a Manufactur-
ing Agent

tions (mentioned above (Lesser et al. 2000b; 2000a; 1999;
Vincent et al. 2001; Horling et al. 2001; Decker & Li 1998;
Decker & Lesser 1995; Zhang et al. 2001; Wagner et al.
2001; Bazzan, Lesser, & Xuan 1998; Horling, Benyo, &
Lesser 1999)). TAMS agents are created by bundling our
reusable technologies with a domain specific component,
generally called a domain problem solver, that is respon-
sible for knowing and encapsulating the details of a par-
ticular application domain. In the BIG information gath-
ering agent, for instance, the domain problem solver is a
blackboard planner that knows how to model software prod-
ucts, build models of products from raw text data, and com-
pare/recommend products to purchase. In another applica-
tion the domain problem solver may be a process plan or
a legacy database application. In each of these cases we
abstract away from the details of the domain by creating a
custom mapping function that translates the internals of the
domain problem solver into TAEMS task structures that are
then operated on by the rest of the system.

For this paper it is sufficient to know that T/EMS agents
have components for scheduling and coordination that en-
able them to 1) reason about what they should be doing
and when, 2) reason about the relative value of activities,
3) reason about temporal and resource constraints, and 4)
reason about interactions between activities being carried
out by different agents. A high-level view of a TAEMS
agent is shown in Figure 4; everything except for the do-
main problem solver is reusable code. Note that each mod-
ule is a research topic in its own right. The agent sched-
uler is the Design-to-Criteria (Raja, Lesser, & Wagner 2000;
Wagner, Garvey, & Lesser 1998; Wagner & Lesser 2001;
Wagner, Garvey, & Lesser 1997) scheduler and the coordi-
nation module is derived from GPGP (Decker & Li 1998).
Other modules, e.g., learning, can be added to this architec-
ture in a similar plug and play fashion.

In the supply chain application there are two types of do-
main problem solvers, those that manage the retailers’ inven-
tories and the MountainManagent that manages Mountain-
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Figure 4: A Single TAEMS-based Agent Ready to Coordi-
nate Its Activities With Other Agents

Man’s production. The retailer problem solvers are of simi-
lar construction. Their function is to monitor purchasing ac-
tivities and check inventory levels when purchases are made.
If a good falls below a specified threshold, they reorder and
negotiate with the MountainManagent to determine deliv-
ery times/dates. The MountainMandomain problem solver
is different an instead reasons about MountainMan’s pro-
duction. It creates new candidate runs for new orders as they
come in and remove jobs from the list of candidates if orders
are canceled.

Dynamic Supply Chain Example

As mentioned in this example each retailer has a TEMS
agent that manages its local interests and orders products
when appropriate. MountainMan also has an agent that in-
teracts with the retailer agents, responds to order requests,
negotiates delivery times, and manages MountainMan’s pro-
duction.? In this paper we focus on a subset of the sup-
ply problem and do not address interacting directly with
shippers or raw material suppliers. Current work involv-
ing chains of interactions (discussed later) will be disclosed
at a later date once corporate IP policies are cleared. The
agent network is shown in Figure 5. This example has spe-
cific properties, requirements, and assumptions that frame
the problem. A subset of the more notable ones are:

e Production is a single shift and scheduled from 8am to 4pm.
However, the agents operate both day and night and adjust pro-
duction schedules as necessary.

All goods are shipped over night via an express carrier.

Raw materials are always sufficient to support production.
Orders may arrive at any time day or night.

Retailers order goods in lots.

2The actual computation about which items to produce and
when is performed by the DTC (Raja, Lesser, & Wagner 2000;
Wagner, Garvey, & Lesser 1998; Wagner & Lesser 2001; Wagner,
Garvey, & Lesser 1997) TAMS agent scheduler.
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Figure 5: Each Company Has Its Own Agent That Manages
Its Local Interests

e No WIP (work in progress) is left on the tables at the end of the
day.

e Orders are not interruptable once they have begun.

e The TAMS quality associated with production tasks is a func-
tion of the margins produced by different products.

e Production activities will be modeled as primitive actions in
TAMS at the grainsize of Make Product X2

e All customers are equally valuable. If this were not the case,
it too could be mapped into TAEMS quality associated with the
production tasks.

e When orders arrive they have a desired delivery date/deadline
(that is specified by the retailer agents).

e Production specifics: sleeping bag lots require four production
hours, backpacks require two hours per lot.

e All TEMS distributions are 100% certain (single valued func-
tions).

3This is sufficient for scheduling and selection in this example.
The focus is on the interaction across agents — the more detailed
MountainMan job shop scheduling problem is addressable with the
TAMS technology and other well defined techniques.



The current simulated world time is 10am. Mountain-
Man’s TAEMS task structure, which describes Mountain-
Man’s current production options and requirements at 10am,
is shown in Figure 6. MountainMan’s current schedule is
also shown in the figure. In the task structure Mountain-
Man has two orders — one for JJBoom 3 Season sleep-
ing bags and one for BEI Jasper backpacks. (A differ-
ent TEMS task is associated with each order.) The JJ-
Boom lot has a higher expected quality because the mar-
gins are better on the JJBoomproduct than they are with
the BEI Jasper. However, the JJBoomsleeping bags
take longer to produce than the BEI Jasper backpacks.
If the MountainMan agent were optimizing over the qual-
ity/duration ratio rather than maximizing quality, and the
two orders were mutually exclusive, the agent would choose
the BEI Jasper run over the JJBoomsleeping bag run.
In this case as both the orders can be satisfied and the agent is
maximizing total quality both production runs are scheduled
and both orders are set to be filled. MountainMan is cur-
rently two hours into the JJBoomsleeping bag production
run and is planning to produce BEI Jasper backpacks af-
ter the sleeping bag run (at 2pm).

At 12pm, when MountainMan is two hours into the JJ-
Boomsleeping bag production run, a new order arrives. It
is for the very high profit KM5 Sequoi a backpacks. The
arrival of the new order causes the domain problem solver
for the MountainMan agent to produce a new candidate pro-
duction task, Make KMS Sequoi a, associated with the
order as shown in Figure 7. The new order has a desired
delivery date for the subsequent day. Because the produc-
tion schedule for today is full, the MountainMan agent must
either negotiate with the KMS retailer that placed the order
or find some other way to produce the desired goods. Note
that at this time (12pm) the BEI Jasper packs are sched-
uled for production at 2pm. Thus the MountainMan agent
actually has four possible choices: 1) it can reject the KMS
Sequoi a order because production is full for the current
day, 2) it can reject the existing BEI Jasper order and do
the KM5 Sequoi a run instead, 3) it can negotiate with the
KMS retailer agent to obtain a delivery deadline that it can
meet more easily, 4) it can negotiate with the BEI retailer
agent to obtain a later delivery date for that order.

In this case we assume that KMS orders are gener-
ally non-negotiable and the MountainMan agent considers
rescheduling accordingly. Upon consideration the agent it-
self detects that the KMS Sequoi a order can be filled and
that it should bump the BEI Jasper because the KMS
Sequoi a production run is more profitable. (This analysis
is performed by the TAEMS Design-to-Criteria agent sched-
uler.) In making this determination the agent could reason
about the cost of decommitment for the existing order and
compare said cost to the higher value associated with the
new order. In this example decommitment cost is not used.
Given the higher value of the new order, the agent resched-
ules as shown in Figure 8. When the agent reschedules it
sends the BEI retailer agent a decommitment message that
indicates the BEI order will not be filled as expected. Note
that the JJBoomrun that is currently in production proceeds
uninterrupted. If runs were interruptable (they are not — see
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Figure 6: MountainMan’s TAEMS Task Structure And Asso-
ciated Schedule At 10AM
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Figure 7: MountainMan’s Modified TEMS Task Structure
Reflects The New Order

the assumptions above) the agent would consider aborting
the current run and could even evaluate taking the run off
the line at some cost (overhead) and putting it back on dur-
ing a future time when the line was idle or constraints more
relaxed.

In response to the notice that MountainMan will not ful-
fill its order the BEI retailer agent examines its own local
TAMS task structure (not shown) and because there are no
other orders that are competing for financial resources (shelf
space could be considered here also) it re-issues its order
with a later delivery date. The MountainMan agent resched-
ules again, as shown in Figure 9, and decides to 1) complete
the JJBoomrun (as it should given the requirements above),
2) then do the KM5 Sequoi a production run, 3) and then
tomorrow (at 8am) to do the BEI Jasper run.

This small example illustrates an important class of ca-

pabilities for dynamically managing a small supply chain.
First it shows autonomously making a quantified choice be-
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Figure 9: MountainMan’s Production Schedule Is Revised
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tween candidate activities as the situation changes. On a
given day there could be many such events and many such
exchanges. Automating some or all of this process enables
the aggregate system to optimize continuously to improve
efficiency, lower costs, maximize profit, or whatever the ob-
jective criteria is appropriate. This example also illustrates
how intelligent agent technology that incorporates temporal
reasoning maps to supply chain problems where deadlines
(delivery times) and other related constraints are present.
The example also identifies many areas where application
specific sophistication can be added. For instance the agents
could engage in a complex negotiation process to determine
appropriate delivery times or could predetermine a price for
decommitment (failing to fulfill an order after a guarantee
has been given) that would be considered by the Mountain-
Man agent before a decommitment action was taken.

Note that the key properties of the supply chain problem
space represented here is that control is distributed and the
situation is dynamic as the orders are driven by actual con-
sumer demand and not by estimates that are computed a
priori. Other supply chain problems that map directly to
this space include automatically changing production sched-
ules to take advantage of spot market materials where the
suppliers are represented by agents or shifting activities at
both the manufacturer and the retailer to adapt to changes
in shipping times or even a shipper going on strike. An-
other mapping is automatically modifying production to take
advantage of changes in the marketplace as communicated
by other agents, e.g., new customers, a change in product
mix, a change in the product design itself, etc. In general
by adding dynamic control to the problem space the entire
supply chain becomes more flexible and potentially more
efficient. Note also that the use of agents at all of the in-
volved parties is what produces the increase in flexibility —
because the agents automatically negotiate over time, and
potentially quality and costs, and because they communicate
and convey information as it happens, they converge on an
optimization across the network of interested parties. With
respect to control of actual business processes, particularly
when large dollar figures are involved, the agents can fill
a support/advisory role and still leave the ultimate decision
making capabilities with a trusted human.

Chains of Enablement

In the previous example we discussed a coordination episode
between retailer agents and a manufacturing agent. Consider
if the same problem is expanded to include raw and inter-
mediate material suppliers who ship to the manufacturer in
response to the order placed by the retailer. In a conven-
tional setting, most if not all of the suppliers will maintain
an inventory of raw materials and will simply ship as needed
from the inventory (scheduling production to generate more
inventory as needed). However, in our problem space the
raw material suppliers are running with a set of requirements
akin to those of MountainMan in the previous example — ev-
erything is build to order (or the inventory levels are so small
as to have the same effect).

The implications of this are not obvious. If everything
that is produced along an entire chain is custom (for only
one possible customer) and no inventories are maintained,
it means that if the retailer cancels the order while it is in
the process of being filled, those who have produced goods
for said order lose money. Figure 10 sketches the situation.
Each production activity only has value if the retailer com-
pletes its purchase of the finished good.

For coordination the implications are pronounced. GPGP
coordination is, in general, a peer-to-peer coordination pro-
cess. (The rationale for this is beyond the scope of the pa-
per.) If a peer-to-peer process is used to coordinate over
any chain (not just those that have the very unusual property
just described) it may take many iterations back and forth
across the chain to resolve all of the temporal interactions
and converge on a solution that works throughout the chain.
If you add in the characteristic that each activity only has
value if the entire chain is performed from start to finish the
agent must conceptually wait until the entire chain has so-
lidified (or converged) before beginning production. This
“global” commitment is very different than a conventional
GPGP style commitment — it has more in common with a
commitment to a particular course of action regardless of
the actual bindings as described in (Castelfranchi 1995).

To address the chains of interactions, where tasks along
the supply chain only have value if the retailer purchases
the product, we have created a new distributed coordina-
tion algorithm that uses value and decommitment cost to
achieve global coherence across the chain. We currently
cannot present the algorithm due to corporate policies re-
garding intellectual property but it will be presented at the
workshop and in subsequent publications.

Related Work

Huhns et al (Huhns, Stephens, & lvezic 2002) implemented
several methods to automate the construction of agent-based
supply chains by translating UML diagrams and Business
Object Documents (BODs) into state machines that model
the conversations necessary for supply chain management
and that can be then wrapped in agents. (Figure 7 in their
paper shows their process well.) Their work differs in that
they are not solving the problem of how agents decide which
requests to fulfill in a collaborative setting beyond the proto-
col level. In our work there is a strong element of quantified
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Figure 10: Chains of Interactions Where Tasks Only Have Value if Chain is Completed

and temporal decision making or choice that is lacking from
theirs. Note, however, that some of their ideas could be used
to frame the communication process of our work.

Shen et al. (Shen et al. 1999) detail a general, domain
independent, collaborative agent system architecture which
incorporates standard agent services such as ontology, yel-
low pages, and centralized local coordination managers as
well as the the notion of a dynamic cooperation domain ab-
straction for groups of cooperating agents. While this work
identifies the importance of cooperation, it does not describe
or implement quantified choice / coordination technologies.

Zeng and Sycara (Zeng & Sycara 1999) define a model
that can be evaluated to identify efficient combinations of
supply-chain activities. The model consists of and/or task
decomposition trees. Parts of a supply chain are represented
by these nodes. These models are translated into problems
for which decisions can be made following inventory the-
ory models. Said models do not appear to consider com-
mit/decommit problems, or the explicit modeling of one
tasks’ properties versus another. It is thus unclear how flex-
ible the system is — certainly it does not leverage quantified
choice or selection.

Barbuceanu (Barbucceanu 1999) gives a representation
for tasks and constraints on the execution of tasks (behav-
iors) called a goal network. Obligations and interdictions in
his framework roughly correspond to commitments (part of
the TEMS coordination process) or the facilitates/hinders
interactions in TZEMS (not shown in Section but related
to TAEMS enablement). One agent’s authority over another
is required to set an obligation. The author also describes
a way reasoning about the representation, which is branch
and bound, to find the right commitment for goals which
optimizes the utility of the task network.

Collins et al. (Collins & Gini 2001) describe a MultiA-
gent NEgotion Testbed (MAGNET) which implements col-
laboration via an auction model. Agents which require ser-

vices request them via a task network that includes task de-
scriptions and time constraints. Provider agents then send
back bids with the tasks that they are willing to undertake,
when they can do them, and at what price. A bid manager
fills in a requesting agent’s task structure with an appropriate
schedule from the bids by using either an integer program-
ming or a simulated annealing evaluator. Their framework
is not as rich as TAEMS, and they are not dealing with com-
mit/decommit issues though they are considering temporal
constraints and a choice mechanism — features we consider
important.

In general our work differs in the inherent richness of
TAMS and the explicit effort of all of the TEMS tech-
nologies to support dynamic adaptation to situations as they
evolve. Thus both the agent scheduling and coordination
technologies are designed not to rely on a priori or off-line
computations and designed specifically to always evaluate
options from a qualified perspective.

Limitations, Experimental Plans, and Future
Work

This paper describes TAEMS agent technology and shows
its use on an implemented supply chain management prob-
lem. The technology used here currently has a few limi-
tations — some of which are being addressed and some of
which are larger issues. In this paper, the coordination pro-
cess used is pair-wise. This technique will not map to larger
supply chains without introducing inefficiency and potential
financial loss due to agents making inappropriate decisions.
Recently we have created a distributed coordination process
that handles chains of interactions using value and decom-
mitment cost. This process will be presented in subsequent
publications.

Another limitation of our current implementation is
that we do not coordinate over resources. The chains of
interactions described above and easily envisioned by raw-



to-manufacturer-to-retailer chains are not actually chains
from task-to-task but are chains from task-to-resource-to-
task. In other words, MountainMan produces a good that is
consumed by the retailer. If we modeled and coordinated
over that good, rather than using task interactions, the
system would automatically handle situations in which
MountainMan had a requested good in inventory or lacked
a raw material needed for production. Currently this
functionality is partly implemented in the domain problem
solvers of the retailer agents and the MountainMan domain
problem solver could be extended to provide this function-
ality as well, e.g.,, i f goods in inventory, ship
and charge (do not nake new production

t ask) . However, resource coordination has been done
before in TEMS and the explicit representation of the
resources potentially introduces an additional level of
flexibility and simplifies the construction of the domain
problem solvers.

The larger issue that may not be obvious is that when con-
trol is decentralized in this fashion, and the problem decom-
position itself is not structured but instead evolves, this type
of distributed optimization is not always guaranteed to be
optimal. When can it fail? When the problem spaces get
large it is occasionally difficult for the Design-to-Criteria
agent scheduler to produce an optimal solution. (The gen-
eral case of the problem it solves is not computable — it uses
approximation techniques to make the space tractable and
operate on-line in soft real time.) Another case in which it
may not be optimal is when the constraints fall in a particu-
lar way — the partial and distributed views held by the agents
may not always contain enough information for them to fully
optimize. With this caveat mentioned, it is also important to
recognize that most human-centered business processes to-
day are far from optimal. In this work we are seeking to
improve efficiency and reduce costs — making gains over the
approaches currently used.

The work presented here is also not heavily verified em-
pirically. We will conduct experiments, after the interaction-
chain protocols are constructed, that measure the proxim-
ity to optimal that the system can reach in this distributed
fashion. Note the implication of this class of experiments
are that the problem space has to be relatively small so that
the centralized optimal (exhaustive) computation can be per-
formed. Other appropriate experiments include testing the
boundary conditions / extremes in terms of number and type
of (conflicting) constraints. Metrics typically evaluated in-
clude the overall quality obtained by the agents, the number
of messages passed, the number of decommitment opera-
tions required, and the number of times the agents sched-
ule/reschedule while considering their options.
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