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Abstract 
When a group comes together to pursue a goal, how should 
the group interact?  Both theory and practice show no single 
organization always performs best; the best organization 
depends on context.  Therefore, a group should adapt how it 
interacts to fit the situation.  In a Multi-Agent System 
(MAS), a Decision-Making Framework (DMF) specifies the 
allocation of decision-making and action-execution 
responsibilities for a set of goals among agents within the 
MAS.  Adaptive Decision-Making Frameworks (ADMF) is 
the ability to change the DMF, changing which agents are 
responsible for decision-making and action-execution for a 
set of goals.  Prior research embedded ADMF capabilities 
within an agent to search, evaluate, select, and establish a 
DMF for a given situation and given goal(s) the agent 
sought to achieve.  Using the ADMF capability, the Multi-
Agent System improved system performance compared to 
using the same, static Decision-Making Framework (DMF) 
in all situations (Martin, 2001).  While the motivation for an 
agent possessing ADMF has been proven and an example 
MAS system with agents employing ADMF has been built, 
interesting questions arise as one investigates the ability of 
an agent to find the “best,” or “near optimal” or “sufficient” 
DMF among all the possible DMFs.  This paper presents 
initial exploration of this investigation by asking, “How 
large is the DMF search space for an agent?”  This paper 
presents tight computational bounds on the size of the 
search space for Decision-Making Frameworks by applying 
combinatorial mathematics. The DMF representation is also 
shown to be a factor in the size of this search space. 

Introduction 
How many ways can agents collaborate to make group 

decisions?  Prior research has qualified the Multi-Agent 
System (MAS) performance advantages gained when 
agents dynamically form groups and allocate decision-
making and action-execution responsibilities in response to 
changing situations (Martin, 2001). If decision-making is 
the process of creating, selecting, and allocating sub-goals 
(or actions) to achieve a goal, then Decision-Making 
Frameworks (DMFs) have been defined as the 
organization constructed to carry out Decision-making.  As 

an agent seeks to select a DMF, the agent may search over 
the possible decision-making organizations within a given 
Multi-Agent System. An agent may search all DMFs to 
find the optimal DMF or may search some DMFs to find a 
sufficient DMF. The tradeoff between the cost of finding a 
DMF and the benefit or utility of using a particular DMF is 
a real consideration. Thus, this paper investigates the size 
of the DMF search space as a factor in the cost of finding a 
DMF.   

This paper outlines the algorithmic steps to implement 
the Adaptive Decision-Making Framework (ADMF) 
capability – the ability to search, evaluate, select, and 
establish a DMF given a situation and specific goal(s) to be 
achieved by the DMF. By enumerating the steps, the 
analysis can characterize the run-time complexity of 
ADMF algorithms. 

To understand the computational complexity of ADMF, 
one must understand the qualitative size of the space (the 
number of candidate DMFs) that ADMF algorithms must 
explore.  This paper examines the state space size as a 
function of the DMF representation.  

A Decision-Making Framework (DMF) specifies how 
agents work together to achieve a given set of goals.  A 
particular DMF representation has been previously defined 
as an assignment of variables in three sets, ({D}, {C}, {G}) 
(Barber and Martin, 2001b). This Decision-Making 
Framework (DMF) representation models the set of agents 
{D} deciding a set of goals for another, controlled, set of 
agents {C}, which are bound to accept sub-goals to 
accomplish the goal set {G}.   This model specifies the 
agent’s decision-making interaction style, controlling how 
that agent participates in the decision-making process for 
some goal set.  For example, a “master/command-driven” 
DMF in which an agent, Agent1, acts as the deciding agent 
and other agents, Agent2 and Agent3, are controlled by 
Agent1 to accomplish a goal, G1, would be represented by 
the (D = {Agent1}, C = {Agent2, Agent3}, G = {G1}) 
assignment.  The set of DMFs covering all goals in the 
system is the Global Decision-Making Framework, 
denoted by GDMF.  The GDMF is the ({D}, {C}, {G}) 
DMF assignments such that all goals are in exactly one 
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DMF, but one ({D}, {C}, {G}) assignment may apply to 
multiple goals. 

This paper addresses the questions: “How do 
Decision-Making Frameworks combine in Global 
Decision-Making Frameworks?” and “What are the 
bounds on the size of the space of Global Decision-
Making Frameworks for a given number of goals and 
agents?” Next, the paper will explore the motivation for 
considering different factors (in addition to D and C) that 
may influence the performance of Decision-Making 
Frameworks. Finally, we consider the consequences of 
considering additional factors in terms of search space 
size and strategies for finding satisficing Decision-
Making Frameworks. 

Decision-Making Framework and Multi-
Agent System Definitions 

A Multi-Agent System (MAS) is a group of distributed 
software programs, called agents, which interact to 
achieve a goal(s) (Weiss, 1999).  An agent is able to 
sense its environment, reactively or deliberatively plan 
actions given inferred environmental state and a set of 
goals, and execute actions to change the environment.  
Agents in a Multi-Agent System (MAS) can interact in 
sensing, planning, and executing.  The study of Multi-
Agent Systems examines individual agent- and system-
level behavior of interacting software agents. 

A MAS decision-making organization, is an 
instantiated set of agents working together on a set of 
goals, the (explicit and implicit) decision-making 
protocols used to select how to accomplish the goals, and 
the coordination protocols used to execute the decided 
actions.  That is, any given decision-making organization 
is a particular set of agents using some particular 
protocols to decide and enact a particular set of goals.  
The term organization will be used in this paper as 
shorthand for MAS decision-making organization. 

A Decision-Making Framework (DMF) specifies the 
set of agents interacting to achieve a set of goals (Barber 
and Martin, 2001b).  A Decision-Making Framework 
consists of (1) the decision-making control set {D} 
specifying which agents make decisions about the goals, 
(2) the authority-over set {C} specifying which agents 
must carry out the decisions made, and (3) the set of goals 
{G} under consideration.  Agents form a DMF for one or 
more goals and an agent may participate in multiple DMFs 
for different goals simultaneously.  Decision-Making 
Interaction Styles (DMIS) describe how an individual 
agent participates in a DMF.  Four Decision-Making 
Interaction Styles are: 

• Command-Driven (CD)– The agent does not make 
decisions about how to pursue this goal set and must obey 
orders from its Master agent(s). 

• Consensus (CN) – The agent works as a team 
member, sharing decision-making control and acting 
responsibility equally with all agents in the DMF. 

• Locally Autonomous (LA) / Master (M) – This 
agent alone makes decisions for these goals.  Masters give 
other agents orders, while Locally Autonomous agents act 
alone. 

A single Decision-Making Framework is composed of a 
coherent set of individual Decision-Making Interaction 
Styles for all participating agents (e.g. Master/ Command-
Driven or all Consensus frameworks).   

A Global Decision-Making Framework (GDMF) is a 
partition of the system’s goal and agent set into DMFs so 
that, at any time, each goal actively under consideration by 
an agent in the system is in exactly one DMF.  The 
degenerate case of a DMF is an agent working alone on a 
goal, which is a Locally Autonomous DMF.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Decision-Making Frameworks in a Global Decision-
Making Framework 

yielding 
subgoals 

carried out 
 by 

makes 
decisions 
to achieve 

Deciding set 
of agents (D) 

Controlled set
of agents (C) 

Set of goals
(G) 

DMF1 

DMF2

Goals in system 

Global Decision-Making Framework 



Error! Reference source not found. illustrates the 
DMF and GDMF relations.  Figure 1 shows a Global 
Decision-Making Framework consisting of two Decision-
Making Frameworks.  DMF1 has two agents controlling 
the decision-making for seven goals and two agents bound 
to accept sub-goals.  One of the agents is both in the 
decision-making set and the controlled set.  The second 
DMF has one agent deciding and executing the other two 
intended goals in the system.   

Multi-agent systems capable of using Adaptive 
Decision-Making Frameworks (ADMF) have the ability to 
change Decision-Making Frameworks during operation 
(Barber and Martin, 2001b).  Multi-agent systems 
incapable of ADMF use a static Decision-Making 
Framework (established prior to system start-up) 
throughout system operation. 

Adaptive Decision-Making Framework 
(ADMF) Process 

The ADMF process consists of five steps (Martin, 2001).  
This process is described from an agent’s perspective as 
the agent works to construct a DMF for one or more of its 
goals. 

• Search: The agent searches among candidate DMFs.  
The ADMF algorithm will determine the extent to 
which the agent searches among all or some of the 
possible DMFs. 

• Evaluation: The agent uses some metric to evaluate 
the candidate DMFs. 

• Selection: The agent selects a DMF based on whether 
the cost of implementing the DMF, and perhaps 
breaking current commitments to other DMFs, is 
worthwhile. 

• Negotiation: The agent proposes the desired DMF to 
other agents who are proposed as members of {D} and 
{C} in the desired DMF.  The other agents run an 
ADMF algorithm to decide if the DMF is attractive 
and evaluate alternatives.  Each agent may counter-
propose.  The negotiation can continue until unanimity 
is reached.  An example negotiation protocol is 
provided by (Barber et al., 2001). 

• Instantiation: The agents begin to make decisions 
and act based on the chosen DMF. 

 Note that the ADMF process is itself a Multi-Agent 
System decision.  The algorithms implementing ADMF in 
software systems have used two DMFs in effect, working 
alone at first to evaluate DMF and then in a unanimous 
consensus negotiation to select and form multi-agent 
DMFs.   

Each of the ADMF steps implies agent design decisions; 
for instance, design decisions impact the search algorithm, 
the evaluation metrics, and the negotiation protocol.  This 
research examines how some of these decisions are 
constrained by the nature of the ADMF problem. 
Specifically, how many organizations can be encoded by 
different representations of Decision-Making 

Frameworks?  Again, we must limit the question to a finite 
number of goals and agents. In order to scope the difficulty 
of searching for the optimal organization, one must know 
how many DMFs are possible.  Even for a given number 
of goals and agents, the class of DMFs may be at least 
countably infinite.  As a proof, consider a DMF 
characterized by constituent member agents and the 
decision-making voting strength of each agent.  Since the 
voting strength could be represented by a rational number 
(for instance, some number of voting shares out of a total 
number) and the set of rational numbers is countably 
infinite, the set of DMFs can be countably infinite in this 
case.  Some combinatorial math provides estimates of the 
size of the DMF search space for two DMF 
representations. This research presents a computational 
analysis placing tight bounds on the sizes of different 
spaces of possible DMFs given the representational 
constraints.  Given these bounds, we can state how much a 
Decision-Making Framework representation limits the 
search space of possible decision-making organizations. 

Size of the Decision-Making Framework 
Space 

Under the Decision-Making Framework representation 
presented by Barber and Martin (Barber and Martin, 
2001a), each agent has either one or no votes to influence 
the decision about how to solve a goal and is either entirely 
or not at all committed to execute the group’s decision.  
That is, controlled agents C have agreed to accept any sub-
goals the deciding set of agents D proposes.  Thus, for one 
goal, or one arbitrary set of goals, a DMF could be 
represented by two bits for each agent in the MAS: one bit 
representing participation in the decision-making set of 
agents and the other representing the presence or absence 
of commitment to execute the decision.  So the entire DMF 
for a goal set in a MAS with n agents could be represented 
by 2 n bits, n for whether each agent is in the deciding set, 
and n whether each agent is in the executing set.  Thus, for 
a single DMF, there are 22n combinations of deciding and 
executing sets of agents. 

Size of Related Decision-Making Organization 
Representations 

The DMF representation can easily be extended to cover 
different numbers of votes per agent and different 
commitment levels.  Instead of encoding the agents’ 
membership in the deciding or enacting sets with one bit, 
one can encode arbitrary granularity of decision strength 
and commitment with multiple bits per agent.  A simple 
scheme represents different levels of voting strength by 
counting the number v of different voting strengths in the 
system and representing v as a binary number.  For 
instance, 2 bits could represent a system where each agent 
holds exactly 1, 5, 10, or 100 voting shares.  An analogous 



scheme could represent levels of commitment to executing 
the decided goal.  Thus, in the general case, for d possible 
deciding agents and c possible controlled agents with at 
most v gradations of voting strength and at most u 
gradations of commitment, there are 2d log v + c log u of 
voting-strength, commitment-strength DMFs.  Allowing all 
n agents to each have zero or one vote and all-or-none 
commitment, this reduces to the 22n derived above for 
DMFs. 

Size of the Global Decision-Making 
Framework (GDMF) Space 

  
How many different combinations of instantiated 

Decision-Making Frameworks are possible in a Global 
Decision-Making Framework?  Note that a GDMF can be 
represented as a concatenation of the bit strings for the 
individual DMFs.  Thus, a GDMF made up of m DMFs 
can be represented by a string of m bit strings, each of 
which in the simplest case is 2n bits long, where n is the 
number of agents.  Since the entire bit string is 2mn bits 
long, there are 22mn combinations of DMFs in a GDMF for 
m goals and n agents where each goal is in its own DMF.  
For instance, the number of combinations in a DMF with 
eight DMFs over eight agents and eight goals is at least 
22*8*8 = 2128 ~= 3.4 x 1038. 

However, more than one goal may be in a Decision-
Making Framework.  If some of the goals are grouped into 
a DMF, and each goal may only be in one DMF at a time, 
then any GDMF with goals grouped in a DMF will have 
fewer DMFs in it.  The combinations within a GDMF are 
exponential in the size of DMFs.  For example, if GDMF1 
contained m goals and n agents with one constituent DMF 
sharing two goals, GDMF1 will be half the size of GDMF2 
if  GDMF2 contains a separate DMF for each goal (given 
the same number of goals and agents in GDMF2 and 

GDMF1).  By induction and the sum of exponentials, the 
state space size of a GDMF is asymptotically  
Ο (22mn+1), where for n agents and m goals in the simple 
case. 

Now consider a representation for the Global Decision-
Making Framework (GDMF) for DMFs with 
heterogeneous levels of voting strength and commitment 
level.  As above, each agent has one of v voting strengths 
and one of u commitment levels to act to fulfill the decided 
sub-goals.   

Let {V} be the set of possible voting strengths for each 
agent in {D} within a DMF and {U} be the  set of possible 
commitment levels for each agent in {C} within a DMF.  
Let the Control and Commitment Allocation (CCA), be the 
tuple ({V}, {U}).  Therefore,  the number of combinations 
of DMFs with heterogeneous voting and commitment 
strength in a GDMF is Ο (2(d log v + c log u)m+1), for d 
deciding agents with v gradations of voting strength, c 
controlled agents with u gradations of commitment, and m 
goals. 

However, a DMF α1 containing two goals G1 and G2 is 
not functionally the same as two simultaneous DMFs 
α2 and α3  each containing one of α1

’s two goals and 
sharing the same Control and Commitment Allocation as 
α1 (Figure 2).  In α1, the two goals must be decided 
together, but in α2 and α3, the agents could decide on a 
solution for one goal without necessarily considering the 
other at that time. Therefore, we must distinguish between 
the cases when one DMF acts as a group to pursue more 
than one goal versus separate DMFs, each with identical 
Control and Commitment Allocation in ({V}, {U}) for 
each goal.  

Additionally, the performance of a DMF in a GDMF 
depends on its interaction with the other DMFs, for both 
cooperative and competitive agents.  For instance, 
cooperative agents may select an existing DMF as opposed 
to new DMF since the agents have already established 
knowledge about the existing DMF performance.  On the 
other hand, as game theory shows, the performance of a 
problem-solving strategy depends on the strategies of 
competing groups (Axelrod, 1984) (Binmore, 1992).  
Likewise, the performance under a DMF for one group of 
agents depends on the DMFs of competing groups of 
agents for competing goals (Martin, 2001).  The utility of 
each individual DMF depends on the other DMFs in the 
Global Decision-Making Framework, and of course, the 
utility of the GDMF in a situation is the utility of its 
constituent DMFs. 

To calculate the exact size of the state space of Global 
Decision-Making Frameworks (GDMF), we must first 
figure out how many different ways a set of goals can be 
split into DMFs such that every goal is in exactly one 
DMF.  This is equivalent to partitioning the set, i.e. 
breaking the set into subsets such that the set is covered.  
The Bell number (Bn) of a set with n elements is the 
number of ways the set can be partitioned into disjoint, 

 

Figure 2: A DMF is a contract, not just a collection of agents 
and goals. 
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non-empty subsets (Dickau, 1997).  A disjoint, non-empty 
subset is called a block.  The nth Bell number is the sum of 
the first n Stirling numbers of the second kind: Bn 

= Σk=0
n

 
S(n

k), where S(n
k) = S(n-1 

k-1) + K S(n-1
k).  The first 

ten Bell numbers are {1, 2, 5, 15, 52, 203, 1877, 4140, 
21147, 155975}.  The total number of disjoint DMFs 
possible over the space of GDMFs is the Bell number Bm 
for m goals.  For instance, for 8 goals, there are 4140 
different sets of partitions of goals into disjoint DMFs. 

The size of the GDMF space in terms of permutations of 
agents and goals is the sum across the Bell number of 
different goal partitions is Bm*(22n).  For eight agents with 
a total of eight goals, the formula is 4,140*22*8 ~= 
212*216 = 228 ~= 108.  For nine agents with a total of 
nine goals, the formula is 21,147*22*9 ~= 214*218 = 
232 ~= 109.  For ten agents with a total of ten goals, the 
formula is 155,975*22*10 ~= 217*220 = 237 ~= 1011. 

The Lovasz approximation of Bn is n-

05(λ(n))n+0.5eλ(n)-n-1, where λ(n)ln(λ(n)) = n 
(Lovász, 1979).   

Given this approximation, Bn, the size of the GDMF 
space is exponential in the number of goals.  Given the 
bound on DMF size, the GDMF space is also exponential 
in the number of agents.  Therefore, no brute-force 
algorithm can search the space in polynomial time. 

Brainov and Hexmoor show that finding a group with 
the maximum autonomy is NP Complete through a 
reduction to the subset sum problem (Brainov and 
Hexmoor, 2001).  By autonomy, they mean the relative 
comparison of group performance to the performance of 
each agent working alone.  Thus, Brainov and Hexmoor 
had the same goal as this research – finding the set of 
agents that work well together to maximize the group’s 
performance.  Brainov and Hexmoor’s proof of NP-
Completeness also holds here.  We can reduce our problem 
to theirs by taking the group of agents working together to 
be the disjunction of D and C.  Therefore, the AMDF 
problem is also NP-complete. 

D’Inverno, Luck, and Wooldridge show a similar 
problem is NP-Complete (D'Inverno et al., 1997).  They 
define a Structure, which is a representation of which 
agents cooperate for which goals.  A Cooperation 
Structure is a Structure that fulfills a set of properties, e.g. 
that it is non-empty, acyclic, and the goals contained are 
mutually consistent.  A Cooperation Structure is complete 
for an agent i and goal g if recursively, all sub-goals of 
that goal are instantiated and successfully delegated to 
some agent or the agent itself is capable of achieving that 
goal in isolation.  A complete Cooperation Structure is thus 
roughly equivalent to the recursive closure on sub-goals of 
the set of all Decision-Making Frameworks (DMFs) 
needed to satisfy the intended goal set.  D’Inverno, Luck, 
and Wooldridge define COOPSAT as the problem of 
finding a complete Cooperation Structure, given the 
agents, goals, goal consistencies, sub-goal relations, agent 

willingness to cooperate with each other agent, and agent 
capabilities.  They show COOPSAT is NP-Complete 
through a reduction to the Hamiltonian Cycle problem. 

Maximizing ADMF Benefits and Minimizing 
the Cost of ADMF 

Intelligence has been defined as the ability to control or 
avoid combinatorial state space explosion.  How can we 
control the combinatorial explosion of the size of the 
Global Decision-Making Framework space?  The easiest 
solution, of course, is not to search at all. In this case the 
benefit (performance) of one single GDMF (defined by the 
constituent DMFs) must be adequate across all occurring 
situations, or the cost-benefit tradeoff of switching does 
not benefit the agent.  Another simple solution is to search 
a tightly bounded subset of the space, but this subset 
should be chosen in a principled way if the system 
designer wants to prove (near) optimality. 

Perhaps the simplest method of providing an agent the 
Adaptive Decision-Making Frameworks (ADMF) 
capability is through a simple rule base suggesting certain 
DMFs when certain aspects of the problem occur.  For 
instance, Martin found that extremely simple rule bases 
performed comparatively to a comprehensive case-based 
approach for choosing GDMFs out of a set of five GDMFs 
(Martin, 2001).  It should be noted that Martin derived this 
simple rule base after she conducted significant analysis of 
the domain and DMF performance against multiple and 
varied situations in the domain.   

A rule base must be crafted with an understanding of the 
interaction of agents in situated problem solving for each 
particular domain.  Creating a rule set that can be justified 
analytically is an open problem, and comprehensively 
empirically testing rule bases will be intractable in many 
domains.  The simple rule base approach is equivalent to 
Gigerenzer’s fast and frugal heuristics (Gigerenzer, 2000).  
For instance, one simple maxim is that DMFs requiring 
communication usually perform poorly when 
communication is cut off.  Indeed, this rule alone provided 
much of the benefit of ADMF in Martin’s experiments 
(Martin, 2001). 

A case-based approach requires a distance metric to 
match new cases to similar previously seen cases.  For 
provably optimal selections, the distance metric must 
always accurately distinguish what aspects of the situation 
affect the utility of a GDMF.  The problem of designing a 
distance metric may be no easier than designing a rule 
base.  Additionally, even given a perfect distance metric, to 
pick the “best” DMF, the case base must either include the 
optimal set of DMFs in every possible class of situations, 
or be able to project the optimal DMF for each goal of 
each agent in each situation from the limited set of cases 
stored. 

Using another track, instead of applying intelligence to 
selectively searching the large state space, we can apply 



intelligence to limit the state space size itself.  All three 
sets of the DMF are targets to limit search: (1) the deciding 
agents, (2) the controlled agents, and (3) the goals.  For 
instance, Martin’s ADMF implementation limits the 
numbers of goals considered (Martin, 2001).  Each agent 
begins considering only its own goals.  Only if another 
agent suggests forming a DMF does an agent consider 
adding other goals.  Thus, the goal state space is initially 
small and iteratively grows until a satisficing DMF is 
found.  While this approach is computationally efficient 
and performs better than static DMFs, it has not been 
shown to discover optimal DMFs. 

The best strategy for constraining the size of the DMF 
search space depends on the relative proportion of goals 
and agents.  As shown above, the search space is 2(d log v + c 

log u)m for d deciding agents with v gradations of voting 
strength, c controlled agents with u gradations of 
commitment, and m goals.  Since the terms are multiplied 
in the exponent, any reduction in either will provide 
exponential gains in search.  Obviously, limiting the 
gradations of voting strength and level of commitment 
limit the search space.  The simple case of equal or no 
voting strength representation in the DMF has a linear 
relationship between d + c and m.   Therefore, the most 
benefit is gained by reducing the number of agents under 
consideration if d + c < m and reducing the number of 
goals if d + c < m. 

Not surprisingly, many methods of limiting the search 
space come naturally to people.  For instance, by 
partitioning the space of agents to sets C and D 
independent of goals, one reduces both d and c.  This 
partition, in effect, creates a “ruling class” and an “under-
class” of agents, although the sets need not be disjoint.  
Fixed multiple level hierarchies reduce the search space for 
each agent even further.  Furthermore, if the hierarchy is 
horizontally specialized, then the search space is reduced 
since only a limited number of agents will have the 
expertise to be responsible for certain classes of goals, and 
conversely, the number of goals to be considered for 
grouping into a DMF can sometimes be constrained to a 
subset of goals.  Thus, in relatively static environments, 
fixed hierarchies can have performance advantages by 
reducing the effort agents require to find satisficing DMFs.  
A similar mechanism caches successful decision-making 
structures from the past, as in the case-based reasoning 
approach.  Brooks and Durfee show that emergent fixed 
size congregations of agents have constant performance as 
the number of agents scales in an information sharing 
domain, with the best number of congregations shown 
empirically to be one-half the number of agents (Brooks 
and Durfee, 2002). 

Another state-space limiting mechanism is identifying 
agents not as individuals, but by roles.  For instance, when 
an agent needs an accounting task done, the agent need not 
consider every other agent in the system to accomplish the 
task, but only the accountant agents, again narrowing the 
search space (but requiring the typing agents by roles and 

the definitions of relationships between goals and role 
types).  Alternatively, one can consider agents with the 
same role as interchangeable, or members of an 
equivalence class, and only evaluate the worth of the class 
once, instead of once per agent.  (Rovatsos and Wolf, 
2002) (Barbuceanu, 1997) (Tambe, 1997)  Note that roles 
are orthogonal to organizations: an agent working within a 
task-specialized group may send a task to the accounting 
department, while a locally autonomous agent can look up 
accountant agents in a directory, or “yellow pages” service. 

The size of the space of Global Decision-Making 
Frameworks is intractably large for an exhaustive search or 
enumeration.  Brute-force methods of adapting Decision-
Making Frameworks will not suffice for more than a few 
agents with a few goals.  The space of possible 
organizations is extremely large with many factors that 
may possibly affect Decision-Making Framework 
performance.  Learned and designer-implemented case- 
and rule- bases must use a principled approach using an 
understanding of the problem, situation, and multi-agent 
system structures to select Decision-Making Frameworks.   

Conclusion 
This paper quantifies the problem of an agent searching 

for a decision-making organization to best fit a situation by 
quantifying the search space of possible organizations 
given the respective decision-making organizational 
representation.  First, the space of all possible Multi-Agent 
System decision-making organizations can be shown to be 
infinite, even for finite numbers of agents and goals, due to 
the infinite allocations of voting and commitment strength 
among agents in the organization.  Therefore, any search 
must constrain the space of organizations in some way.  
This paper explored the size of the search space containing 
all possible organizations given respective models for 
representing/describing decision-making organizations.  
As the representation constraining the decision-making 
organization description changes, the size of possible 
organization to be explored also changes. 

A Decision-Making Framework, defined in prior work 
(Barber and Martin, 2001b), represents an organization 
purely by which agents decide the allocation of sub-goals 
for which goals to which set of agents.  The Decision-
Making Framework (DMF) space for any one goal set for 
a given group of n candidate deciding and enacting agents 
is 2n, if all agents can be in both the deciding and the 
controlled sets.  Modeling v gradations of agent voting 
strength in the DMF and u gradations of commitment to 
the DMF increases the number of possible organizations 
for a single goal set to 2d log v + c log u. 

A Global Decision-Making Framework (GDMF) is the 
partitioning of the set of intended goals into distinct 
Decision-Making Frameworks.  A weak bound is 
calculated on the number of distinct sets of decision-
making organizations in a GDMF as Ο (2(d log v + c log u)m+1), 



for d deciding agents with v gradations of voting strength, 
c controlled agents with u gradations of commitment, and 
m goals.  A tighter bound is possible based on the 
combinatorial mathematics concept of the Bell number, 
which is the number of ways a set can be partitioned, or 
divided into non-empty subsets.  This bound is 
θ(Bm*(22n)), where n is the number of agents in the system 
and m is the number of goals.  Bm is exponential in the size 
of m, so the number of decision-making organizations in a 
GMDF is exponential in both the number of agents and the 
number of goals. 

Several strategies are proposed for avoiding this 
combinatorial explosion.  First, the system may use a 
heuristic rule base to select an organization quickly.  A 
case base with a well-designed distance metric and a good 
strategy for choosing which cases to remember may also 
beneficially limit the organization set for consideration.  In 
domains it is possible to create a compact normative theory 
of how agents should interact, which can guide the ADMF 
capability more reliably than fast and frugal heuristics.  
Finally, as in many problems in the NP domain, a greedy 
search in a limited domain may be quite effective.  Martin 
used a greedy algorithm to add agents until a DMF with 
sufficient predicted performance was found for respective 
goal(s) (Martin, 2001).  Others have shown the utility of 
arbitrarily limiting the number of organizations or using 
roles to limit the agents considered to accomplish a 
specific goal (Brooks and Durfee, 2002) (Rovatsos and 
Wolf, 2002) (Barbuceanu, 1997) (Tambe, 1997). 

Like many problems in Artificial Intelligence, finding an 
optimal Decision-Making Framework is NP-Complete.  
This paper presents tight bounds on the space of 
organizations under several different DMF representations. 
The difficulty of finding the absolute best performing 
organization also leads to accepting approximation of the 
best or even merely sufficient decision-making 
organizations.  Future work includes the development and 
characterization of algorithms acknowledging the nature of 
the space. 
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