From: AAAI Technical Report WS-02-03. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Adjustable Autonomy: From Theory to Implementation

Milind Tambe, Paul Scerri and David V. Pynadath
Information Sciences Institute and Computer Science Department
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292
{tambeQ@usc.edu, scerri,pynadath}@isi.edu

INTRODUCTION

Recent exciting, ambitious applications in agent technol-
ogy involve agents acting individually or in teams in support
of critical activities of individual humans or entire human or-
ganizations. Applications range from intelligent homes [13],
to “routine” organizational coordination[16], to electronic
commerce{4] to long-term space missions[12, 6]. These new
applications have brought forth an increasing interest in
agents’ adjusteble autonomy (AA), i.e., in agents’ dynam-
ically adjusting their own level of autonomy based on the
situation[8]. In fact, many of these applications will not be
deployed, unless reliable AA reasoning is a central compo-
nent. At the heart of AA is the question of whether and
when agents should make autonomous decisions and when
they should transfer decision-making control to other enti-
ties (e.g., human users).

Unfortunately, previous work in adjustable autonomy has
focused on individual agent-human interactions and the tech-
niques developed fail to scale-up to complex heterogeneous
organizations. Indeed, as a first step, we focused on a small-
scale, but real-world agent-human organization called Elec-
tric Elves, where an individual agent and human worked
together within a larger multiagent context. Although ‘the
application limits the interactions among entities, key weak-
nesses of previous approaches to adjustable autonomy are

1.

readily apparent. In particular, previous approaches to transfer-

of-control are seen to be too rigid, employing one-shot transfers-

of-control that can result in unacceptable coordination fail-
ures. Furthermore, the previous approaches ignore poten-
tial costs (e.g., from delays) to an agent’s team due to such
transfers of control.

To remedy such problems, we propose a novel approach
to AA, based on the notion of a transfer-of-control strat-
egy. A transfer-of-control strategy consists of a conditional
sequence of two types of actions: (i) actions to transfer
decision-making control (e.g., from the agent to the user or
vice versa) and (ii) actions to change an agent’s pre-specified
coordination constraints with team members, aimed at min-
imizing miscoordination costs. The goal is for high quality
individual decisions to be made with minimal disruption
to the coordination of the team. We operationalize such
strategies via Markov decision processes (MDPs) which se-
lect the optimal strategy given an uncertain environment
and costs to individuals and teams. We have developed a
general reward function and state representation for such an
MDP, to facilitate application of the approach to different
domains. We present results from a careful evaluation of this
approach, including via its use in our real-world, deployed

86

Electric Elves system.

2. ADJUSTABLE AUTONOMY -THE PROB-
LEM

In the following, a formal definition of the AA problem is
given so as to clearly define the task of the AA reasoning. A
team, which may consist of agents and users, has some joint
activity, a, which the entities work cooperatively towards.
The primary task of the agent is the success of & which it
pursues by performing some role, p. Performing p requires
that one or more non-trivial decisions are made. To make
a decision, d, the agent can draw upon entities from a set
E = {ei1...ex}. Each entity in E, though not necessar-
ily in the team, is capable of making decision d. Typically,
the agent can also make the decision itself. Different enti-
ties will have differing abilities to make the decisions due
to, e.g., available computational resources or access to rele-
vant information. The decision is made in a context II, that
includes both the environment and any other tasks being
performed by related entities. The agent will often not have
complete information about II. Coordination constraints, =<,
exist between p and the roles of other members of the team,
e.g., various roles might need to be executed simultaneously
or within some total cost. A critical facet of the successful
completion of the joint task is ensuring that coordination
between team members is maintained, i.e., =< are not vio-
lated. Thus, we can describe an AA problem instance with
the tuple: (A4,q, p,x,d, E,II).

From an AA perspective an agent can take two types of
actions. The first type of AA action is to transfer control to
an entity in E. In general, there are no restrictions on when,
how often or for how long decision making control can be
transferred to a particular entity. In general, we assume that
when the agent transfers control it does not have any guar-
antee on the timeliness or quality of the decision made by the
entity to which control is transferred, indeed in many cases
that entity will not make the decision at the time required by
the coordination constraints. The second type of action that
an agent can take is to change the coordination constraints,
<. A coordination change might involve changing the tim-
ing of tasks or changing the role, p, or even the team plan.
Changing < has some cost, though it may be better to incur
that cost than violate coordination constraints. Thus, given
a problem instance, (A, a, p, X, d, E,II), the agent must de-
cide whether to transfer control or act autonomously or
change coordination constraints to maximize the overall ex-
pected utility of the team.

21

The Electric Elves

Thoose an order froe sy usuzl
California Fizzz Kitchen

IK I Show fetails

Figure 1: Friday asking the user for input regarding
ordering a meal.

This research was initiated in response to issues that arose
in a real application and the resulting approach was exten-
sively tested in the day-to-day running of that application.
In the following, the application and an early failed approach
to implementing AA reasoning are presented in order to mo-
tivate the eventual solution. The Electric Elves (E-Elves) is
a project at USC/ISI to deploy an agent organization in
support of the daily activities of a human organization[3].
The operation of a human organization requires dozens of
everyday tasks to ensure coherence in organizational activi-
ties, e.g., monitoring the status of activities, gathering infor-
mation and keeping everyone informed. Teams of software
agents can aid organizations in accomplishing these tasks,
facilitating coherent functioning and rapid, flexible response
to crises. While a number of underlying Al technologies sup-
port E-Elves[16, 3], AA emerges as the central research issue
in agent-human interactions.

In E-Elves, each user is supported by an agent proxy,
called Friday (after Robinson Crusoes’ man-servant Friday)
that acts on their behalf in the agent team (see [23] for de-
tails of Friday’s design). Friday can perform a variety of
tasks for its user. If a user is delayed to a meeting, Friday
can reschedule the meeting, informing other Fridays, who
in turn inform their users. If there is a research presen-
tation slot open, Friday may respond to the invitation to
present on behalf of its user. Friday can also order its user’s
meals (see Figure 1) and track the user’s location, posting
it on a Web page. Friday communicates with users using
wireless devices, such as personal digital assistants (PALM
VIIs) (see Figure 2) and WAP-enabled mobile phones, and
via user workstations. Each Friday’s team behavior is based
on a teamwork model, called STEAM[22]. STEAM encodes
and enforces the constraints between roles that are required
for the success of a joint activity, e.g., meeting attendees
should arrive at a meeting simultaneously.

AA is critical to E-Elves since, despite the range of sens-
ing devices, Friday has considerable uncertainty about the
user’s intentions and location. Thus, it is somewhat risky
for Friday to make decisions on behalf of the user; yet, it
cannot continually ask the user for input, given that user’s

87

Figure 2: Palm VII for communicating with users
and GPS device for detecting their location.

time is valuable. There are currently four decisions in E-
Elves where AA reasoning is applied: (i) whether the user
is willing to perform a task in its team, (ii) if and what to
order for lunch, (iii) selecting a presenter for a team meet-
ing, (iv) rescheduling meetings (which we focus on here). In
the meeting context, the AA problem can be described as
follows: the meeting is o, while Friday’s role, p, is to en-
sure that the user arrives at the meeting at the same time
as other users. Friday may reschedule the meeting (i.e.,
changing coordination) as needed. Friday can transfer con-
trol to a human user (the set E = {user, Friday}) to seek
user input about the meeting, thus, creating a problem in-
stance, (4,«,p,x,d, E,1I). The challenge for AA here is
as follows: If Friday acts autonomously despite the uncer-
tainty and takes an incorrect action on behalf of the user
(e.g., saying the user will not attend the meeting), the other
attendees may unnecessarily cancel the meeting. If Friday
transfers control to the user and waits for her input, and if
she is unable to provide timely input (e.g., she is stuck in
traffic), there may be significant miscoordination, as other
meeting attendees may unnecessarily wait at the meeting lo-
cation. Thus, the AA challenge for Friday is to avoid making
errors, while also avoiding miscoordination due to transfers
of control - this last part about miscoordination is a novel
challenge for AA in team settings, such as E-Elves.
Everyday coordination at university research groups, com-
mercial businesses and governmental organizations is not the
only coordination that can benefit from such agent technol-
ogy. Unfortunate natural and man-made disasters require
coordination of many people and organizations, cooperat-
ing on many joint tasks[5]. Efficient, coordinated leveraging
of both physical and decision making resources will lead to
the most effective response to the disaster. Facilitating the
details of this coordination can be undertaken by teams of
intelligent agents with an AA capability. For example, a
team of robots might be assigned the task of searching an
area of the city for survivors. A robot may transfer the
responsibility for planning a route to the area to a satellite
with a better view of the city. Some coordination with other
robots in the team may be required to ensure that the robot

most in need of the satellites resources has access to them
first. If it cannot get a response from the satellite, the robot
may ask a human user at a central control center or it may
need to plan its route autonomously. In some cases the robot
might reason that the team is better off it if exchanges roles
with another robot, since it has a good known route avail-
able to the other robot’s search location. In such a scenario
the robot performs several transfers of control and perhaps
a coordination change to maximize the performance of the
overall team.

2.2 Decision-tree approach

One logical avenue of attack on the AA problem for E-
Elves was to apply an approach used in a previously re-
ported, successful meeting scheduling system, in particular
CAPJ[14). Like CAP, Friday learned user preferences using
C4.5 decision-tree learning [17]. Friday recorded values of a
dozen carefully selected attributes and the user’s preferred
action (identified by asking the user) whenever it had to
make a decision. Friday used the data to learn a decision
tree that encoded its autonomous decision making. For AA,
Friday also asked if the user wanted such decisions taken
autonomously in the future. From these responses, Friday
used C4.5 to learn a second decision tree which encoded its
rules for transferring control. Initial tests with the approach
were promising [23], but a key problem soon became appar-
ent. When Friday encountered a decision for which it had
learned to transfer control to the user, it would wait indef-
initely for the user to make the decision, even though this
inaction could lead to miscoordination with teammates if
the user did not respond or attend the meeting. To address
this problem, if a user did not respond within a fixed time
limit, Friday took an autonomous action.

Although performance improved, when the resulting sys-
tem was deployed 24/7, it led to some dramatic failures. One
such failure occurred when one user’s Friday incorrectly can-
celled the group’s weekly research meeting when a time-out
forced the choice of an risky autonomous action (and the ac-
tion turned out to be wrong). On another occasion, a Friday
delayed a meeting almost 50 times, each time by 5 minutes.
It was correctly applying a learned rule but ignoring the
nuisance to the rest of the meeting participants. It turns
out that AA in a team context requires more careful rea-
soning about the costs and benefits of acting autonomously
and transferring control. In particular, an agent needs to be
more flexible in its AA reasoning, not restricting itself to a
single transfer of control and a fixed timeout. Moreover, it
needs to plan ahead to find sequences of actions that handle
various contingencies that might arise and take into account
costs to the team. (In theory, using C4.5, Friday might have
eventually been able to handle the complexity of AA in a
multiagent environment, but a very large amount of train-
ing data would be required, even for this relatively simple
decision.)

3. MODELING TRANSFER OF CONTROL
STRATEGIES

To avoid rigid one-shot transfers of control and allow team
costs to be considered we introduce the notion of a transfer-
of-control strategy. A transfer-of-control strategy consists of
a conditional sequence of two types of actions: (i) actions
to transfer decision-making control (e.g., from the agent to

88

the user or vice versa) and (ii) actions to change an agent’s
pre-specified coordination constraints with team members,
aimed at minimizing miscoordination costs. An agent exe-
cutes such a strategy by performing the actions in sequence,
transferring control to the specified entity and changing co-
ordination as required, until some point in time when the
entity currently in control exercises that control and makes
the decision. Given a problem instance, (4, q, p, <, d, E,II),
agent A can transfer decision-making control for d to any
entity e; € F, and we denote such a transfer-of-control ac-
tion with the symbol e;. When the agent transfers decision-
making control to an entity, it may stipulate a time limit for
a response from that entity. To capture this additional stip-
ulation, we denote transfer-of-control actions with a time
limit as an action e;(Z), i.e., e; has decision-making control
for a maximum time of t." Such an action has two possi-
ble outcomes: either e; responds before time ¢ and makes
the decision, or it does not respond and decision d remains
unmade at time £. In addition, the agent has some action
through which it can change coordination constraints, which
we denote D.

Since the outcome of a transfer-of-control action is uncer-
tain and some potential outcomes are undesirable, an agent
needs to carefully consider the potential consequences of its
actions and plan for the various contingencies that might
arise. Moreover, the agent needs to consider sequences of
transfer-of-control actions to properly deal with a single de-
cision. Considering multi-step strategies allows an agent to
exploit decision making sources considered too risky to ex-
ploit without the possibility of retaking control. For exam-
ple, control could be transferred to a very capable but not
always available decision maker then taken back if the deci-
sion was not made before serious miscoordination occurred.
More complex strategies, possibly including several changes
in coordination constraints, can provide even more oppor-
tunity for obtaining high quality input. For instance, the
strategy H(5)A would specify that the agent first give up
control and ask entity H. If the H responds with a decision
within 5 minutes, then the task is complete. If not, then
the agent proceeds to the next transfer-of-control action in
the sequence, in this case transferring control to A (denoting
itself). We can define the space of all possible strategies as
follows:

S =(E xR) x D((EX’R)U{’D})" 1)

n=0

To select between strategies we compare the expected util-
ity (EU) of the candidate strategies. The calculation of a
strategy’s EU takes into account the benefits, i.e., likely rel-
ative quality of different entities’ decisions and the probabil-
ity of getting a response from an entity at a particular time,
and the costs, i.e., the cost of delaying a decision and the
costs of changing coordination constraints. The first element
of the EU calculation is the expected quality of an entity’s
decision. In general, we capture the quality of an entity’s de-
cision at time ¢ with the functions EQ = EQZ(t) : R = R.
The quality of a decision reflects both the likelihood that
the entity will make an “appropriate” decision and the costs

!For readability, we will frequently omit the time specifica-
tions from the transfer-of-control actions and instead write
just the order in which the agent transfers control among
the entities and executes Ds (e.g., exe2 instead of e;(5)ez).

incurred if the decision if the decision is wrong. We as-
sume the agent has a model of EQ?(t). The second element
of the EU calculation is a representation of the probability
an entity will respond if control is transferred to it. The
functions, P = {P5(t) : R — [0,1]}, represent continuous
probability distributions over the time that the entity e will
respond, i.e., the probability that e; will respond at time ¢
is P¥ (to). The final element of the EU calculation is a rep-
resentation of the cost of inappropriate timing of a decision.
In general, not making a decision until a particular point in
time occurs some cost that is a function of both the time
and the coordination constraints, =<, between team mem-
bers. We focus on cases of constraint violations due to delays
in making decisions. Thus, the cost is due to the violation of
the constraints caused by not making a decision until that
point in time. We can write down a wait-cost function func-
tion: W = f(x,t) which returns the cost of not making a
decision until ¢ given coordination constraints, <. We as-
sume that there is some point in time, <, after which no
more costs accrue, i.e., if t > < f(x,t) = f(x, <).? Finally,
we assume that, in general, until < the wait cost function
is non-decreasing, reflecting the idea that bigger violations
of constraints lead to higher wait costs. The coordination
change action, D, reduces the wait costs that are incurred
from the time the action is taken, onwards. For example, a
D action might be to change the order in which two roles
are performed, thereby changing the time at which decisions
in the roles need to be made, but at the cost of reorganizing
the team. We represent the effect of the D by letting W
be a function of ¢t — Dyaiye (i-€., Dyatue is the value of the
D action) after the D action, although other models might
also be used. We represent the D as having a fixed cost,
Deost, incurred immediately upon its execution, although,
again, more complex models might be used.

Using the three elements, i.e., expected decision quality,
probability of response and wait costs, we can compute the
EU of an arbitrary strategy, s. The total utility is the qual-
ity of decision being made by the entity in control minus the
costs incurred from waiting, i.e., EUfct = EQZ(t) — W(t).
If a coordination change action has been taken it will also
have an effect on utility. If a single D action has been taken
at £ = A the second component of the EU calculation is:
W(tID) = W(A) - W(A - Dualue) + W(t - Dualue) + Dcost-
To calculate the EU of an arbitrary strategy, we multiply
the probability of response at each instant of time by the
EU of receiving a response at that instant, and then inte-
grate over the products. Hence, the EU for a strategy s is:
EUs = [J° Pr(t')EUZ(t') .dt'. To correctly calculate the
EU of a strategy, we need to ensure that the probability of
response function and the wait-cost calculation reflect the
control situation at that point in the strategy. To achieve
this, the integral can be broken into terms, one term for each
action in the strategy. For example, for a strategy e(T)A
there would be one term for when e has control and another
for when A has control, i.e.:

T
EUS ,t =[) Pr(t') x (EQ(t') — w(t')).dt' + (2)

[i) x (BQ2) - wiey.ar

2This implies that the total cost of delaying a decision is
finite provided f(x,t) is finite.

More complex strategies have more complex EU equa-
tions, e.g., for e(A)De(T)A we have:

I Pt EQL) — wW(t)).dt’ + 3)
Ja Prt)(EQI(t') — W(B) + W(A — Dyarne) —
W(t' - Dvalue) - Dcost)ditl +
2 Pr')EQL (') — W(A) + W(A — Dyarye) -
W(T - D‘ualue) - Dcost)-dtl

EUg'DeA =

In the above EU equations the functions EQZ(t), Pr(t) and
W(t) are all general functions, i.e., there is no limitation on
the nature of the functions. By instantiating these functions
with concrete ones we can calculate an exact number for the
EU of a strategy. For example, if we use a Markovian re-
sponse probability function for the user (Pf(U) = eexp™*!),
an exponential wait cost function (W(t) = wexp“*) and con-
stant decision making ability (EQ9 (t) = « and for EQY, (1) =
B3), Equation 4 becomes:

EUlp 4t = 2 (exp~ 8 — 1) + B(1 — exp~2¢) + (a)

-uDVG P -—
cwexp - el (exp~Té —exp~29) +

(Deost — B)(exp™<T —exp~?) +
wexp®¥(exp~“Puatue —1)(exp~<® —exp~<T) —
exp™ T (Deost — a + wlexp¥? —
exp?(8—Duatue) 4 exp?(T=Duatuc)))

Given the ability to calculate the EU of transfer-of-control
strategies, the AA problem for the agent reduces to find-
ing and following the transfer-of-control strategy that max-
imizes its EU. Formally, the agent’s problem is:

Definition 3.1 For a problem (A, o, p,x,d, E,II), the agent

must select s € S suchAthat LEM A d,E,M)
Vs' € 8,8 # 5, EULA PR B 5 pyltesd B,

Ideally, we wish to select the right strategy for a domain
such as E-Elves and use the strategy throughout. Unfor-
tunately, we can show that even with fixed functions, the
best strategy in one situation may not be best in another.
In fact, the strategy with the highest EU may vary greatly
from situation to situation. Below we give three Lemmas
which show when various types of strategies are useful. The
Lemmas lead to the conclusion that complex strategies are
not necessarily superior to single-shot strategies, even in a
multi-agent context, and that in fact no particular strategy
dominates all other strategies.

One requirement of a strategy is to have the agent strike
the right balance between not waiting indefinitely for a user
response and not taking a risky autonomous action. The
agent should reason that it will eventually make a decision
(either after giving control to the user or immediately) if the
expected costs of continued waiting exceeds the difference
between the user’s decision quality and its own. In fact, we
can state:

LEMMA 1: Ifs €S is a strategy ending with e € E, and
s’ is sA, then EUS > EU? iff Ve € E,3t < < such that
L2 Pr(e)yw(t').dt’ — W(t) > BQ:(t) — EQ4(t)

Lemma 1 says that if at any point in time the expected
costs of indefinitely leaving control in the hands of the user

89

Figure 3: (a) EU of strategies eDeA and e (dotted
line is e). (b) Strategy eA plotted against T (transfer
time) and beta (the user’s decision quality).

exceed the difference between the quality of the agent and
user’s decision then strategies which ultimately give the agent
control dominate those which do not. An interesting conse-
quence of the Lemma is that when the ezpected wait costs
do not change over time the agent could leave control in the
hands of a user even though very high total costs are eventu-
ally incurred, i.e., it may choose a simple one shot strategy.
Using similar types of arguments we can prove two further
Lemmas:

LEMMA 2: ifs€S hasnoD ands' iss withaD added
then EUS > EUY iff
T Pr(thYW(t).dt' — [Pr (')W(t|D).dt' > Deost

LeEMMA 3: VK € N,3W(t) € W, IP+(t) € P, JEQZ(t) €

EQ such that K is the optimal number of Ds

Lemmas 1-3 show that no particular transfer-of-control
strategy dominates. Moreover, very different strategies, from
single-shot strategies to arbitrarily complex strategies, are
appropriate for different situations. The utility gained by
taking different transfer-of-control actions is not always ob-
vious and the range of situations where an action provides
benefit can be quite narrow. Hence, careful attention must
be paid to the specific situation when choosing a strategy to
follow.

By plotting the EU equations against various parameters,
we can see that the EU of a strategy depends on a variety
of factors and that for different parameters different strate-
gies have higher EU. Using the instantiation of functions
described above, Figure 3(a) plots the EU of the strate-
gies eDeA and e as the rate of wait cost accrual (w) and
the probability of response parameter (p) are varied. No-
tice that for some values of the parameters, strategy e has
higher EU, while for others strategy eDeA has higher EU.
In Figure 3(b) the EU of the strategy eA is plotted vary-
ing the time at which control is transferred from the user
to the agent (T) and the quality of the user’s decision mak-
ing (beta). The figure shows that the EU of the strategy is
sensitive to these parameters (as it is to other parameters.)

4. FROM THEORY TO IMPLEMENTATION

While the mathematical model of strategies for AA pre-
sented above clearly illustrates that different strategies dom-
inate in different situations, it does not directly provide
a means for operationalizing AA reasoning. Some mecha-
nism is required to choose an appropriate strategy given the
current situation. The mechanism should also execute the
strategy and dealing with contingencies the strategy does
not handle, e.g., unexpected changes in expected response

90

time due to a user changing location. MDPs were chosen as
the mechanism for operationalizing such reasoning. We can
interpret the policy produced by using standard algorithms
on the MDP[15] as many transfer-of-control strategies, with
the strategy to follow chosen depending on the current state.
The overall state, within the MDP representation for an AA
problem, (4, a, p, X, d, E,TI), has the following features (re-
call that p is the agent’s role with the team’s joint activity,
a):

o controlling-entity is the entity that currently has deci-

sion making control.
e leam-orig-ezpect-p is what the team originally expected

of the fulfilling of p.
® leam-ezpect-p is the team’s current expectations of what

fulfilling the role p implies.

® agent-ezpect-p is the agent’s (probabilistic) estimation
for how p will be fulfilled.

® ¢;-response is any response the user has made to the
agent’s requests for input.

¢ “other o attributes” encapsulates other aspects of the
joint activity that are impacted by the decision.

The set of actions for this MDP representation is I" =
E U {D,wait}. The E action, i.e., transfer control, and the
D action, i.e., perform a coordination change, have been dis-
cussed above. The “wait” action puts off transferring control
and making any autonomous decision, without changing co-
ordination with the team. The transition probabilities of
the MDP represent the effects of the actions as a distri-
bution over their effects, e.g., one set of transition proba-
bilities captures the probability of getting a response from
an entity. When the agent chooses an action that transfers
decision-making control to an entity other than the agent
itself, there are two possible outcomes: either the entity
makes a decision (producing a terminal state), or the deci-
sion remains unmade (the result being as if the agent had
simply waited). We compute the relative likelihood of these
two possible transitions by using the response times mod-
eled in P. The D action has a deterministic effect, in that
it changes the coordination of o (affecting the expectations
on the user’s role through the state feature, team-ezpect-p).

The final part of the MDP representation is the reward
function. In general, our AA MDP framework uses a general
reward function:

f(team-orig-ezpect-p(s), team-ezpect-p(s), (5)
agent-ezpect-p(s), x-status(s), a)
=3 ecE EQ4Y - e-response — (6)
A1 fi(ll team-orig-ezpect-p(s) — team-ezpect-p(s) ||)
—A2 fa(|| team-ezpect-p(s) — agent-ezpect-p(s) ||)
+23 fa(a-status(s)) + A4 fa(a)

R(s,a) =

The first component of the reward function captures the
value of getting a response from a decision-making entity
(notice, that only one entity will actually respond, therefore
only one e-response will be non-zero). This corresponds to
the EQS(t) function used in the mathematical model. The
f1 function reflects the inherent value of performing a role as
the team originally expected, hence deterring the agent from
coordination changes (corresponds to D.s: from the math-
ematical model). The f» function reflects the value of keep-
ing the agent’s expectation of their performance of the role
in agreement with the team’s understanding of how the role
will be performed. The agent receives most reward when the

role is performed exactly as the team expects, thus encour-
aging it to keep other team members informed of the role’s
status. This component largely corresponds to the wait cost
function, W(t), from the mathematical model. The fourth
component of the reward function, f3, influences overall re-
ward based on the successful completion of the joint activity,
which encourages the agent to take actions that maximize
the likelihood the joint activity succeeds. The desire to have
the joint task succeed is implicit in the mathematical model
but must be explicitly represented in the MDP. The fourth
component, fs, factors in the specific, immediate costs of an
action and varies with the type of action, discouraging the
agent from taking costly actions (like coordination changes)
unless it can gain some indirect value from doing so. For
example, there is some cost to asking the user for input via
a mobile device. Notice, that these detailed, domain specific
costs do not directly appear in the mathematical model.

Given the MDP’s state space, actions, transition proba-
bilities, and reward function, an agent can use value itera-
tion to generate a policy P:S—I' that specifies the optimal
action in each state [15]. Effectively, the value iteration pro-
cess efficiently calculates the EU of the different strategies
and compares them. The agent then executes the policy by
taking the action that the policy dictates in each and every
state in which it finds itself. A policy may include several
transfers of control and deadline-delaying actions, as well as
a final autonomous action. The particular series of actions
depends on the activities of the user.

An example of an AA MDP is the generic delay MDP, for
doing AA reasoning about whether to delay meetings based
on the user not being able to attend on time. The MDP
can be instantiated for any meeting for which Friday may
act on behalf of its user. In this case the joint activity, a,
is for the meeting attendees to attend the meeting simulta-
neously. Friday’s role, p, is to ensure that its user arrives at
the currently scheduled meeting time. The constraints be-
tween Friday’s role and other agent’s roles is that they occur
simultaneously, i.e., the users must attend at the currently
scheduled time. Changing < corresponds to delaying the
meeting, i.e., a D is a meeting delay. Friday has a variety
of D actions of various lengths at its disposal, as well the
ability to cancel a meeting entirely. The user can also re-
quest a D, e.g., via a dialog box, to buy more time to make
it to the meeting. If the user decides a D is required, Friday
is the conduit through which other Fridays (and hence their
users) are informed.

In the delay MDP’s state representation, team-orig-ezpect-
p is originally-scheduled-meeting-time, since attendance at
the originally scheduled meeting time is what the team orig-
inally expects of the user and is the best possible outcome.
team-ezpect-p is time-relative-to-meeting, which may increase
if the meeting is delayed. «-status becomes status-of-meeting.
agent-erpect-p is not represented explicitly; instead, user-
location is used as an observable heuristic of when the user
is likely to attend the meeting. For example, a user who is
away from the department shortly before a meeting should
begin is unlikely to be attending on time, if at all. The gen-
eral reward function is mapped to the delay MDP reward
function in the following way. f; = {g(/V,a), where N is
the number of times the meeting is rescheduled. The exact
size of the reward, i.e., the function g, depends on factors
like the number of meeting attendees and role of the user
in the meeting. fo = {h(late,a) if late > 0,0 otherwise},

91

where late is the difference between the scheduled meeting
time and the time the user arrives at the meeting room.
late is probabilistically calculated by the MDP based on the
user’s current location and a model of the user’ behavior.
f3 = {ruser if user attends, 0 otherwise}, where ryce, mod-
els the user’s value to . f; depends on the medium being
used, e.g., there is higher cost to communicating via a WAP
phone than via a workstation dialog box and the length of
the meeting delay (longer delays are more costly).

Expected decision quality for the user and agent is im-
plicitly calculated by the MDP. When the user is asked for
input, it is assumed that if they respond their response will
be “correct”, i.e., if the user says to delay the meeting by
15 minutes we assume the user will arrive on time for the
re-scheduled meeting. The expected quality of the agent’s
decision is calculated by considering the agent’s proposed
decision and the possible outcomes of that decision, i.e., the
benefits if the decision is correct and the costs if it is wrong.
The delay MDP also represents probabilities that a change
in user location (e.g., from office to meeting location) will
occur in a given time interval. The designer encodes the
initial probabilities, which a learning algorithm may then
tailor to individual users. Evaluation of the delay MDP is
given in the next section.

5. EVALUATION

The strategy approach to AA reasoning in a multiagent
context has been carefully evaluated via its use in the E-
Elves. The E-Elves was heavily used by five to ten users
between June and December 2000 and by a smaller group of
users since then. The agents ran continuously, around the
clock, seven days a week. The most heavily used AA rea-
soning was for delaying meetings. We make three key ob-
servations about the use of AA reasoning. Over the course
of six months (June to December, 2000) nearly 700 meet-
ings where monitored (Figure 4(a)). Most users had about
50% of their meetings delayed. Figure 4(b) shows that usu-
ally 50% or more of delayed meetings were autonomously
delayed. The graphs show that the agents are acting au-
tonomously in a large number of instances, but equally im-
portantly, users are also often intervening, indicating the
critical importance of AA in Friday. Figure 4(c) shows a
frequency distribution of the number of actions taken per
meeting. The number of actions taken for a meeting cor-
responds to the length of the strategy followed. The figure
shows both that the MDP followed complex strategies in the
real world and that it followed different strategies at differ-
ent times. The most emphatic evidence for the utility of the
MDP approach was that it never repeated the catastrophic
mistakes of the C4.5 implementation. Although mistakes
did occur they were generally small errors such as asking
the user earlier than required.®

To further determine the suitability of MDPs to the AA
reasoning task we performed a series of experiments where
various parameters of the MDP’s reward function were var-
ied and the resulting policies observed. The experiments
aimed to investigate some properties of MDPs for AA, in
particular whether policies changed in expected ways when
parameters were varied and whether small changes in the
parameters would lead to large changes in the policy. We

3The inherent subjectivity of the application makes an ob-
Jjective evaluation of the system’s success difficult.

“ Meelings Monitored vs. Meelings Delayed] No. of actions per meeting
o 400 2
£ 350 Monitored x ?gg |
300 Delayed - -— i 2 160 |
> 250 3 £ 140 I
5 %0 - T 120 :
8 100 . g 100 |
E 50| — s 8 |
E 0 S 60
= EH58TEEE85 2 Z % |

s € 2 8 8 ¢ g c 20

= 2 E 3B 3 < g ‘ 0 I

= = @ 0 2 4 6 8 10 12

Users No. of actions
(a) c

Figure 4:

(a) Monitored vs. delayed meetings per user. (b) Meetings delayed autonomously (darker bar) vs.

by hand. (c) Frequency distribution of the number of actions taken for a particular meeting.

describe the results of varying one parameter below. In this
experiment, the varied parameter is feam wait cost, which
determines the cost of having other team members wait-
ing in the meeting room for the user (corresponds to Xz in
Equation 7). Each graph in Figure 5 shows the how the
frequency of a certain type of action in the resulting MDP
policy varied as the teamn wail cost was varied. Notice in
Figure 5(a) the phenomena of the number of asks increasing
then decreasing as the team wait cost is increased. Friday
transfers control whenever the potential costs of asking are
lower than the potential costs of errors it makes — as the cost
of time waiting for a user decision increases, the balance tips
towards acting. When waiting costs are very low Friday acts
since the cost of its errors are very low, while when they are
very high it acts because it cannot afford to wait for user
input. Figure 5(b) shows that as the cost of teammates time
increases Friday acts autonomously more often. The num-
ber of times Friday will say attending changes rapidly for
low values of the parameter, hence considerable care would
need to be taken to set this parameter appropriately.

Number of Attending messages in policy
260

Number of Asks in policy

asks
888883
Attending

©o 2 4 6 8 10 6 2 4 6 8 10
“Cost of teammates time* weight ~Cost of teammates time™ weight
a
Figure 5: Properties of the MDP policy as team
mate time cost is varied.

To determine whether the need for complex strategies was
an unusual feature of the E-Elves domain, a simple exper-
iment was run with randomly generated configurations of
entities. In each configuration, factors like the rate of wait
cost accrual and number of entities was randomly varied.
Figure 6(a) shows a frequency distribution of the number of
transfer of control actions of the optimal strategies found for
25,000 configurations. Strategies of two actions are optimal
in over fifty percent of situations but strategies of up to eight
actions were sometimes optimal. Notice that the model on
which the experiment is based excludes many complicating
factors like the dynamic environment and interacting goals,
yet often complex strategies are still required.

Importantly, our theoretical model helps to explain and
predict the behavior of other AA systems, not only our

92

Optima! Strategy Lengths Horvitz’s EU Calculalions with Wait Cost

_ 60 04
g s0 0.2 | .
= - ——
5 40 0 T
& 30 2 g
g e 0.2 e
8
810 0.4
° e [} 06
01 2 3 456 7 8 9 0 005 01 015 02 025 0.3
Length w
(a) (b)

Figure 6: (a) Graph showing the relative percent-
ages of optimal strategy lengths for randomly gen-
erated configurations of entities and decisions. (b)
EU of different agent options in Horvitz’s work. The
solid line shows the EU of acting, the dotted line
shows the EU of not acting and the dashed line
shows the EU of dialog. Each is plotted against in-
creasing wait cost accrual rate.

own. For example, Horvitz has used decision theory to de-
velop general, theoretical models for AA reasoning[10]. A
critical difference between his work and this work is that
Horvitz pays no attention to the possibility of not receiving
a (timely) response and hence, complex strategies are not
required. Figure 6 shows that when Horvitz’s work is mod-
eled using our transfer-of-control strategy model we advo-
cate the same choice of transfer-of-control action as he does
when there are no wait costs (w = 0) but that we might
choose differently if there were significant wait costs. The
fact that the optimal strategy varies with wait cost suggests
that Horvitz’s strategy would not immediately transfer to a
domain where wait costs were non-negligible.

6. SUMMARY AND RELATED WORK

AA is fundamental to the successful deployment of mul-
tiagent systems in human organizations. In this paper, we
have presented a theory of ajdustable autonomy, based on
transfer-of-control strategies. We then mapped these strate-
gies to a general MDP for AA in a team context. Results,
from the Electric Elves domain, showed the technique to be
an effective one in a complex multiagent context. Future
work will focus on extending the theory and implementa-
tion to domains where team plans interact and, hence, the
AA decisions of agents interact.

We have already discussed some related work in Section
1, and discussed key weaknesses of prior work that arise
from its focus on domains involving single-agent single-user

interactions. Indeed, these weaknesses are not only seen
in the more recent AA work [1, 9, 11], but in earlier re-
lated work in mixed-initiative planning[7], robot teleopera-
tion[19], human-machine function allocation[2, 20].

As we have moved towards more complex environments
and introduced the notion of strategies at least three other
research areas become relevant: (i) meta-reasoning[18}; (ii)
multiprocessor scheduling(21]; (iii) anytime algorithms[24].
Each of these areas makes fundamentally different assump-
tions than AA. For instance, in meta-reasoning, the output
is a sequence of computations to execute in sequence. While
AA reasoning also involves reasoning about which compu-
tations to execute, i.e., which entities to transfer control
to, the AA reasoning focuses on contingencies if entities fail
to respond while meta-reasoning assumes the computation
will succeed if executed. Furthermore, meta-reasoning looks
for a sequence of computations that uses a set amount of
time optimally while AA reasoning is dealing with decisions
requiring little computation and the available time is some-
thing the reasoning decides for itself.

7. REFERENCES

{1} K. Barber, A. Goel, and C. Martin. Dynamic adaptive
autonomy in multi-agent systems. Journal of
Ezperimental and Theoretical Artificial Intelligence,
12(2):129-148, 2000.

A. Bye, E. Hollnagel, and T. S. Brendeford.
Human-machine function allocation: a functional
modelling approach. Reliability engineering and
system safety, 64:291-300, 1999.

H. Chalupsky, Y. Gil, C. Knoblock, K. Lerman, J. Oh,
D. Pynadath, T. Russ, and M. Tambe. Electric Elves:
Applying agent technology to support human
organizations. In International Conference on
Innovative Applications of Al, pages 51-58, 2001.

J. Collins, C. Bilot, M. Gini, and B. Mobasher.
Mixed-initiative decision-support in agent-based
automated contracting. In Proceedings of the
International Conference on Autonomous Agents
(Agents’2000), 2000.

L. Comfort. Shared Risk: Complez systems in seismic
response. Oxford, Pergamon Press, 1999.

G. Dorais, R. Bonasso, D. Kortenkamp, B. Pell, and
D. Schreckenghost. Adjustable autonomy for
human-centered autonomous systems on mars. In
Proceedings of the First International Conference of
the Mars Society, pages 397-420, August 1998.
George Ferguson and James Allen. TRIPS : An
intelligent integrated problem-solving assistant. In
Proceedings of Fifteenth National Conference on
Artificial Intelligence(AAAI-98), pages 567-573,
Madison, WI, USA, July 1998.

Call for Papers. AAAI spring symposium on
adjustable autonomy. www.aaai.org, 1999.

H. Hexmoor. Case studies of autonomy. In Proceedings
of FLAIRS 2000, pages 246-249, 2000.

Eric Horvitz, Andy Jacobs, and David Hovel.
Attention-sensitive alerting. In Proceedings of
Conference on Uncertainty and Artificial Intelligence
(UAI’99), pages 305-313, Stockholm, Sweden, 1999.
D. Kortenkamp, D. Keirn-Schreckenghost, and R. P.
Bonasso. Adjustable control autonomy for manned

(2]

(3]

4]

[5]
[6]

(7

—

[8]
(9]
[10]

(11]

93

[12]

[13]

(14]

(15]

(16}

(17)

(18]

[19]

(20]

(21)

(22]

23]

[24]

space flight. In IEEE Aerospace Conference, 2000.
David Kortenkamp, Robert Burridge, R. Peter
Bonasso, Debra Schreckenghost, and Mary Beth
Hudson. Adjustable autonomy issues for control of
robots. In Adjustable Autonomy Workshop, IJCAI’99,
1999.

V. Lesser, M. Atighetchi, B. Benyo, B. Horling,

A. Raja, R. Vincent, T. Wagner, P. Xuan, and

S. Zhang. The UMASS intelligent home project. In
Proceedings of the Third Annual Conference on
Autonomous Agents, pages 291-298, Seattle, USA,
1999.

Tom Mitchell, Rich Caruana, Dayne Freitag, John
McDermott, and David Zabowski. Experience with a
learning personal assistant. Communications of the
ACM, 37(7):81-91, July 1994.

M. L. Puterman. Markov Decision Processes. John
Wiley & Sons, 1994.

David V. Pynadath, Milind Tambe, Hans Chalupsky,
Yigal Arens, et al. Electric elves: Immersing an agent
organization in a human organization. In Proceedings
of the AAAI Fall Symposium on Socially Intelligent
Agents, 2000.

J. R. Quinlan. C4.5: Programs for machine learning.
Morgan Kaufmann, San Mateo, CA, 1993.

Stuart J. Russell and Eric Wefald. Principles of
metareasoning. In Ronald J. Brachman, Hector J.
Levesque, and Raymond Reiter, editors, KR’89:
Principles of Knowledge Representation and
Reasoning, pages 400-411. Morgan Kaufmann, San
Mateo, California, 1989.

T. Sheridan. Telerobotics, automation and Human
Supervisory Control. MIT Press, Cambridge,
Massachusetts, 1992.

B. Shneiderman. Designing the User Interface.
Addison Wesley, 1998.

J. Stankovic, K. Ramamritham, and S. Cheng.
Evaluation of a flexible task scheduling algorithm for
distributed hard real-time system. IEEE Transactions
on Computers, 34(12):1130-1143, December 1985.

M. Tambe. Towards flexible teamwork. Journal of
Artificial Intelligence Research (JAIR), 7:83-124,
1997.

Milind Tambe, David V. Pynadath, Nicolas Chauvat,
Abhimanyu Das, and Gal A. Kaminka. Adaptive
agent integration architectures for heterogeneous team
members. In Proceedings of the International
Conference on MultiAgent Systems, pages 301-308,
2000.

S. Zilberstein. Using anytime algorithms in intelligent
systems. AT Magazine, 17(3):73-83, 1996.

