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Abstract  

In a multiagent system where each agent has only an incom-
plete view of the world, optimal coalition formation is diffi-
cult. Coupling that with real-time and resource constraints 
often makes the rationalization process infeasible or costly.  
We propose a coalition formation approach that identifies 
and builds sub-optimal yet satisficing coalitions among 
agents to solve a problem detected in the environment.  All 
agents are peers and autonomous—each controlling a set of 
resources, monitoring a part of the world, and able to change 
the world through its actions.  Each is motivated to conserve 
its own resources while cooperating with other agents to 
achieve a global task or resource allocation goal.  The (initi-
ating) agent—that detects a problem—hastily forms an ini-
tial coalition by selecting neighboring agents that it consid-
ers to have high potential utilities, based on the capability of 
each neighbor and its respective inter-agent relationships.  
The initiating agent next finalizes the coalition via multiple 
concurrent 1-to-1 negotiations with only neighbors of high 
potential utility, during which constraints and commitments 
are exchanged in an argumentation setting.  Finally, the ini-
tiating agent acknowledges the status of a coalition, a re-
sponsible act that seals the validity of a planned coalition.   

 

Introduction 
In this paper, we present a coalition formation strategy that 
facilitates sub-optimal yet satisficing collaborations among 
agents.  The need for such collaborations arises due to the 
reactiveness requirement of agents in a time-critical and 
resource-constrained environment.  In a non-hierarchical 
multiagent system, agents are peers and autonomous.  Each 
controls a set of resources, monitors its part of the world, 
and reacts to events that it detects.  For events that require 
collaborations, an (initiating) agent forms a coalition out of 
its neighbor agents.  However, each agent only has an in-
complete (and sometimes outdated and noisy) view of the 
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world and its neighbors—making rational optimality in its 
coalition formation process impossible.  So, in a situation 
where an optimal solution does not exist, where an optimal 
solution cannot be computed, or where an optimal solution 
cannot be derived on time, we have to look to sub-optimal 
solutions that are satisficing in that they meet minimum 
requirements rather than achieving maximum performance 
(Moon and Stirling 2001).   
 Our proposed coalition formation approach breaks the 
process into three stages: initial coalition formation, coali-
tion finalization, and coalition acknowledgment.  The ob-
jective of the initial coalition formation is to hastily iden-
tify potential candidates and rank them accordingly to their 
potential utilities.  However, since the agent maintains only 
a partial view of the world, it needs to determine with cer-
tainty whether any of the candidates is willing to help.  
Instead of approaching all neighbors to compute an optimal 
coalition, the agent only selectively negotiates with top-
ranked candidates to finalize the coalition so as to conserve 
both computational resources and communication usage.  
Some candidates may refuse to participate, some may 
agree.  When a coalition is formed, all remaining negotia-
tions are terminated.  When a coalition no longer can be 
formed (due to some negotiation failures), all remaining 
negotiations are terminated as well.  This strategy is thus 
opportunistic and high-risk since the formation of a coali-
tion cannot be guaranteed.  To help alleviate this weakness, 
our agents are equipped with learning mechanisms (case-
based learning and reinforcement learning) to learn to form 
better coalitions faster, and a constant monitoring module 
for risk mitigation.  Note that with this modular approach, 
we refine the validity of our coalition gradually as time 
permits.  After the initial coalition formation step, an agent 
already has a potentially working coalition.  As the agent 
gains more information about its neighbors (through nego-
tiation), it is able to eliminate or confirm candidates.   

In this paper, we first discuss some research work in coa-
lition formation in rational and reactive agents and sys-
tems.  Then, we present our coalition formation model, 
including the utility-theoretic initial coalition formation 
and the case-based argumentative negotiation for the coali-
tion finalization step.  In this section, we also discuss the 
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learning mechanisms briefly and the coalition mitigation 
behavior in our agents.  Next we present and describe our 
experiments and results.  Based on our results, we discuss 
some possible future work, and finally we conclude. 

 

Background 
A definition from the rational coalition outlined in (Kahan 
and Rapoport 1984) states that a coalition game is based on 
the total utility that the member of the coalition can achieve 
by coordinating and acting together, assuming that infor-
mation is complete.  Our problem domain is not superaddi-
tive in which a merged coalition of any pair of sub-
coalitions is better than any pair of sub-coalitions operating 
individually as we have to consider coalition formation 
costs such as communication and computation costs.  Fur-
thermore, subadditivity does not apply to our model either.   
 Sandholm and Lesser (1995) introduce a bounded ra-
tionality in which agents are guided by performance pro-
files and computation costs in their coalition formation 
process.  In traditional coalition formation, a rational agent 
can solve the combinatorial problem optimally without 
paying a penalty for deliberation.  
 Zlotkin and Rosenschein (1994) describe a coalition 
driven by task-oriented utilities.  In a task-oriented domain 
(TOD), a coalition can coordinate by redistributing their 
tasks among themselves.   
 Shehory et al. (1997) relax some of the restrictive 
assumptions of theoretical coalition formation algorithms 
for a real-world system.  In their model, each agent has a 
vector of real non-negative capabilities.  Each capability is 
a property of an agent that quantifies its ability to perform 
a specific type of action and is associated with an evalua-
tion function.  The authors’  model assumes that all agents 
know about all of the tasks and the other agents.  In our 
model, an initiating agent knows only the agents in its 
neighborhood and knows partially about the updated status 
of a selective subset of its neighbors after negotiation.  The 
details of intra-coalitional activity are not necessary for 
agents outside of the coalition in the Shehory et al (1997)’s 
model.  On the contrary, in our model, an agent performs a 
task contributing to that coalition and the execution of this 
is reflected in the agent’s commitments, constraints, and 
perceptions.   
 Shehory and Kraus (1998) further extend their work to 
incorporating negotiations, computational and communica-
tion costs.  This model is similar to ours. However, our 
model allows an agent to conduct multiple concurrent ne-
gotiations, and adjusts its negotiation strategies to re-
design its coalition. 
 Tohme and Sandholm (1999) studies coalition formation 
among self-interested agents that cannot make sidepay-
ments—reward each other with payments for agreement to 
join some coalition, making the evaluation of a coalition 
solely on its utility.   
 Sen and Dutta (2000) propose an order-based genetic 
algorithm as a stochastic search process to identify the op-

timal coalition structure.  A significant difference between 
the authors’  work and our model is the scope of coalition 
formation.  The authors’  algorithm searches for an optimal 
coalition structure, which consists of all the agents in the 
environment grouped into one or more coalitions.  Our 
model, however, focuses on the formation of a single coali-
tion for a particular event while allowing multiple coali-
tions to be formed concurrently. 
 Other work in coalition formation include (Ketchpel 
1994, Klusch and Shehory 1996, Sandholm 1999, Moon 
and Stirling 2001) 

 

Coalition Formation 
In our approach, an initiator starts the coalition formation 
process first by selecting members in the agent’s neighbor-
hood that are qualified to be part of an initial coalition.  A 
neighborhood of an agent consists of all other agents that 
the agent knows.  Second, it evaluates these members to 
rank them in terms of their respective potential utility val-
ues to the coalition.  Third, it initiates negotiation requests 
to the top-ranked candidates, trying to convince them to 
join the coalition.  In the end, the coalition may fail to form 
because of the candidates’  refusal to cooperate, or may 
form successfully when enough members reach a deal with 
the initiating agent.  Finally, the agent sends an acknowl-
edgement message to the coalition members to announce 
the success or failure of the proposed coalition.  If it is a 
success, then all coalition members that have agreed to join 
will carry out their respective tasks at planned time steps.   
 This approach is opportunistic as the goal is to obtain a 
satisficing coalition and the success of the formation is not 
guaranteed.  This is the risk that our agent is willing to 
take: the utility of responding timely to a problem is domi-
nating the utility gained from the quality of the solution, 
since the domain is time-critical and dynamic.  In a way, 
our agent has no choice but to attempt and accept failures 
in coalition formation several times as long as the failures 
are quickly reached.  Here we discuss the three compo-
nents of coalition formation in details: initial coalition for-
mation, coalition finalization, and coalition acknowledg-
ment.  Also we briefly discuss the learning capability of 
our coalition formation design.  Then, to alleviate the con-
sequences of failed coalitions, we also describe the agent 
behavior that mitigates risks. 
 

Initial Coalition Formation 
The goal of the initial coalition formation process is to find 
a group of neighbors that can be of help to the initiating 
agent.  In a neighborhood of an agent ia , the agent ia  can 
communicate with each of its neighbors; but not all pairs of 
neighbors can communicate with each other.  A neighbor-
hood is formed out of the utility for cooperation.  In our 
multisensor target tracking domain, the neighborhood of 

ia  is the group of agents with sensors covering overlap-



ping areas with ia ’s sensor.  In our CPU re-allocation do-
main, the neighborhood of ia  is the group of agents resid-
ing on the same CPU platform as ia .  In addition, these 
candidates are ranked according to their potential utility 
values to accomplish the task at hand.  Thus, the ranking 
criteria include the capability of a candidate to provide 
useful resources and the past and current negotiation rela-
tionships between the initiating agent and that candidate.  
As a result, even if a candidate is the most capable among 
all candidates, its potential utility is reduced if it does not 
have a good relationship with the initiating agent. 
 First, upon detecting a resource or task allocation prob-
lem, the initiator describes the problem by observing its 
environment and its own activity.  The parametric descrip-
tion helps guide the identification of the coalition candi-
dates.  Second, to establish who can provide useful re-
sources or perform certain tasks, the initiator identifies 
them from its knowledge profile of its neighborhood.  This 
knowledge profile consists of the following for each 
neighbor: (a) the name and communication id, (b) the re-
sources it has, and (c) the tasks that it can perform.  By 
matching the neighbor profile with the profile of the prob-
lem, the initiator selects useful neighbors and forms the 
initial coalition.   
 Since computational resources are limited, and negotiat-
ing consumes CPU and bandwidth, the initiator does not 
start negotiation with all members of the coalition, but first 
ranks them and then initiates negotiation selectively with 
the top-ranked ones. Ranking of the coalition members is 
done using a multi-criterion utility-theoretic evaluation 
technique.  
 The potential utility of a candidate is a weighted sum of 
(1) its ability to help towards the problem at hand, (2) its 
past relationship with the initiator, and (3) its current rela-
tionship with the initiator.  Formally, 
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the agent ia  to factor the three groups of attributes: past 

relationship, current relationship, and the ability of the 
candidate to perform the requested task.  Note that ulti-
mately these weights may be dynamically dependent on the 

current status of ia  and the task je .  
ik aPU ,α  is the poten-

tial utility of the candidate kα , as seen by the agent ia .  

( )trel kapast i
,, α  is the past relationship value between the 

candidate kα  and the agent ia , ( )trel kanow i
,, α  is the cur-

rent relationship value between the two, and 

( )teability jka i
,,α  is the ability value of the candidate kα  

computed by the agent ia .   

 Each agent keeps a profile of its neighborhood, and cur-
rent and past relationships with its neighbors, and the se-
lection of the potential members of an initial coalition is 
based on this profile.  The current relationship is based on 
the negotiation strains and leverage between two agents at 
the time when the coalition is about to be formed.  The past 
relationship, however, is collected over time and enables 
an agent to adapt to form coalitions more effectively. 

Ability. The ability value is based on a set of general heu-
ristics and domain-specific criteria.  The general heuristics 
are: (1) the uniqueness of the resource or functionality that 
a candidate can provide related to the problem at hand, (2) 
the quality of the resource and functionality that a candi-
date can offer—including volume, duration, efficiency, and 
so on, (3) how many resources that are useful in solving the 
problem does the candidate have, and (4) how many differ-
ent functions can the candidate perform towards solving 
the problem. 
 In addition to these general heuristics, the evaluation 
also involves domain-specific criteria.  Here, we basically 
examine the quality of the resource and functionality of the 
candidate driven by their applicability to the problem at 
hand as determined by domain-specific requirements.  For 
example, if the initiator needs a neighbor to compute the 
first 100 prime numbers and neighbor A does not know 
how to, then the ability of neighbor A for solving the prob-
lem is zero. If neighbor A can only compute the first 25 
prime numbers, then the initiator realizes that this neighbor 
can only fulfill partial requirements and if the initiator can-
not find another neighbor to compute the next 75 prime 
numbers, then neighbor A’s ability drops to zero as well.  
However, if a domain-specific rule states that one should 
compute for prime numbers as soon as possible to prevent 
computational stress at a later time, then neighbor A would 
be still useful and would have a non-zero ability.   

Current Relationship.   The current relationship between an 
agent and a candidate is defined as follows:  Suppose (a) 
the number of concurrent negotiations that an agent can 
conduct is m, (b) the number of tasks that the agent is cur-
rently executing as requested by the candidate is k, (c) the 
number of all tasks that the agent is currently executing is 
K, and (d) the number of ongoing negotiations initiated by 
the agent to its candidate is n.  Then, the current relation-
ship value is a weighted sum of the following attributes: 
(a) negotiation strain between the agent and the candi-

date: mn , 
(b) negotiation leverage between the agent and the candi-

date:  mk , and 
(c) degree of strain imposed on the agent by the candi-

date: Kk . 
The first attribute is inversely proportional and the other 

two are proportional to the current relationship value.  The 
first attribute approximates how demanding the agent is of 
a particular neighbor.  The more negotiations an agent is 



initiating to a neighbor, the more demanding the agent is 
and this strains the relationship between the two and the 
negotiations suffer.  The last two attributes are used as lev-
erage that the agent can use against a neighbor that it is 
negotiating with.  

The current relationship can be computed readily from 
the status profile of the agent of its tasks and negotiation 
processes. 

Past Relationship.  Here we define the past relationship 
between an agent and a candidate.  Suppose that  
(a) the number of all previous negotiations initiated by the 

agent to the candidate is pT,  
(b) the number of all previous successful negotiations 

initiated from the agent to the candidate is s,  
(c) the number of negotiation requests from the candidate 

to the agent that the agent agrees to entertain is r,  
(d) the total number of all negotiation requests initiated by 

the agent to all its neighbors is qT,  
(e) the total number of all successful negotiations initiated 

by the agent to all its neighbors is q,  
(f) the number of all previous negotiations initiated by the 

candidate to the agent is rT,  
(g) the number of all previous successful negotiations 

initiated by the candidate to the candidate is c, and 
(h) the number of all previous negotiations initiated by the 

candidate to all its neighbors is uT. 
In our model, the past relationship value is a weighted 

sum of the following attributes: 
(a) the helpfulness of the candidate to the agent: ps , 
(b) the importance of the candidate to the agent:  qTp ,  
(c) the reliance of the agent on the candidate: qs , 
(d) the friendliness of the agent to the candidate:  rTr , 
(e) the helpfulness of the agent to the candidate:  rc ,  
(f) the relative importance of the agent to the candidate:  

prT , and 
(g) the reliance of the candidate on the agent: uTrT . 

Note that the above attributes are based on data readily 
collected whenever the agent initiates a negotiation request 
to one of the candidates or whenever it receives a request 
from one of its neighbors.  The higher the value of each of 
the above attributes, the higher the potential utility the can-
didate may contribute to the coalition.  The first three at-
tributes tell the agent how helpful and important a particu-
lar neighbor has been.  The more helpful and important 
that neighbor is, the better it is to include that neighbor in 
the coalition.  These attributes imply that the arguments 
that the agent sends over to the candidate will garner strong 
evidence support.  The agent expects the particular candi-
date to be grateful and more willing to agree to a request 
based on the agent’s friendliness, helpfulness and relative 
importance to that candidate (in this way our method uses a 
form of reciprocity in agent interactions).  On the other 
hand, the second set of attributes tells the agent the esti-
mated chance of having a successful negotiation with the 
candidate based on how the candidate has behaved when 
interacting with the agent.   
 Finally, the initiator makes use of the potential utilities to 
carry out task allocations and assignments.  Based on the 

overall potential utility of the initial coalition, the initiator 
may want to lower its demands to improve the chance of 
forming a coalition.  By the same token, if the potential 
utility of a candidate is high, then the initiator may want to 
increase its demand with that candidate.  We are currently 
investigating various algorithms such as greedy, lazy, wor-
ried, and weary.  An initiating agent becomes greedy dur-
ing a negotiation when (1) it tries to minimize its own ra-
tionalization and computing process, (2) it selects the can-
didate with the higher overall utility values to approach 
hoping for a successful negotiation, (3) it cares mostly 
about high-priority tasks, (4) it tries to maximize its chance 
of getting a particular task done—by including sub-utilities 
in the focused utility evaluation, and (5) it hopes to shift its 
responsibility (partially) to the candidates via successful 
negotiations—expecting the candidates to spawn their own 
coalitions to help respond to the problem at hand.  In a lazy 
algorithm, the initiator prefers to concentrate its effort on a 
few candidates, as it does not want to spend resources or 
time on too many.   In a worried algorithm, the agent asks 
for more than it needs to ensure, that if some of the candi-
dates refuse to help, it will get what it needs.  This trans-
lates to insurance policies.  Finally, in a weary algorithm, 
the initiator prefers not to upset a candidate—especially 
one that has a high uniqueness—by being over-demanding.  
This leads to demand caps that make sure that an additional 
demand does not hurt the negotiation.   
 When a candidate is approached, it examines the re-
quested the task against its current and planned activities.  
If the candidate realized that the requested task is do-able, 
then it agrees to negotiate.  Otherwise, it refuses.  So, a 
candidate does not compute the potential utility recipro-
cally when acting as a responding agent.  In other words, 
the potential utility measures are computed only to help the 
initiating agent rank the neighbors so as to choose the best 
candidates for coalition formation. 
 

Coalition Finalization 
After obtaining the initial coalition and the coalition candi-
dates ranked according to their respective potential utility 
values, the initiator invokes the coalition finalization step.  
This step consists of negotiations.  To conserve computa-
tional resources and communication resources, the initiator 
only approaches the top-ranked candidates.  When a candi-
date agrees to negotiate, the initiator proceeds with a one-
to-one negotiation guided by a negotiation strategy.  How-
ever, since the initiator conducts multiple, concurrent 1-to-
1 negotiations, each negotiation process has access to the 
coalition status.  This awareness allows the agent to modify 
its instructions for each negotiation process. In the follow-
ing, we briefly talk about the argumentative negotiation 
model (Soh and Tsatsoulis 2001) and the coalition-aware, 
concurrent negotiations. 

Argumentative Negotiation.  Our agents use a variation 
of the argumentative negotiation model (Jennings et al. 
1998) in which it is not necessary for them to exchange 



their inference model with their negotiation partners.  Note 
that after the initial coalition formation, the initiator knows 
who can help.  The goal of negotiations is to find out who 
is willing to help. To do so, first the initiator contacts a 
coalition candidate to start a negotiating session.  When the 
candidate or responder agrees to negotiate, it computes a 
persuasion threshold that indicates the degree to which it 
needs to be convinced in order to free or share a resource 
or perform a task (alternatively, one can view the persua-
sion threshold as the degree to which an agent tries to hold 
on to a resource).  Subsequently, the initiator attempts to 
convince the responder by sharing parts of its local infor-
mation.  The responder, in turn, uses a set of domain-
specific rules to establish whether the information provided 
by the initiator pushes it above a resource’s persuasion 
threshold, in which case it frees the resource.  If the re-
sponder is not convinced by the evidential support pro-
vided by the initiator, it requests more information that is 
then provided by the initiator.  The negotiation continues 
based on the established strategy and eventually either the 
agents reach an agreement, in which case a resource or a 
percentage of a resource is freed, or the negotiation fails.  
Note that, motivated to cooperate, the responder also 
counter-offers when it realizes that the initiator has ex-
hausted its arguments or when time is running out for the 
particular negotiation.  How to negotiate successfully is 
dictated by a negotiation strategy, which each agent derives 
using case-based reasoning (CBR).  CBR greatly limits the 
time needed to decide on a negotiation strategy, which is 
necessary in our real-time domain since the agent does not 
have to compute its negotiation strategy from scratch.  
Please see (Soh and Tsatsoulis 2001) for details. 

As negotiation strategy we define the set of guidelines 
(or protocol) that govern the behavior of an agent during a 
particular negotiation.  In contrast to other work in negotia-
tion where the negotiating parties followed a predefined, 
static protocol, our agents dynamically establish a new 
strategy depending on their current state and the state of 
the world.  The goal is to situate a negotiation and to im-
prove the chances of its success by taking into account the 
dynamically changing world state.  This is accomplished 
by using CBR to select, adapt, and eventually learn nego-
tiation strategies. 

Since initiating a negotiation and responding to one are 
fundamentally different tasks, although still governed by 
the same methodology, each agent has two different case 
bases: one with strategies for initiating negotiations and 
one with strategies for responding to negotiation requests.  
Cases of both initiating and responding negotiation strate-
gies have the same description, but different strategies.  In 
the following we discuss the joint situation description of 
the two case types and then discuss the two types of strate-
gies separately.  

Each case also contains the negotiation strategy that was 
used in the past together with the outcome of the negotia-
tion, such as: “offer accepted,”  “offer rejected,”  “ ran out of 
time,”  or “ ran out of resources.”   The strategy tells the 

agent how to conduct the negotiation.  For the initiator the 
negotiation strategy includes: 
1. a ranking of the classes of information it should use as 

arguments: during a negotiation each agent attempts to 
minimize the number and length of messages sent, 
since with fewer messages the agents can avoid mes-
sage loss due to communication failures, and reduce 
traffic among the agents.  The agents want to send 
short messages as well since the transfer is faster and 
the bandwidth is constrained.  Thus, it is important for 
an initiating agent to decide which information pieces 
are more important to send to the responding agent; 

2. the time constraint: how long (in real time) the agent 
should be negotiating, since the target may leave the 
area; 

3. the number of negotiation steps: a “step”  is a complete 
negotiation communication act where the initiator 
sends arguments and the responder makes a counter-
offer or requests more convincing arguments.  Clearly 
the more steps that are allowed the higher the chance 
of reaching an agreement, but also the more time and 
resources are spent; 

4. the CPU usage: more CPU resources for a negotiation 
mean faster negotiation, but also less CPU available 
for other tasks. 

 The responder has a slightly different negotiation strat-
egy.  It shares some elements of the initiator’s protocol, 
specifically the time constraint, the number of negotiation 
steps, and the maximum CPU usage, but it also introduces 
two more parameters: 
1. the power usage: this defines how much power the 

responder is willing to use to turn on its radar; 
2. persuasion thresholds for resources: as already men-

tioned, each resource has a persuasion threshold asso-
ciated with it which determines how difficult it will be 
to convince the responder to free the resource. 

Coalition-Aware Negotiations.  Each agent has n negotia-
tion threads.  This means that an agent can conduct multi-
ple, concurrent negotiations.  Since a negotiation is not 
guaranteed to be successful, an initiating agent usually ap-
proaches more than the number of agents needed for a task.   

This coalition awareness has several benefits.  First, it al-
lows an agent to free up its negotiation threads, communi-
cation channels, and communication bandwidth for other 
negotiation tasks.  Second, it allows an agent to immedi-
ately abandon failing coalition, re-assess its environments, 
and start another coalition formation.  Third, by terminat-
ing useless negotiations, an agent is able to base its reason-
ing on updated, more correct status profile. 
This coalition awareness allows a negotiation thread to (1) 
determine whether to proceed with the current negotiation, 
and (2) to evaluate the acceptability of a counter-offer.   
 To improve the reflectiveness of each negotiation proc-
ess, each negotiation thread is aware of the status of the 
coalition that it belongs to.  For example, if a coalition 
requires 30 units of a resource, and the coalition already 
successfully recruits two candidates that total 35 units, then 
other negotiation processes are terminated.  Similarly, if a 



coalition is no longer viable, then the initiator aborts its 
negotiation.  For example, suppose that a coalition needs a 
carpenter and a woodcutter to build a table.  Suppose the 
initiator approaches two carpenters and two woodcutters 
for help.  The negotiations with the two woodcutters even-
tually fail.  The agent immediately realizes that it no longer 
can form a successful coalition; and thus it aborts the two 
negotiations with the carpenters.  
 Here we show an example for counter-offer study.  Sup-
pose that the initiator is in need of 40 units of a resource.  
It has asked for help from 4 candidates: 25 units from can-
didate A, 15 units from candidate B, 10 units from candi-
date C, and 5 units from candidate D.  In this case, the 
agent is worried and thus asks for more resources: 55 units 
instead of 40 units.  Suppose that after a while, candidates 
B and C both agree to help and thus the initiator has 
formed a partial candidate where it now gets 25 units.  
Suppose that now candidate A counter-offers with 15 units 
of resource, the negotiation thread in charge of the negotia-
tion with candidate A must check its awareness link, an 
updated snapshot of the health of the coalition.  By com-
paring the need of the coalition, the negotiation thread real-
izes that the counter-offer is acceptable and thus responds 
accordingly. 
 The implementation of the coalition awareness is 
straightforward.  Each negotiation thread of an agent shares 
the same coalition repository.  When a negotiation thread 
reports its completion to the core (behavior) thread of the 
agent, the core thread updates the thread’s information with 
the coalition repository, and subsequently determines the 
viability of the coalition.  This information is automatically 
and immediately available at each negotiation thread.   
 Currently, once a coalition is agreed upon, agents who 
are involved cannot bail out.  But, during negotiations, any 
of the agents involved can opt out: an initiating agent may 
terminate some of its negotiation activities once it realizes 
that it no longer needs those negotiations to be successful; 
and a responding agent may decide to reject any further 
negotiation when it realizes that it has started performing 
another task. 

Coalition Acknowledgment 
After a coalition has been decided—meaning all negotia-
tion threads have terminated, the agent has to acknowledge 
the coalition.  If the coalition is a failure, then the agent has 
to send out a discard message to each coalition member 
that has agreed to a deal to cancel the deal.  If the coalition 
is a success, then the agent must send out a confirm mes-
sage to the same coalition members.  This acknowledgment 
is necessary for effective task planning of our agents. 
 In our multiagent system, each agent maintains a dy-
namic job queue.  When a responding agent agrees to a 
request to perform a set of tasks, it registers the tasks with 
the job queue with the agreed start time and execution du-
ration.  However, since the negotiations conducted by the 
initiating agent are concurrent, that means that a task al-
ready registered may have to be discarded before it is exe-
cuted at the planned start time.   

 This coalition acknowledgment demonstrates two useful 
agent characteristics towards responsible coalition forma-
tion.  First, an initiating agent is responsible—it informs 
coalition members of the success or failure of the coalition 
and releases the coalition members from their agreements 
in case of a coalition failure caused by other negotiations.  
Second, a responding agent may unilaterally release itself 
from its agreement if it does not receive a confirmation of 
an agreed task.  
 This coalition acknowledgment step is a feature that al-
lows the initiator to conduct concurrent negotiations asyn-
chronously.   

Learning Better Coalition Formation 
Since our coalition formation strategy is opportunistic in 
that it tries to form satisficing solutions with no guarantees.  
Indeed, a coalition formation cannot be guaranteed due to 
the uncertain communication facility—messages may be 
lost, corrupted, or jammed.  To improve the chance of suc-
cessfully forming coalitions, we install learning mecha-
nisms in our agent design aimed at learning to form better 
coalitions faster.  We briefly discuss them in this section. 
 First, when a coalition is initially formed, an agent is 
motivated to go back to the same neighbor (for a particular 
task) that the agent has had good past relationship in their 
interactions.  This reinforcement learning is evident in the 
computation of the potential utility described previously.   

Second, when an initiating agent sends over different in-
formation classes to argue with the responding agent, one 
of the information classes includes a profile of the 
neighbors including the past relationship attributes.  As a 
result, the responding agent is reinforced to agree to a ne-
gotiation by its previous interactions with the initiating 
agent: the more successes the initiating has had with a par-
ticular neighbor, the more effectively it can argue with that 
neighbor due to its reinforcement learning. 

Third, we use CBR to retrieve and adapt negotiation 
strategies for negotiations.  When a negotiation is com-
pleted, the agent also determines whether to learn the new 
case—storing it in the agent’s case base.  The case-based 
learning is performed in two modes: incremental and re-
finement.  During the incremental learning the agent 
matches the new case to all cases in the case base and if it 
is significantly different from all other stored cases, then it 
stores the new case.  When we want to keep the size of the 
case base under control, we use refinement learning—
replacing the most similar old case with the new case if the 
replacement increases the diversity of the case base.  This 
case-based learning allows an agent to learn how to 
achieve a successful negotiation (a coalition finalization) 
better and faster. 

We are currently looking into learning to form coalitions 
better by adjusting the weights in the potential utility, 
driven by the failure and success rates of coalition forma-
tion.  For example, if a coalition fails to form or forms with 
low resultant utility (after the tasks have been carried out 
or resources have been re-allocated), then the initiator may 
pinpoint the weak coalition members and identify the re-



weighting scheme that would have reduced their ranking in 
the previously carried out initial coalition formation step.  
Similarly, the initiator may learn from a successful coali-
tion formation by computing the set of new weights that 
would distance the good coalition members from those 
discarded. 

Coalition Mitigation 
To alleviate the impact of a coalition failure, our agent 
behavior design adopts a natural mitigation approach.  Our 
agent constantly monitors its environments.  When a coali-
tion fails, the agent continues to monitor and if it finds the 
same problem still present, it can start another round of 
coalition formation.  Since our agents are reflective and 
situation-aware, this new coalition will have a different 
problem profile, neighborhood profile, and agent profile.  
This in effect allows the agent to look at the problem from 
a slightly different viewpoint, which may eventually lead to 
a successful coalition being formed.  The rate of such a 
recovery (the number of coalition failures before success) 
is critically dependent on the dynamism of the problem.   
 This mitigation approach belies the principles of our 
coalition formation approach: the agents are willing to fail 
many times before getting it right because of the dynamism 
of the system that does not allow the agents to rationalize 
optimally an does not allow the agents to guarantee the 
successful formation of an optimal coalition. 
 

Results 
We have built a fully-integrated multiagent system with 
agents performing end-to-end behavior.  We have con-
ducted experiments using both a software simulation and a 
physical hardware setup.  In the following, we report on 
one particular experiment performed using a simulation 
software called Radsim.    

Application 
The driving application for our system is multisensor target 
tracking, a distributed resource allocation and constraint 
satisfaction problem (Soh and Tsatsoulis 2001).  The ob-
jective is to track as many targets as possible and as accu-
rately as possible using a network of fixed sensors under 
real-time constraints.  To track accurately, the agents con-
trolling the sensor must be able to react to the incoming 
targets in a timely manner.  For example, to track accu-
rately a target moving at half a foot per second requires 
one measurement each from at least three different sensors 
within a time interval of less than 2 seconds.  Moreover, 
the environment is noisy and subject to uncertainty and 
errors such as message loss and jammed communication 
channels.  This further complicates the collaborations 
among the agents.  

There are eight agents, each controlling one sensor, and 
two targets.  The sensors are fixed and each target moves 
in a non-overlapping rectangular route as shown in Figure 

1.  In this experiment, Radsim was first started followed by 
the simultaneous invocations of the eight agents.  Each 
agent has one behavior thread, one communication thread, 
one execution thread, and two negotiation threads.  A 
tracking coalition requires at least three coalition members.  
Each agent interacts autonomously with the software simu-
lation via software sockets: monitors the world, reasons 
and responds to events in the world, and actuates its radar 
and changes the world.   

Figure 1.  8 sensors (circles) and the tracks of 2 targets in 
our experiments. 

 When a target is detected, the initiator measures the tar-
get to obtain the initial target location and velocity.  This is 
the problem profile.  Then, based on a geometric model of 
all its neighbors and the projected target trajectory, the 
initiator finds the radar coverage areas that the path crosses 
and identifies areas where at least three radars can track the 
target (remember that tracking requires almost simultane-
ous measurement from at least three sensors).  Ranking of 
the coalition members is done using a multi-criterion util-
ity-theoretic evaluation, guided by both general heuristics 
and domain-specific criteria. The domain-specific criteria 
are: (1) the target’s projected time of arrival at the cover-
age area of a sensor: there has to be a balance between too 
short arrival times which do not allow enough time to ne-
gotiate and too long arrival times which do not allow ade-
quate tracking; (2) the target’s projected time of departure 
from the coverage area of a sensor: the target needs to be in 
the coverage area long enough to be illuminated by the 
radar; (3) the number of overlapping radar sectors: the 
more sectors that overlap the higher the chance that three 
agents will agree on measurements, thus achieving target 
triangulation; and (4) whether the initiator’s coverage over-
laps the coverage area of the coalition candidate. 

Discussion of Results 
Here we report on some preliminary experiment results for 
one typical run.  In this run, the total number of attempts to 
form a coalition was 150.  The total number of coalitions 
successfully formed (after coalition finalization) was 30, or 
20%.  The total number of coalitions confirmed by all three 
coalition members was 26, or 86.7% of all successfully 
formed coalitions.  Finally, the total number of coalitions 
executed on time was 18, or 61.5% out of all successfully 
confirmed coalitions.   
 First, the percentage of successfully formed coalitions 
was only 20.0%.  Out of the 120 failed attempts, 86 
(71.7%) of them were caused by one of the coalition mem-



bers outright refusing to negotiate, 17 (14.2%) were caused 
by the communication channels being jammed, and 17 
(14.2%) were caused by busy negotiation threads.  When 
an initiating agent initiates a negotiation request to a candi-
date and that candidate immediately refuses to entertain the 
negotiation, it can be due to (1) the responding agent does 
not have idle negotiation threads, or (2) the responding 
agent cannot project the requested task into its job queue.  
Thus, we expect this failure rate to decrease once we in-
crease the number of negotiation threads allocated per 
agent.  When an agent fails to send a message to another 
agent, or fails to receive an expected message, we label this 
as a communication “channel-jammed”  problem.  When an 
initiating agent fails to approach at least two candidates, it 
immediately aborts the other negotiation process that it has 
invoked for the same coalition.  This causes the coalition to 
fail. 

Second, the probability of a successfully formed coali-
tion getting confirmed completely was 86.7%.  For each 
coalition successfully formed, three confirmations were 
required.  Out of 30 coalitions, 4 coalitions were confirmed 
only by two of the members.  The causes were (1) the ac-
knowledgment message sent out by the initiating agent was 
never received by the responding agent expecting a con-
firmation, and (2) the agreed task had been removed from 
the job queue before the confirmation arrived.  The first 
cause happened since communication channels could be 
jammed.  The second cause happened because of a conten-
tion for a slot in the job queue by two tasks.  For example, 
suppose agent A receives a request from agent B to track a 
target starting at 8:00 a.m.  Agent A responds to the re-
quest and starts a negotiation.  Then later on, agent A re-
ceives a request from agent C to track a target also starting 
at 8:00 a.m., but using a different sensing sector (each sen-
sor has three difference sensing sectors).  Agent A checks 
its job queue and sees that it is free at that time and thus 
agrees to negotiate.  Note that a task is inserted into the job 
queue only after the agent agrees to perform it.  Now, sup-
pose that both negotiations are successful.  The negotiation 
between A and B ends first and then that between A and C.  
When the first negotiation ends, agent A adds the task re-
quested by B to the job queue.  Immediately after, when 
the second negotiation also ends successfully, agent A adds 
the second task, requested by C to the job queue, and this 
causes the second task to replace the first task.  This is a 
problem with over-commitment. 
 Third, the probability of a confirmed coalition getting 
executed was 61.5%.  Out of 26 coalitions confirmed, only 
16 of them were executed completely.  Of the 10 failures, 
there were two cases where none of the members executed 
its planned task; one case where only one of the members 
executed; and seven cases where only two members exe-
cuted.  The cause for the failure to execute was that the 
agreed task had been removed from the job queue before 
the execution took place.  
 

Current and Future Work 
Overall, our results showed that our agents are able to form 
coalitions quickly and in time to track a moving target in 
the environments.  The agents were able to negotiate, plan 
synchronized tracking tasks and execute them accordingly.  
We are investigating solutions to address the following 
problems in our multiagent system: 
(1) Channel Jammed – To prevent negotiation messages 

from getting lost and holding up negotiation threads, a 
better use of the available communication channels is 
needed.  This will increase significantly the chance for 
response and acknowledgment messages to be re-
ceived on time, and, in turn, the success rate of coali-
tion formation. 

(2) Task Contention and Over-Commitment – Currently, 
if an agent is approached by two other agents for two 
separate tasks around the same time slot, it entertains 
both requests and may run into task contention and 
over-commitment; we are studying ways of preventing 
this. 

(3) Time Modeling – Sensor-related tasks must be mod-
eled more closely to help plan and schedule a compact 
and sensible job queue.  We have performed time pro-
filing on various calls and have found that sensor-
related tasks have a high variance of execution dura-
tion.  We need to determine the bounds such that a 
tracking task can be safely scheduled and expected to 
be executed. 

There are also several areas that we plan to examine in the 
future: 
(1) Inter-coalition and intra-coalition competitions – task 

distribution, priorities, ‘health’  of coalitions, etc. 
(2) Coalition awareness and the effects of coalition moni-

toring on speed (how much should a negotiation proc-
ess monitor about the coalition when negotiating, and 
how reflective we want the negotiations to be of the 
coalition) 

(3) How can we incorporate agent behavior into coalition 
formation tendencies: how greedy should the initiating 
agent be, how lazy should it be?  Will irresponsible 
agents work together and actually produce faster re-
sponse to world events? 

(4) Online learning of better coalition formation strategies 
through distributed cooperative case-based learning 

 

Conclusions 
We have described a coalition formation strategy that aims 
at obtaining satisficing solution for time-critical, noisy, and 
incomplete resource or task allocation problem.  Because 
of the nature of the strategy, a coalition is not guaranteed to 
form successfully especially when message passing among 
agents is not reliable.  In our approach, our coalition for-
mation process is divided into three stages: initial coalition 
formation, coalition finalization, and coalition acknowl-
edgment.  Initially, coalition candidates are selected hastily 



from an agent’s neighborhood and subsequently ranked 
according to their respective potential utilities.  Next, dur-
ing the finalization phase, the coalition is refined and veri-
fied through negotiations, where information is exchanged 
between two agents to clarify commitments and con-
straints.  The agent is able to coordinate directly and indi-
rectly through a coalition awareness link with its negotia-
tion threads.  Finally, the coalition acknowledgment step 
confirms or discards already-agreed requests.  This releases 
an agent from uselessly honoring a lost-cause coalition 
commitment.  We have incorporated utility theory, case-
based reasoning, argumentative negotiation, and real-time 
profiling in the above methodology and design. 
 Finally, we have built a multiagent system complete with 
end-to-end agent behavior.  Our preliminary results are 
promising in that an initiator was able to form satisficing 
coalitions quickly given its constraints.  Our results also 
showed that we need to manage our communication chan-
nels better, handle task contention and over-commitment, 
and model domain-related time constraints better.    
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