
Hierarchical organizations for real-time large-scale  
task and team environments

Osher Yadgar 
Dept. of Math and CS, 

Bar Ilan University, 
Ramat Gan, 52900 Israel 
yadgar@macs.biu.ac.il 

Sarit Kraus 
Dept. of Math and CS, 

Bar Ilan University, 
Ramat Gan, 52900 Israel 

sarit@macs.biu.ac.il 

Charles L. Ortiz, Jr. 
Artificial Intelligence Center, 

SRI International, 
Menlo Park, CA 84025  USA 

ortiz@ai.sri.com 
 
 
 

Abstract 
In this paper, we describe the Distributed Dispatcher 
Manager (DDM), a system for monitoring large collections 
of dynamically changing tasks.  We assume that tasks are 
distributed over a virtual space. Teams consist of very large 
groups of cooperative mobile agents. Each agent has direct 
access to only local and partial information about its 
immediate surroundings. DDM organizes teams 
hierarchically and addresses two important issues that are 
prerequisites for success in such domains: (i) how agents 
should process local information to provide a partial 
solution to nearby tasks, and (ii) how partial solutions 
should be integrated into a global solution. We conducted a 
large number of experiments in simulation and 
demonstrated the advantages of the DDM over other 
architectures in terms of accuracy and reduced inter-agent 
communication *. 

Introduction  
This paper considers the problem of monitoring large 
collections of dynamically changing tasks. The tasks are 
distributed over a large (possibly, virtual) environment and 
are to be executed by large teams of mobile cooperative 
agents. These agents have direct access to only local and 
partial information about their immediate environment. 
There are several domains where such problems arise: 
satellites that are tasked to form a general picture of a large 
area; satellites that form weather maps; agents that control 
air pollution or ocean pollution; sensor webs that monitor 
geographic areas for passing aircrafts; and unmanned air 
and ground vehicles that must be jointly tasked for 
surveillance missions. In such domains, there are two 
central issues that represent prerequisites for success: (i) 
how agents should process local information to provide a 
partial solution to nearby tasks, and (ii) how partial 
solutions should be integrated into a global solution. 
We describe the Distributed Dispatcher Model (DDM), an 
agent based computational model. DDM is designed for 
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efficient coordinated task allocation in systems consisting 
of hundreds of agents (resources); the model makes use of 
hierarchical group formation to restrict the degree of 
communication between agents. Our main contribution is in 
use of a hierarchical organization of agents to combine 
partial information. The hierarchical team organization 
supports processes for very quickly combining partial 
results to form an accurate global solution.  Each level 
narrows the uncertainty about the solution based on the 
data obtained from lower levels. We proved that the 
hierarchical processing of information reduces the time 
needed to form the accurate global solution. 
We tested the performance of the DDM through extensive 
experimentation in a simulated environment involving 
many sensors.  The simulation models a suite of Doppler 
sensors used to form a global information map of targets 
moving in a steady velocity as a function of time. A 
Doppler sensor is a radar which is based on the Doppler 
effect. Due to its nature, a Doppler sensor may provide 
information only about an arc that a detected target may be 
located on as well as the velocity towards that sensor, that 
is, the radial velocity (Thomas 1965). Given a single 
Doppler measurement, one cannot establish the exact 
location of a target and its exact velocity; therefore, 
multiple measurements must be combined for each target. 
This problem was devised as a challenge problem by the 
DARPA Autonomous Negotiating Teams (ANTS) program 
to explore realtime distributed resource allocation 
algorithms.  
We compared our hierarchical architecture to other 
architectures and showed that the monitoring task is faster 
and more accurate in DDM. We have also shown that 
DDM can achieve these results when using a low volume 
of noisy communication. 

The DDM model  
We consider environments with tasks and agents 
distributed over some area. We present a formal 
specification of the environment and demonstrate the 
formalism using the ANTS challenge problem.  We assume 
that there is a set T of time points. 
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Tasks: There are many tasks in the environment. At any 
time, each task has an associated state. The state of a task 
may change over time. We denote the set of all task-states 
by S. There is a boolean function ResBy that given two 
task-states s1 and s2 and two time points t1 and t2 where 
t2≥ t1, returns true if it is possible that if the state of a task 
was s1 at t1, then it could be s2 at t2. ResBy satisfies the 
constraints: 
Let Tttt ∈321 ,, and Ssss ∈321 ,,  , 321 ttt <<  such 
that 
if ResBy( >< 11, st , >< 22 , st ) and ResBy( >< 22 , st , 

>< 33 , st ) then ResBy( >< 11, st , >< 33 , st ) 
if ResBy( >< 11, st , >< 22 , st ) and ResBy( >< 11, st , 

>< 33 , st ) then ResBy( >< 22 , st , >< 33 , st )  
if ResBy( >< 11, st , >< 33 , st ) and the ResBy( 

>< 22 , st , >< 33 , st ) then ResBy( >< 11, st , 
>< 22 , st )  

if ResBy( >< 1,st , >< 2, st ) then 21 ss = . 
 
The constraints (i)-(iii) of ResBy consider the way the state 
of a target may change over time.  They refer to three 
points of time 321 ,, ttt  in an increasing order and to the 
possibly that a task was at state 21 , ss  and 3s  at these time 
points, respectively. If the task has been in these states at 
the corresponding time then 2s at 2t  should be a result of 

1s at 1t , i.e. ResBy( >< 11, st , >< 22 , st ). Similarly 
ResBy( >< 22 , st , >< 33 , st ) and  ResBy( >< 11, st , 

>< 33 , st ). The constraints indicate that it is enough to 
check that two out of the three relations hold, to verify that 
the task was really at 1s at 1t , 2s at 2t  and 3s at 3t . That is if 
two of the three relations hold, also the third one. The last 
constraint (iv) is based, intuitively, on that a task cannot be 
in two different states at the same time. 
Tasks and ResBy relation in the ANTS domain: In the 
ANTS domain we map each target to a task. The target 
state structure is >=< vrs , . r  is the location vector of 
the target and v is the velocity vector. If a target state 2s at 

2t  resulted from target state 1s at 1t  and the velocity of the 
target remains constant during the period 21..tt , then 

)( 12112 ttvrr −⋅+= . We assume that no target is likely to 
appear with the same exact properties as another target. 
That is, there cannot be two targets at the exact same 
location moving in the same velocity and direction.  Thus 
where >=< iii vrs ,  ResBy ),,,( 2211 ><>< stst  in ANTS 
is true iff: (i) 2r may be derived from 1r  using the motion 
equation of a target and given 1v during the period 

12 tt − and (ii) 21 vv = . 
The physical motion of a moving body in a steady velocity 
follows the four constraints of the ResBy relation.  In 
general in any domain every task state that combines out of 
a singular state along with the first derivative of this state 
by time where this derivative is not depended on time 
satisfies the four constraints. For instance, in the 
monitoring satellite domain the task state may be a 
combination of an image and a derivation of the image by 
time. 
Agents: There is a set of sampling agents, A. Each agent is 
capable of taking measurements. Each a∈A is associated 

with an agent state that may change over time. The set of 
all possible sampling-agent states is denoted Sa.   
In the ANTS domain we map each Doppler to a sampling 
agent. The sampling agent state is the location of the sensor 
and its orientation. 
Agents observing tasks: Sampling agents are able to 
obtain measurements on tasks if they are located near the 
tasks. The measurements provide only partial information 
on the task-states and may be incorrect.  When an agent 
takes measurements we refer to its agent state as a 
viewpoint in which a task state was measured. We assume 
that there is a function PosS that given k consecutive 
measurements taken by the same agent, up to time t returns 
a set of possible states, SS ⊆′ , for a task at time t where 
exactly one Ss ′∈  is the right task state and there is an 

1≥m such that mS ≤′ || . 
 A path, p, is a sequence of triplets 

>><><< nnn ssatssat ,,...,, 111  whereas 
SasaSsTt iii ∈∈∈ ,, and for all ni <≤1 , either 

1+< ii tt  and ResBy( >< ii st , , >< ++ 11, ii st ) is true or  
1+= ii tt  , 1+≠ ii sasa  and 1+= ii ss .  

 
We refer to points of a path as path points. Each path 
represents task state discrete change over time as measured 
by sampling-agents in states, nsasa ...1 . Constraint (i) 
considers the case where the two points in the path captures 
the change of the state of the task from is at time it  to 

1+is at time 1+it . In this case, where the path specifies the 
way the state was changed, ResBy ),,,( 11 ><>< ++ iiii stst  
must hold, i.e. the task could be at is at it and then at 1+is at 

1+it . On the other hand, constraint (ii) considers the case of 
two points >< iii ssat ,, , >< +++ 111 ,, iii ssat  of the path that 
does not capture a change of the task’s state. Rather, it 
captures two different observations of the task.  That is, 
that task was at a given state is at time it , but was observed 
by two agents. The two agents were of course in different 
states, and this is indicated by 1+≠ ii sasa .  
A path consists of only very few states of the task that were 
observed by agents. However, from a path the agent would 
like to induce the state of the task at any given time. This is 
formalized as follows.  
A task state function 

es
f ππ , , with respect to two path 

points >=< ssss ssat ,,π , >=< eeee ssat ,,π  where 
es tt ≤ , associates with each time point a task state (i.e. 

STf
es

→:,ππ ) such that  
(i) ss stf

es
=)(,ππ  and ee stf

ee
=)(,ππ  

(ii) 21,tt∀ , 21 tt <  
ResBy( >< )(, 1,1 tft

es ππ , >< )(, 2,2 tft
es ππ ). 

 
A task state function represents task state change over time 
points of T with respect to two path points.  
Finally, to move from a path to an associated function, we 
assume that there is a function pathToFunc: FP →  such 
that given a path Pp∈ , 

>><>=<< nnn ssatssatp ,,,...,,, 111 , if 
es

f ππ , = 
pathToFunc (p) then, >=< 111 ,, ssatsπ , 

>=< nnne ssat ,,π  iii stft
es

=∀ )(, ,ππ . 



In ANTS we have developed a method involving k 
consecutive measurements taken by a single Doppler to 
compute possible locations and velocities of targets. 
PosS implementation in ANTS. A measurement in the 
ANTS domain is a pair of amplitude and radial velocity 
values for each sensed target. Given a measurement of a 
Doppler radar the target is located on the Doppler equation: 
 

i
i

i

ekr η
σ
βϑ 2)(

2

−−
⋅=  

 
where, for each sensed target, i, ir  is the distance between 
the sensor and i ; iθ  is the angle between the sensor and i ; 

iη  is the measured amplitude of i ; β  is the sensor beam 
angle; and k  and σ  are characteristics of the sensors and 
influence the shape of the sensor detecting area (1). Given 
k consecutive measurements one can use the Doppler 
equation to find the distance ir . However, there are two 
possible iθ  angles for each such distance. Therefore, for 
PosS function in ANTS domain returns two possible task 
states, i.e. m=2. For space reasons we do not present the 
proofs of the lemmas and theorems.   
Theorem 1: (PosS) Assuming that the acceleration of a 
target in a short time period is zero. The next target 
location after a very short time is then given by 
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where 0000 ,,, rvr ηθ  and 0α  are values of the target at time 

0=t and 11 ,ηθ and 1α represent values of the target at time 
1=t . jit ,  is the time between t=i and t=j.  

Only certain angles will solve the equations. To be more 
accurate, the sampling agent uses one more sample and 
applies the same mechanism to 21,θθ  and 3θ . The angles 
are used to form a set of possible pairs of location and 
velocity of a target (i.e., the PosS  function values). Only 
one of these target states is the correct one. 

DDM’s goal 
The aim of the DDM is to describe the way the states of the 
task in the area change over time. To monitor tasks we use 
many agents. Each of these agents can obtain partial 
information about tasks in its close environment. The DDM 
uses the partial and local information to form an accurate 
global description on how the tasks are changing over time. 
We can apply the DDM model to many problems by 
mapping the DDM entities to the domain entities. For 
example, in the case of satellites used to track forest 
preservation we can map each sampling agent to a satellite 
and each forest segment under surveillance to a task. In that 
case a ResBy relation can be a function that uses an image 
processing methods and a physical logic to deduce whether 
one state is resulted by another. A 

es
f ππ , function will be a 

function that describes the changes of the image by time 
using the same deductions. The function will describe the 

changes of the image between the two time points as 
collected by a path of states and a prediction about a 
further changes. 
In the ANTS domain the agent’s goal is to find the location 
of the targets at any time point. Here 

>−⋅−>≡<−⋅−=< eeeessss vttvrvttvrtf
es

),(),()(,ππ . 
Formally, the DDM aims at forming the information map 
structure. 
Definition 1: An information map, infoMap, is a set of task 
state functions >< h

h
e

h
ses

ff ππππ ,
1

, ,...,11  such that for every 
hji ≤≤ ,1  and Tt∈  )()( ,, tftf ji

j
e

j
s

i
e

i
s ππππ ≠  

Intuitively, infoMap represents the way the states of a set of 
tasks change over time. The condition on the information 
map specifies the assumption that two tasks cannot be at 
the same state and time. Because each agent has only 
partial and uncertain information on its local surrounding 
an agent may need to construct the infoMap in stages. In 
some cases they may not be able to construct the entire 
infoMap. The process of constructing the infoMap will use 
various intermediate structures. 
Intermediate structures: Due to uncertainty of the sensing 
information at a given time every sampled task may be 
associated with several possible task states. Each such task 
state is derived from the same raw sensed data, i.e. PosS 
returns S ′ such that mS ≤′<1 . All the possible task states 
are combined with the sampling agent state to form a 
capsule. 
Definition 2: A capsule is a triplet of a time point, a 
sampler agent state and a sequence of up to m task-states, 
i.e., >=< },...,{,, 1 lsssatc  where 

SsSasaTt i ∈∈∈ ,, , ml ≤ . We denote the set of all 
possible capsules by C. 
A capsule represents a few possible states of a task at time t 
as derived from measurements taken by an agent in a given 
state. Capsules are generated by the sampling agents using 
the domain dependent function PosS and k consecutive 
samples.  
The problem faced by DDM is how to choose the right 
state from every capsule. It is impossible to determine 
which state is the right one using one viewpoint since 
measurements from one viewpoint results up to m task 
states each could be the correct state. Therefore, capsules 
from different viewpoints are needed. A different viewpoint 
may correspond to a different state of the same sampling 
agent or of different sampling agents. To choose the right 
task state from each capsule we connect states from 
different capsules using the ResBy relation and form a path. 
We then try to evaluate each of these paths and use the 
ones with the best probability to represent changes of task 
states and form state functions. We will use the following. 
Definition 3: A localInfo is a pair of infoMap and a set of 
capsules, <infoMap, unusedCapsules> where 
unusedCapsules=  c,...,c m1 >< s.t. for all mi ≤≤1 and for 
all lj ≤≤1  and =ic  >< },...,{,, ,1 liiii sssat  and for every 

infoMap  , ∈
es

f ππ  ijsf
es

≠)(t i,ππ . 
At any time, some of the capsules can be used to form task 
state functions that have a high probability of representing 
tasks. These functions are kept in the infoMap; we refer to 



them as accurate representatives. The rest of the capsules 
will be kept in the unusedCapsules set and will be used for 
further attempts to identify state functions. That is, the 
condition of definition 3 intuitively says that a task 
associated with a function  , es

f ππ was not constructed using 
one of the measurements that were used to form the 
capsules in the unusedCapsules set.  
2.2 The DDM hierarchy structure 
In a large-scale environment we will have to attempt to link 
many capsules from all the area. Using the relation ResBy 
many times is time consuming. However, there is low 
probability that capsules created based on measurements 
taken far away from one another will fit. Therefore, we will 
distribute the solution. The DDM uses hierarchical 
structures to construct a global infoMap distributively. The 
lower level of the hierarchy consists of the sampling agents. 
These agents are grouped according to their area. Each 
group has a leader. Thus, the second level of the hierarchy 
consists of the sampler group leaders. These sampler group 
leaders are also grouped according to their area. Each such 
group of sampler leaders is associated with a zone group 
leader. Thus, the third level of the hierarchy consists of 
these zone group leaders, which in turn, are also grouped 
according to their area associated with a zone group leader 
and so on and so forth. We refer to members of a group as 
group suborinates. Sampling agents are mobile; therefore, 
they may change their group when changing their area. The 
sampler leaders are responsible for the movements of 
sampling agents. For space reasons we do not discuss this 
process here, but rather focus on the global infoMap 
formation. We also do not discuss the methods we 
developed that are used to replace group leaders that stop 
functioning.  Leader agents are responsible for retrieving 
and combining information from their group of agents. All 
communication is done only between a group member and 
its leader.  
A sampler agent takes measurements occasionally and 
forms capsules. It sends its capsules to its sampler leader 
every specified time period. A sampler leader collects the 
capsules from all the sampler agents in its area and forms a 
localInfo. In this formation it uses its localInfo from 
previous round. It then sends its localInfo to its zone 
leader. A zone leader collects the localInfo of all the sub-
leaders of its zone and forms a localInfo of its entire zone. 
In turn it sends it to its leader and so on. The top zone 
leader, whose zone consists of the entire area, forms a 
localInfo of all the tasks in the entire area. In the next 
section we present the agent algorithms. 
Algorithm descriptions 
The formation of a global information map integrates the 
following processes:  
Each sampling agent gathers raw sensed data and generates 
capsules.  
Every dT seconds each sampler group leader obtains from 
all its sampling agents for their capsules and integrates 
them into its localInfo. 

Every dT seconds each zone group leader obtains from all 
its subjected group leaders their localInfo and integrates 
them into its own localInfo. 
As a result, the top-level group leader localInfo contains a 
global information map. 
We have developed several algorithms to implement each 
process. We will use a dot notation to describe a field in a 
structure, e.g., if >=< },...,{,, 1 lsssatc  then c.sa is the 
sampling agent field of the capsule c.   

Figure 1 : Step 1 - Obtaining new information algorithm 
In: localInfo = <infoMap, unusedCapsules>  Out: updated localInfo 
if activated as Sampler group leader 
 for each subjugated sampler, sampler 
       additionalCapsules =obtain set of capsules from each sampler  
      localInfo.unusedCapsules = localInfo.unusedCapsules U  additionalCapsules 
else // activated in Group leader 
 for each subjugated leader, leader 
        // in this part we identify identical functions and  
             // leave only one of them 
        additionaLocalInfo = ask each leader for its local info 
        additionalCapsules =  additionaLocalInfo.unusedCapsules 
        additionalInfoMap = additionaLocalInfo.infoMap 
             localInfo.unusedCapsules = localInfo.unusedCapsules  U  additionalCapsules 
        mergeFunctions (localInfo.infoMap , additionalInfoMap); 
return infoMap, unusedCapsules 
 

Figure 2 : mergeFunctions algorithm 
In: FF ′,    Out: updated F   
for each state function, 

i
i
e

i
s

f ππ , , in F ′  
 let >=< iiii

s ssat ,,π  
      merged = false 
 for each state function, 

j
j

e
j

s
f ππ , , in F && not merged 

     let >=< jjjj
s ssat ,,π  

          if (ResBy( >< i
e

i
e st , , >< j

s
j

s st , ) or ResBy( >< j
s

j
s st , , >< i

e
i
e st , )) 

            change j
sπ  of 

j
j

e
j

s
f ππ ,  to be the triplet of  ),min( j

s
i
s ππ  by time 

            change j
eπ  of 

j
j

e
j

s
f ππ ,  to be the triplet of  ),max( j

e
i
e ππ  by time 

             merged = true 
 if (not merged) 
     }{FF ,

i
i
e

i
s

f ππU=  
return F  

Sampler capsule generation algorithm.  We use one 
sampling agent to deduce a set of possible task states at a 
given time in the form of a capsule. A sampling agent takes 
k consecutive measurements. Then it creates a new capsule, 
c, such that the time of the capsule is the time of the last 
measurement. The state of the sampling agent while taking 
the measurements is assigned to c.sa. The task states 
resulting from the application of the domain function PosS 
to the k consecutive measurements is assigned to c.states. 
The agent stores the capsules until it is time to send them tp 
its sampler group leader asks for them. After delivering the 
capsules to the group leader the sampler agent deletes 
them. 
Leader localInfo generation algorithm. Every dT 
seconds each group leader performs the localInfo 
generation algorithm. Each group leader holds its own 
localInfo. The leader starts by purging data older than τ  



seconds before processing new data. Updating the localInfo 
involves three steps: (i) obtaining new information from the 
leader’s subordinates; (ii) finding new paths; (iii) and 
merging the new paths into the localInfo. 
Figure 1 presents the algorithm for (i) in which every 
leader obtains information from its subordinates. The 
sampler group leader obtains information from all of its 
sampling agents for their unusedCapsules and adds them to 
its unusedCapsules set. The zone group leader obtains from 
its subordinates their localInfo. It adds the unusedCapsules 
to its unusedCapsules and merges the infoMap of that 
localInfo to its own localInfo.  
Merging of functions is performed both in steps (i) and 
(iii). Merging functions is needed since, as we noted 
earlier, task state functions that a leader has inserted into 
the information map are accepted by the system as correct 
and will not be removed. However, different agents may 
sense the same task and therefore it may be that different 
functions coming from different agents will refer to the 
same task. The agents should recognize such cases and 
keep only one of these functions in the infoMap. We use 
the next lemma to find and merge identical functions. 
Lemma 1: 
Let >=< 111 ,..., esp ππ , >=< 222 ,..., esp ππ  be two paths, 
where >=< i

j
i
j

i
j

i
j ssat ,,π  and )( 11

, 11 ppathToFuncf
es

=ππ , 
)( 22

, 22 ppathToFuncf
es

=ππ .  
If ResBy( >< 11, ss st , >< 22 , ss st ) then for any 

)()( 2
,

1
, 2211 tftf

eses ππππ =  
Using lemma (1) we developed the mergeFunctions 
algorithm that is presented in Figure 2. In this function, the 
leader uses the ResBy relation to check whether the first 
state of the task state function resulting from the first state 
of a different task state function. If one of the states is 
resulted by the other the leader changes the minimum and 
the maximum triplets of the task state function. The 
minimum triplet is the starting triplet that has the lowest 
time. The maximum triplet is the ending triplet that has the 
higher time. Intuitively, the two state functions are merged 
and the new function that is with respect to the largest 
range given the found points. In case a leader cannot find 
any task state function to meet the subordinate’s function, 
the leader will add it as a new function to its infoMap.  
The second step, as presented in Figure 3, is conducted by 
every leader to find paths and extend current paths given a 
set of capsules. In order to form paths of capsules, the 
agent should choose only one task state out of each 
capsule. This constraint is based on the flowing lemma.  
Lemma 2: 
Let >><=< 11

1
111

1,...,,, hsssatC , 
>><=< 22

1
222

2,...,,, hsssatC  and 
ResBy ( >< 11, ist , >< 22 , jst ) and ResBy ( >< ′

11, ist , >< ′
22 , jst ) 

then 
(i) if 11

ii ss ′≠  then 22
jj ss ′≠   (ii) if 22

jj ss ′≠  then 11
ii ss ′≠   

(iii)if 11
ii ss ′=  then 22

jj ss ′=  
(iv) if 22

jj ss ′=  then 11
ii ss ′=  

 
According to this lemma one state of one capsule cannot 
have a relation of ResBy with two different states in 

another capsule with respect to the capsule’s time. Having 
a case of such two different states violates the ResBy 
constraints. 

Figure 3 : Step 2 - Finding new paths algorithm 
In: unusedCapsules  Out: updated unusedCapsules, paths, mediocreFunctions  
// phase 1: make links 
sort(unusedCapsules) // by time stamp  
allPaths = {} 
for each capsule, >=< },...,{,, 1 lsssatc , in  
                                                                                 unusedCapsules 
 cap.mark = false  // marking for phase 2 
 for each task state, si, in cap states 
       linked = false 
      // because of the above assumption and given that eh path  
      // elements came from capsules there will be only one suitable  
           // path. Therefore,we exit the loop after finding such path 
      for every last triplet, >−−−< lastslastsalastt ,, ,  
                                             in each path, p, in allPaths && not linked 
            if (ResBy ( >−−< lastslastt , , >< sit, ) or  (t-last=t  &&  sa-last ≠ sa) 
) 
               >><<∗= sisatpp ,,  
                linked = true 
       if (not linked) 
  >>=<< sisatp ,,  
  }{pallPathsallPaths U=  
 
// phase 2: collect task representing paths that has no common capsules  
// when giving a greater priority to paths with more  viewpoints. 
sort(allPaths) // by number of viewpoints 
paths = {} 
for each path, p, in allPaths 
 if (not isAnyCapsuleMarked(p) && numberOfViewpoint(p) > 1) 
        markAllCapsules(p) 
        unusedCapsules.= unusedCapsules - allCapsules(p) 
       }{ppathspaths U=    
 
if activated as top-level leader 
 mediocreFunctions = collectMediocreFunctions( allPaths ) 
else 
 mediocreFunctions = {} 
return unusedCapsules, paths, mediocreFunctions 

 
  
For the algorithm in Figure 3 that creates the new paths we 
add two temporary fields to two of the structures only or 
the purpose of the algorithm below. The first is a boolean 
flag named mark that will be added to the capsule structure. 
The second is a pointer to the originated capsule that will 
be added to every triplet stored in a path.     Every leader 
keeps the correct paths as part of its infoMap structure. In 
the top-level leader we would also like to have the paths 
with a mediocre probability to represent tasks. The top 
leader knows that some of these paths are correct but it 
cannot decide which are correct. Paths with only one 
viewpoint are paths that may be correct. For instance, due 
to the characteristics of the sensors in the ANTS domain, 
paths with one viewpoint will have a 50% probability to be 
correct. In other domains the characteristics of the sensors 



may lead to a different probability. The top-level leader 
will use these mediocre paths to form a set of functions that 
have a partial probability to be correct. 

Simulation environment 
We developed a simulation of the ANTS domain to test the 
model. The simulation consists of an area of a fixed size in 
which Dopplers attempt to identify the task state functions 
of moving targets. Each target had an initial random 
location and an initial random velocity up to 50 km. per 
hour. Targets leave the area when reaching the boundaries 
of the zone. Each target that leaves the area causes a new 
target to appear at the same location with the same velocity 
in a direction that leads it inwards.  Therefore, each target 
may remain in the area for a random time period. Each 
Doppler has initial random location and a velocity that is 
less than 50 km. per hour. When a Doppler gets to the 
border of the controlled area it bounces back with the same 
velocity. This ensures an even distribution of Dopplers.  
Evaluation Methods. We collected the state functions 
produced by the agents during a simulation. We used two 
evaluation criteria in our simulations: (1) target tracking 
percentage and (2) average tracking time. We counted a 
target as being tracked if the identified path by the agent 
satisfied the following: (a) the maximum distance between 
the calculated location and the real location of the target 
was less than 1 meter, and (b) the maximum difference 
between the calculated v(t) vector and the real v(t) vector 
was less than 0.1 meter per sec. and 0.1 radians in angle.  
In addition, the identified task state functions could be 
divided into two categories: (1) Only a single function was 
associated with a particular target and was chosen to be 
part of the infoMap. Those functions were assigned a 
probability of 100% corresponding to the actual task state 
function. (2) Two possible task state functions based on 
one viewpoint were associated with a target. Each was 
assigned a 50% probability of corresponding to the actual 
function. We will say that one set of agents did better than 
another if they reach higher tracking percentage and lower 
tracking time with respect to the 100% functions and the 
total tracking percentage was at least the same.  
The averages reported in the graphs below were computed 
for one hour of simulated time. The target tracking 
percentage time was calculated by dividing the number of 
targets that the agents succeeded to track, according to the 
above definitions, by the actual number of targets during 
the simulated hour. In total, 670 targets passed through the 
controlled area within an hour in the basic settings that 
described below. The tracking time was defined as the time 
that the agents needed to find the task state function of the 
target from the time the target entered the simulation. 
Tracking average time was calculated by dividing the sum 
of tracking time of the tracked targets by the number of 
tracked targets. Note that 29% of the targets in our 
experiments remained in the area less than 60 seconds in 
our basic settings. 

     Basic Settings. In the basic setting of the environment 
the area size was 1200 by 900 meters. In the experiments 
we varied one of the parameters of the environment, 
keeping the other values of the environment parameters as 
in the basic settings. The Dopplers were mobile and moved 
randomly as described above. Each Doppler stopped every 
10 seconds, varied its active sensor randomly, and took 10 
measurements. The maximum detection range of a Doppler 
in the basic setting was 200 meters; the number of 
Dopplers was 20 and the number of targets at a given time 
point was 30. The DDM hierarchy consisted of only one 
level. That is, there was one sampler-leader that was 
responsible for the entire area.  
We first compared several settings to test the hierarchy 
model and the sampling agents characterizations. Each 
setting was characterized by (i) whether we used a 
hierarchy model (H) or a flat model (F); (ii) whether the 
sampler-agents were mobile (M) or static (S); and (iii) 
whether Dopplers varied their active sectors from time to 
time (V) or used a constant one all the time (C). In the flat 
model the sampler agents used their local capsules to 
produce task state functions locally.  
Mobile and dynamic vs. static Dopplers.  In preliminary 
simulations (not presented here for space reasons) we 
experimented with all the combinations of the parameters 
(i)-(iii) above. In each setting, keeping the other two 
variables fixed and varying only the mobility variable, the 
mobile agents did better than the static ones (with respect 
to the evaluation definition above).  
Hierarchy vs. flat models. We examined the 
characteristics of 4 different settings: (A) FSC that involves 
static Dopplers with a constant active sector using a 
nonhierarchical model;  (B) HSC as in (A) but using the 
hierarchical model; (C) FMV with mobile Dopplers that 
vary their active sectors from time to time, but with no 
hierarchy; (D) HMV as in (C) but using the hierarchical 
model. We tested FSC on two experimental arrangements: 
a random located Dopplers and Dopplers arranged in a grid 
formation to achieve a better coverage. There was no 
significant difference between these two FSC formations. 
Our hypothesis was that the agents in HMV would do 
better than in all the other settings.   
The first finding is presented in the left part of Figure 4. 
This finding indicates that the setting does not affect the 
overall tracking percentage (i.e., the tracking percentage of 
the 50% and 100% functions). The difference between the 
settings is with respect to the division of the detected target 
between accurate tracking and mediocre tracking. HMV 
performed significantly better than the other settings. It 
found significantly more 100% functions and did it faster 
than the others. This supports the hypothesis that a 
hierarchical organization leads to better performance.  
Further support for a hierarchical organization comes from 
HSC being significantly better than FMV even though, 
according to our preliminary results, HSC uses Dopplers 
that are more primitive than the Dopplers FMV. 
Another aspect of the performance of the models is the 
average tracking time as shown in the right part of Figure 4.  



Once again, one can see that the hierarchically based 
settings lead to better results. We found that by considering 
only targets that stayed in the controlled zone at least 60 
seconds, HMV reached 87% tracking percentage, 83% 
were accurately detected  
 
 
 
 
 
 
Figure 4: Target tracking percentage and average time by 
the settings. 
 
We also considered a hierarchy with two levels: one zone 
leader leading four sampling leaders. The area was divided 
equally between the four sampling leaders, and each 
obtains information from the many mobile sampling agents 
located in its area. In that configuration Dopplers were able 
to move from one zone to another. In that case, Dopplers 
changed their sampling leader every time they moved from 
one zone to another. Comparing the results of the two level 
hierarchy simulations (not presented here because of space 
reasons), with the one level hierarchy simulations we found 
that there was no significant difference in the performance 
(with respect to the evaluation definition) of the system 
when there were two levels of the hierarchy of when there 
is only one level in the hierarchy. However, consistent with 
theorem 1, the computation time of the system was much 
lower. 
Communication and noise.  While the performance of the 
hierarchy-based models are significantly better than the 
non-hierarchy ones, the agents in the hierarchy model must 
communicate with one another, while no communication is 
needed for the flat models.  Thus, if no communication is 
possible, then FMV should be used. When using 
communications messages may be lost or corrupted. The 
data structure exchanged in messages is the capsule. In our 
simulations using a hierarchy model, each sampling agent 
transmitted 168 bytes per minute. We checked the 
influence of randomly corrupted capsules on the HMV’s 
behavior. Figure 5 shows that as the percentage of the lost 
capsules increases the number of tracked targets decreases; 
however, up to a level of 10% noise, the detection 
percentages decreased only from 74% to 65% and the 
accurate tracking time increased from 69 seconds to only 
80 seconds. Noise of 5% results in a smaller decrease to a 
tracking accuracy of 70% while the tracking time is slightly 
increased to 71.DDM could even mange with noise of 30% 
and track 39% of targets with average tracking time of 115 
seconds. In the rest of experiments we used the HMV 
settings without noise.  
Varying the number of Dopplers and targets. We 
examined the effect of the number of Dopplers on the 
performance. We found that, when the number of targets is 
kept fixed, as the number of Dopplers increases the 
percentage of accurate tracking increases. The significant 
of the result is that it demonstrates that the system can 

make good use of additional resources that it might be 
given. We also found out that as the number of Doppler 
sensors increases the 50% probability paths decrease. That 
may be explained by the fact that 100% paths result from 
taking into consideration more than one point of view of 
samples. We also found that increasing the number of 
targets, while keeping the number of Dopplers fixed does 
not influence the system’s performance. We speculate that 
this is because an active sector could distinguish more than 
one target in that sector.  
 

Figure 5: Target detection percentage and average time as 
function of the communication noise. 
 
 
 
 
 
 
 
 
Figure 6: Tracking percentage and average time as a 
function of the number of Dopplers. 
 
Maximum detection range comparison. We also tested 
the influence of the detecting sector area on performance. 
The basic setting uses Dopplers with detection range of 200 
meters. We compared the basic setting to similar ones with 
detection ranges of 50,100 and 150 meters. We found that 
as the maximum range increases the tracking percentage 
increases up to the range of covering the entire global area. 
As the maximum radius of detection increased the tracking 
average time decreases.  This is a beneficial property, since 
acquiring better equipment leads to better performance. 

Conclusions and related work 
 We have introduced a hierarchical approach for combining 
local and partial information of large-scale task and team 
environments where agents must identify the changing 
states of tasks. To apply the DDM model in a different 
environment, it is only necessary to define three domain 
specific functions:  PosS that maps measurements to 
possible states, ResBy that determines whether one given 
task state associated with a time point can be the 
consequence of another given task state associated with an 
earlier time point and pathToFunc that given a path returns 
a function to represent it. Given these functions, all the 
DDM algorithms implemented for the ANTS domain can 
be applied, as long as the complexity of these functions is 



low.  Thus, we believe that the results obtained for the 
ANTS simulations will carry over to any such domain. In 
particular, we showed that (i) the hierarchy model 
outperforms a flat one; (ii) the flat mobile dynamic sector 
setting can be used in situations where communications is 
not possible; (iii) increasing resources increases the 
performance; (iv) under the identified constraints, it is 
beneficial to add more levels to the hierarchy; and (v) the 
DDM can handle situations of noisy communications.  
Agent and organizational designs typically vary along a 
number of dimensions.  Agent architectures can vary from 
very simple designs, usually deployed in large numbers and 
crafted so that some set of desirable global properties might 
emerge (Shehory et al. 99), to complex designs usually 
based on some variation of the BDI agent model in which 
agents behaviors are linked to team roles and commitments. 

On the organizational side, societal structures are usually 
either prescriptive in design - in the sense that a particular 
structure is assigned to a team - or dynamic, adapting to 
problem changes.  In the latter case, organizations can be 
identified as consequences of role persistence in team 
interactions (.Durfee et al. 87).  Prescriptive structures 
might derive from task decomposition structures or 
segmentations based on capabilities, commitments, spatio-
temporal divisions, or  a priori authority structures. 
 The benefits of hierarchical organizations have been 
argued by many. So and Durfee draw on contingency 
theory to examine a variety of hierarchical organizations 
benefits; they portray a hierarchically organized network 
monitoring system for task decomposition and also 
consider organizational self-design (So and Durfee 92, 96). 
DDM differs in its organization use to dynamically balance 
computational load and also in its algorithms for support of 
mobile agents. 
 The idea of combining partial local solutions into a more 
complete global solution goes back to early work on the 
distributed vehicle monitoring testbed (DVMT) (Lesser et 
al. 87).  DVMT also operated in a domain of distributed 
sensors that tracked objects.  However, the algorithms for 
support of mobile sensors and for the actual specifics of the 
Doppler sensors themselves is novel to the DDM system.   
Within the DVMT, Corkill and Lesser investigated various 
team organizations in terms of interest areas which 
partitioned problem solving nodes according to roles and 
communication, but were not initially hierarchically 
organized (Scott 92). Wagner and Lesser examined the role 
that knowledge of organizational structure can play in 
control decisions (Wagner and Lesser 00).   
Alternative approaches to realtime distributed resource 
allocation are being explored within the ANTS program 
(Soh and Tsatsoulis 01).  All of those approaches assume 
that agents are stationary.  Vincent et al use a limited team 
organization, assigning agents to sector managers (Vincent 
et al. 01).  Each sector manager is responsible for fusing 
information for tracking; a hierarchical organization serves 
to limit communication among agents and to provide a 
measure of fault tolerance: if a sector manager is disabled, 
another can fill in. 
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