
Hierarchical organizations for real-time large-scale
task and team environments

Osher Yadgar
Dept. of Math and CS,

Bar Ilan University,
Ramat Gan, 52900 Israel
yadgar@macs.biu.ac.il

Sarit Kraus
Dept. of Math and CS,

Bar Ilan University,
Ramat Gan, 52900 Israel

sarit@macs.biu.ac.il

Charles L. Ortiz, Jr.
Artificial Intelligence Center,

SRI International,
Menlo Park, CA 84025 USA

ortiz@ai.sri.com

Abstract
In this paper, we describe the Distributed Dispatcher
Manager (DDM), a system for monitoring large collections
of dynamically changing tasks. We assume that tasks are
distributed over a virtual space. Teams consist of very large
groups of cooperative mobile agents. Each agent has direct
access to only local and partial information about its
immediate surroundings. DDM organizes teams
hierarchically and addresses two important issues that are
prerequisites for success in such domains: (i) how agents
should process local information to provide a partial
solution to nearby tasks, and (ii) how partial solutions
should be integrated into a global solution. We conducted a
large number of experiments in simulation and
demonstrated the advantages of the DDM over other
architectures in terms of accuracy and reduced inter-agent
communication *.

Introduction
This paper considers the problem of monitoring large
collections of dynamically changing tasks. The tasks are
distributed over a large (possibly, virtual) environment and
are to be executed by large teams of mobile cooperative
agents. These agents have direct access to only local and
partial information about their immediate environment.
There are several domains where such problems arise:
satellites that are tasked to form a general picture of a large
area; satellites that form weather maps; agents that control
air pollution or ocean pollution; sensor webs that monitor
geographic areas for passing aircrafts; and unmanned air
and ground vehicles that must be jointly tasked for
surveillance missions. In such domains, there are two
central issues that represent prerequisites for success: (i)
how agents should process local information to provide a
partial solution to nearby tasks, and (ii) how partial
solutions should be integrated into a global solution.
We describe the Distributed Dispatcher Model (DDM), an
agent based computational model. DDM is designed for

* Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.
* This work was supported by DARPA contract F30602-99-C-0169 and
NSF grant IIS-9907482. The second author is also affiliated with
UMIACS.

efficient coordinated task allocation in systems consisting
of hundreds of agents (resources); the model makes use of
hierarchical group formation to restrict the degree of
communication between agents. Our main contribution is in
use of a hierarchical organization of agents to combine
partial information. The hierarchical team organization
supports processes for very quickly combining partial
results to form an accurate global solution. Each level
narrows the uncertainty about the solution based on the
data obtained from lower levels. We proved that the
hierarchical processing of information reduces the time
needed to form the accurate global solution.
We tested the performance of the DDM through extensive
experimentation in a simulated environment involving
many sensors. The simulation models a suite of Doppler
sensors used to form a global information map of targets
moving in a steady velocity as a function of time. A
Doppler sensor is a radar which is based on the Doppler
effect. Due to its nature, a Doppler sensor may provide
information only about an arc that a detected target may be
located on as well as the velocity towards that sensor, that
is, the radial velocity (Thomas 1965). Given a single
Doppler measurement, one cannot establish the exact
location of a target and its exact velocity; therefore,
multiple measurements must be combined for each target.
This problem was devised as a challenge problem by the
DARPA Autonomous Negotiating Teams (ANTS) program
to explore realtime distributed resource allocation
algorithms.
We compared our hierarchical architecture to other
architectures and showed that the monitoring task is faster
and more accurate in DDM. We have also shown that
DDM can achieve these results when using a low volume
of noisy communication.

The DDM model
We consider environments with tasks and agents
distributed over some area. We present a formal
specification of the environment and demonstrate the
formalism using the ANTS challenge problem. We assume
that there is a set T of time points.

From: AAAI Technical Report WS-02-04. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Tasks: There are many tasks in the environment. At any
time, each task has an associated state. The state of a task
may change over time. We denote the set of all task-states
by S. There is a boolean function ResBy that given two
task-states s1 and s2 and two time points t1 and t2 where
t2≥ t1, returns true if it is possible that if the state of a task
was s1 at t1, then it could be s2 at t2. ResBy satisfies the
constraints:
Let Tttt ∈321 ,, and Ssss ∈321 ,, , 321 ttt << such
that
if ResBy(>< 11, st , >< 22 , st) and ResBy(>< 22 , st ,

>< 33 , st) then ResBy(>< 11, st , >< 33 , st)
if ResBy(>< 11, st , >< 22 , st) and ResBy(>< 11, st ,

>< 33 , st) then ResBy(>< 22 , st , >< 33 , st)
if ResBy(>< 11, st , >< 33 , st) and the ResBy(

>< 22 , st , >< 33 , st) then ResBy(>< 11, st ,
>< 22 , st)

if ResBy(>< 1,st , >< 2, st) then 21 ss = .

The constraints (i)-(iii) of ResBy consider the way the state
of a target may change over time. They refer to three
points of time 321 ,, ttt in an increasing order and to the
possibly that a task was at state 21 , ss and 3s at these time
points, respectively. If the task has been in these states at
the corresponding time then 2s at 2t should be a result of

1s at 1t , i.e. ResBy(>< 11, st , >< 22 , st). Similarly
ResBy(>< 22 , st , >< 33 , st) and ResBy(>< 11, st ,

>< 33 , st). The constraints indicate that it is enough to
check that two out of the three relations hold, to verify that
the task was really at 1s at 1t , 2s at 2t and 3s at 3t . That is if
two of the three relations hold, also the third one. The last
constraint (iv) is based, intuitively, on that a task cannot be
in two different states at the same time.
Tasks and ResBy relation in the ANTS domain: In the
ANTS domain we map each target to a task. The target
state structure is >=< vrs , . r is the location vector of
the target and v is the velocity vector. If a target state 2s at

2t resulted from target state 1s at 1t and the velocity of the
target remains constant during the period 21..tt , then

)(12112 ttvrr −⋅+= . We assume that no target is likely to
appear with the same exact properties as another target.
That is, there cannot be two targets at the exact same
location moving in the same velocity and direction. Thus
where >=< iii vrs , ResBy),,,(2211 ><>< stst in ANTS
is true iff: (i) 2r may be derived from 1r using the motion
equation of a target and given 1v during the period

12 tt − and (ii) 21 vv = .
The physical motion of a moving body in a steady velocity
follows the four constraints of the ResBy relation. In
general in any domain every task state that combines out of
a singular state along with the first derivative of this state
by time where this derivative is not depended on time
satisfies the four constraints. For instance, in the
monitoring satellite domain the task state may be a
combination of an image and a derivation of the image by
time.
Agents: There is a set of sampling agents, A. Each agent is
capable of taking measurements. Each a∈A is associated

with an agent state that may change over time. The set of
all possible sampling-agent states is denoted Sa.
In the ANTS domain we map each Doppler to a sampling
agent. The sampling agent state is the location of the sensor
and its orientation.
Agents observing tasks: Sampling agents are able to
obtain measurements on tasks if they are located near the
tasks. The measurements provide only partial information
on the task-states and may be incorrect. When an agent
takes measurements we refer to its agent state as a
viewpoint in which a task state was measured. We assume
that there is a function PosS that given k consecutive
measurements taken by the same agent, up to time t returns
a set of possible states, SS ⊆′ , for a task at time t where
exactly one Ss ′∈ is the right task state and there is an

1≥m such that mS ≤′ || .
 A path, p, is a sequence of triplets

>><><< nnn ssatssat ,,...,, 111 whereas
SasaSsTt iii ∈∈∈ ,, and for all ni <≤1 , either

1+< ii tt and ResBy(>< ii st , , >< ++ 11, ii st) is true or
1+= ii tt , 1+≠ ii sasa and 1+= ii ss .

We refer to points of a path as path points. Each path
represents task state discrete change over time as measured
by sampling-agents in states, nsasa ...1 . Constraint (i)
considers the case where the two points in the path captures
the change of the state of the task from is at time it to

1+is at time 1+it . In this case, where the path specifies the
way the state was changed, ResBy),,,(11 ><>< ++ iiii stst
must hold, i.e. the task could be at is at it and then at 1+is at

1+it . On the other hand, constraint (ii) considers the case of
two points >< iii ssat ,, , >< +++ 111 ,, iii ssat of the path that
does not capture a change of the task’s state. Rather, it
captures two different observations of the task. That is,
that task was at a given state is at time it , but was observed
by two agents. The two agents were of course in different
states, and this is indicated by 1+≠ ii sasa .
A path consists of only very few states of the task that were
observed by agents. However, from a path the agent would
like to induce the state of the task at any given time. This is
formalized as follows.
A task state function

es
f ππ , , with respect to two path

points >=< ssss ssat ,,π , >=< eeee ssat ,,π where
es tt ≤ , associates with each time point a task state (i.e.

STf
es

→:,ππ) such that
(i) ss stf

es
=)(,ππ and ee stf

ee
=)(,ππ

(ii) 21,tt∀ , 21 tt <
ResBy(><)(, 1,1 tft

es ππ , ><)(, 2,2 tft
es ππ).

A task state function represents task state change over time
points of T with respect to two path points.
Finally, to move from a path to an associated function, we
assume that there is a function pathToFunc: FP → such
that given a path Pp∈ ,

>><>=<< nnn ssatssatp ,,,...,,, 111 , if
es

f ππ , =
pathToFunc (p) then, >=< 111 ,, ssatsπ ,

>=< nnne ssat ,,π iii stft
es

=∀)(, ,ππ .

In ANTS we have developed a method involving k
consecutive measurements taken by a single Doppler to
compute possible locations and velocities of targets.
PosS implementation in ANTS. A measurement in the
ANTS domain is a pair of amplitude and radial velocity
values for each sensed target. Given a measurement of a
Doppler radar the target is located on the Doppler equation:

i
i

i

ekr η
σ
βϑ 2)(

2

−−
⋅=

where, for each sensed target, i, ir is the distance between
the sensor and i ; iθ is the angle between the sensor and i ;

iη is the measured amplitude of i ; β is the sensor beam
angle; and k and σ are characteristics of the sensors and
influence the shape of the sensor detecting area (1). Given
k consecutive measurements one can use the Doppler
equation to find the distance ir . However, there are two
possible iθ angles for each such distance. Therefore, for
PosS function in ANTS domain returns two possible task
states, i.e. m=2. For space reasons we do not present the
proofs of the lemmas and theorems.
Theorem 1: (PosS) Assuming that the acceleration of a
target in a short time period is zero. The next target
location after a very short time is then given by

() 


 ⋅+⋅−+= 2
0,100

1
11 ln tvrk r

ησαθ
0,1

0001

1,2

0102)()()()(
t

rr
t

rr θθθθ −=−

where 0000 ,,, rvr ηθ and 0α are values of the target at time

0=t and 11 ,ηθ and 1α represent values of the target at time
1=t . jit , is the time between t=i and t=j.

Only certain angles will solve the equations. To be more
accurate, the sampling agent uses one more sample and
applies the same mechanism to 21,θθ and 3θ . The angles
are used to form a set of possible pairs of location and
velocity of a target (i.e., the PosS function values). Only
one of these target states is the correct one.

DDM’s goal
The aim of the DDM is to describe the way the states of the
task in the area change over time. To monitor tasks we use
many agents. Each of these agents can obtain partial
information about tasks in its close environment. The DDM
uses the partial and local information to form an accurate
global description on how the tasks are changing over time.
We can apply the DDM model to many problems by
mapping the DDM entities to the domain entities. For
example, in the case of satellites used to track forest
preservation we can map each sampling agent to a satellite
and each forest segment under surveillance to a task. In that
case a ResBy relation can be a function that uses an image
processing methods and a physical logic to deduce whether
one state is resulted by another. A

es
f ππ , function will be a

function that describes the changes of the image by time
using the same deductions. The function will describe the

changes of the image between the two time points as
collected by a path of states and a prediction about a
further changes.
In the ANTS domain the agent’s goal is to find the location
of the targets at any time point. Here

>−⋅−>≡<−⋅−=< eeeessss vttvrvttvrtf
es

),(),()(,ππ .
Formally, the DDM aims at forming the information map
structure.
Definition 1: An information map, infoMap, is a set of task
state functions >< h

h
e

h
ses

ff ππππ ,
1

, ,...,11 such that for every
hji ≤≤ ,1 and Tt∈)()(,, tftf ji

j
e

j
s

i
e

i
s ππππ ≠

Intuitively, infoMap represents the way the states of a set of
tasks change over time. The condition on the information
map specifies the assumption that two tasks cannot be at
the same state and time. Because each agent has only
partial and uncertain information on its local surrounding
an agent may need to construct the infoMap in stages. In
some cases they may not be able to construct the entire
infoMap. The process of constructing the infoMap will use
various intermediate structures.
Intermediate structures: Due to uncertainty of the sensing
information at a given time every sampled task may be
associated with several possible task states. Each such task
state is derived from the same raw sensed data, i.e. PosS
returns S ′ such that mS ≤′<1 . All the possible task states
are combined with the sampling agent state to form a
capsule.
Definition 2: A capsule is a triplet of a time point, a
sampler agent state and a sequence of up to m task-states,
i.e., >=< },...,{,, 1 lsssatc where

SsSasaTt i ∈∈∈ ,, , ml ≤ . We denote the set of all
possible capsules by C.
A capsule represents a few possible states of a task at time t
as derived from measurements taken by an agent in a given
state. Capsules are generated by the sampling agents using
the domain dependent function PosS and k consecutive
samples.
The problem faced by DDM is how to choose the right
state from every capsule. It is impossible to determine
which state is the right one using one viewpoint since
measurements from one viewpoint results up to m task
states each could be the correct state. Therefore, capsules
from different viewpoints are needed. A different viewpoint
may correspond to a different state of the same sampling
agent or of different sampling agents. To choose the right
task state from each capsule we connect states from
different capsules using the ResBy relation and form a path.
We then try to evaluate each of these paths and use the
ones with the best probability to represent changes of task
states and form state functions. We will use the following.
Definition 3: A localInfo is a pair of infoMap and a set of
capsules, <infoMap, unusedCapsules> where
unusedCapsules= c,...,c m1 >< s.t. for all mi ≤≤1 and for
all lj ≤≤1 and =ic >< },...,{,, ,1 liiii sssat and for every

infoMap , ∈
es

f ππ ijsf
es

≠)(t i,ππ .
At any time, some of the capsules can be used to form task
state functions that have a high probability of representing
tasks. These functions are kept in the infoMap; we refer to

them as accurate representatives. The rest of the capsules
will be kept in the unusedCapsules set and will be used for
further attempts to identify state functions. That is, the
condition of definition 3 intuitively says that a task
associated with a function , es

f ππ was not constructed using
one of the measurements that were used to form the
capsules in the unusedCapsules set.
2.2 The DDM hierarchy structure
In a large-scale environment we will have to attempt to link
many capsules from all the area. Using the relation ResBy
many times is time consuming. However, there is low
probability that capsules created based on measurements
taken far away from one another will fit. Therefore, we will
distribute the solution. The DDM uses hierarchical
structures to construct a global infoMap distributively. The
lower level of the hierarchy consists of the sampling agents.
These agents are grouped according to their area. Each
group has a leader. Thus, the second level of the hierarchy
consists of the sampler group leaders. These sampler group
leaders are also grouped according to their area. Each such
group of sampler leaders is associated with a zone group
leader. Thus, the third level of the hierarchy consists of
these zone group leaders, which in turn, are also grouped
according to their area associated with a zone group leader
and so on and so forth. We refer to members of a group as
group suborinates. Sampling agents are mobile; therefore,
they may change their group when changing their area. The
sampler leaders are responsible for the movements of
sampling agents. For space reasons we do not discuss this
process here, but rather focus on the global infoMap
formation. We also do not discuss the methods we
developed that are used to replace group leaders that stop
functioning. Leader agents are responsible for retrieving
and combining information from their group of agents. All
communication is done only between a group member and
its leader.
A sampler agent takes measurements occasionally and
forms capsules. It sends its capsules to its sampler leader
every specified time period. A sampler leader collects the
capsules from all the sampler agents in its area and forms a
localInfo. In this formation it uses its localInfo from
previous round. It then sends its localInfo to its zone
leader. A zone leader collects the localInfo of all the sub-
leaders of its zone and forms a localInfo of its entire zone.
In turn it sends it to its leader and so on. The top zone
leader, whose zone consists of the entire area, forms a
localInfo of all the tasks in the entire area. In the next
section we present the agent algorithms.
Algorithm descriptions
The formation of a global information map integrates the
following processes:
Each sampling agent gathers raw sensed data and generates
capsules.
Every dT seconds each sampler group leader obtains from
all its sampling agents for their capsules and integrates
them into its localInfo.

Every dT seconds each zone group leader obtains from all
its subjected group leaders their localInfo and integrates
them into its own localInfo.
As a result, the top-level group leader localInfo contains a
global information map.
We have developed several algorithms to implement each
process. We will use a dot notation to describe a field in a
structure, e.g., if >=< },...,{,, 1 lsssatc then c.sa is the
sampling agent field of the capsule c.

Figure 1 : Step 1 - Obtaining new information algorithm
In: localInfo = <infoMap, unusedCapsules> Out: updated localInfo
if activated as Sampler group leader
 for each subjugated sampler, sampler
 additionalCapsules =obtain set of capsules from each sampler
 localInfo.unusedCapsules = localInfo.unusedCapsules U additionalCapsules
else // activated in Group leader
 for each subjugated leader, leader
 // in this part we identify identical functions and
 // leave only one of them
 additionaLocalInfo = ask each leader for its local info
 additionalCapsules = additionaLocalInfo.unusedCapsules
 additionalInfoMap = additionaLocalInfo.infoMap
 localInfo.unusedCapsules = localInfo.unusedCapsules U additionalCapsules
 mergeFunctions (localInfo.infoMap , additionalInfoMap);
return infoMap, unusedCapsules

Figure 2 : mergeFunctions algorithm
In: FF ′, Out: updated F
for each state function,

i
i
e

i
s

f ππ , , in F ′
 let >=< iiii

s ssat ,,π
 merged = false
 for each state function,

j
j

e
j

s
f ππ , , in F && not merged

 let >=< jjjj
s ssat ,,π

 if (ResBy(>< i
e

i
e st , , >< j

s
j

s st ,) or ResBy(>< j
s

j
s st , , >< i

e
i
e st ,))

 change j
sπ of

j
j

e
j

s
f ππ , to be the triplet of),min(j

s
i
s ππ by time

 change j
eπ of

j
j

e
j

s
f ππ , to be the triplet of),max(j

e
i
e ππ by time

 merged = true
 if (not merged)
 }{FF ,

i
i
e

i
s

f ππU=
return F

Sampler capsule generation algorithm. We use one
sampling agent to deduce a set of possible task states at a
given time in the form of a capsule. A sampling agent takes
k consecutive measurements. Then it creates a new capsule,
c, such that the time of the capsule is the time of the last
measurement. The state of the sampling agent while taking
the measurements is assigned to c.sa. The task states
resulting from the application of the domain function PosS
to the k consecutive measurements is assigned to c.states.
The agent stores the capsules until it is time to send them tp
its sampler group leader asks for them. After delivering the
capsules to the group leader the sampler agent deletes
them.
Leader localInfo generation algorithm. Every dT
seconds each group leader performs the localInfo
generation algorithm. Each group leader holds its own
localInfo. The leader starts by purging data older than τ

seconds before processing new data. Updating the localInfo
involves three steps: (i) obtaining new information from the
leader’s subordinates; (ii) finding new paths; (iii) and
merging the new paths into the localInfo.
Figure 1 presents the algorithm for (i) in which every
leader obtains information from its subordinates. The
sampler group leader obtains information from all of its
sampling agents for their unusedCapsules and adds them to
its unusedCapsules set. The zone group leader obtains from
its subordinates their localInfo. It adds the unusedCapsules
to its unusedCapsules and merges the infoMap of that
localInfo to its own localInfo.
Merging of functions is performed both in steps (i) and
(iii). Merging functions is needed since, as we noted
earlier, task state functions that a leader has inserted into
the information map are accepted by the system as correct
and will not be removed. However, different agents may
sense the same task and therefore it may be that different
functions coming from different agents will refer to the
same task. The agents should recognize such cases and
keep only one of these functions in the infoMap. We use
the next lemma to find and merge identical functions.
Lemma 1:
Let >=< 111 ,..., esp ππ , >=< 222 ,..., esp ππ be two paths,
where >=< i

j
i
j

i
j

i
j ssat ,,π and)(11

, 11 ppathToFuncf
es

=ππ ,
)(22

, 22 ppathToFuncf
es

=ππ .
If ResBy(>< 11, ss st , >< 22 , ss st) then for any

)()(2
,

1
, 2211 tftf

eses ππππ =
Using lemma (1) we developed the mergeFunctions
algorithm that is presented in Figure 2. In this function, the
leader uses the ResBy relation to check whether the first
state of the task state function resulting from the first state
of a different task state function. If one of the states is
resulted by the other the leader changes the minimum and
the maximum triplets of the task state function. The
minimum triplet is the starting triplet that has the lowest
time. The maximum triplet is the ending triplet that has the
higher time. Intuitively, the two state functions are merged
and the new function that is with respect to the largest
range given the found points. In case a leader cannot find
any task state function to meet the subordinate’s function,
the leader will add it as a new function to its infoMap.
The second step, as presented in Figure 3, is conducted by
every leader to find paths and extend current paths given a
set of capsules. In order to form paths of capsules, the
agent should choose only one task state out of each
capsule. This constraint is based on the flowing lemma.
Lemma 2:
Let >><=< 11

1
111

1,...,,, hsssatC ,
>><=< 22

1
222

2,...,,, hsssatC and
ResBy (>< 11, ist , >< 22 , jst) and ResBy (>< ′

11, ist , >< ′
22 , jst)

then
(i) if 11

ii ss ′≠ then 22
jj ss ′≠ (ii) if 22

jj ss ′≠ then 11
ii ss ′≠

(iii)if 11
ii ss ′= then 22

jj ss ′=
(iv) if 22

jj ss ′= then 11
ii ss ′=

According to this lemma one state of one capsule cannot
have a relation of ResBy with two different states in

another capsule with respect to the capsule’s time. Having
a case of such two different states violates the ResBy
constraints.

Figure 3 : Step 2 - Finding new paths algorithm
In: unusedCapsules Out: updated unusedCapsules, paths, mediocreFunctions
// phase 1: make links
sort(unusedCapsules) // by time stamp
allPaths = {}
for each capsule, >=< },...,{,, 1 lsssatc , in
 unusedCapsules
 cap.mark = false // marking for phase 2
 for each task state, si, in cap states
 linked = false
 // because of the above assumption and given that eh path
 // elements came from capsules there will be only one suitable
 // path. Therefore,we exit the loop after finding such path
 for every last triplet, >−−−< lastslastsalastt ,, ,
 in each path, p, in allPaths && not linked
 if (ResBy (>−−< lastslastt , , >< sit,) or (t-last=t && sa-last ≠ sa)
)
 >><<∗= sisatpp ,,
 linked = true
 if (not linked)
 >>=<< sisatp ,,
 }{pallPathsallPaths U=

// phase 2: collect task representing paths that has no common capsules
// when giving a greater priority to paths with more viewpoints.
sort(allPaths) // by number of viewpoints
paths = {}
for each path, p, in allPaths
 if (not isAnyCapsuleMarked(p) && numberOfViewpoint(p) > 1)
 markAllCapsules(p)
 unusedCapsules.= unusedCapsules - allCapsules(p)
 }{ppathspaths U=

if activated as top-level leader
 mediocreFunctions = collectMediocreFunctions(allPaths)
else
 mediocreFunctions = {}
return unusedCapsules, paths, mediocreFunctions

For the algorithm in Figure 3 that creates the new paths we
add two temporary fields to two of the structures only or
the purpose of the algorithm below. The first is a boolean
flag named mark that will be added to the capsule structure.
The second is a pointer to the originated capsule that will
be added to every triplet stored in a path. Every leader
keeps the correct paths as part of its infoMap structure. In
the top-level leader we would also like to have the paths
with a mediocre probability to represent tasks. The top
leader knows that some of these paths are correct but it
cannot decide which are correct. Paths with only one
viewpoint are paths that may be correct. For instance, due
to the characteristics of the sensors in the ANTS domain,
paths with one viewpoint will have a 50% probability to be
correct. In other domains the characteristics of the sensors

may lead to a different probability. The top-level leader
will use these mediocre paths to form a set of functions that
have a partial probability to be correct.

Simulation environment
We developed a simulation of the ANTS domain to test the
model. The simulation consists of an area of a fixed size in
which Dopplers attempt to identify the task state functions
of moving targets. Each target had an initial random
location and an initial random velocity up to 50 km. per
hour. Targets leave the area when reaching the boundaries
of the zone. Each target that leaves the area causes a new
target to appear at the same location with the same velocity
in a direction that leads it inwards. Therefore, each target
may remain in the area for a random time period. Each
Doppler has initial random location and a velocity that is
less than 50 km. per hour. When a Doppler gets to the
border of the controlled area it bounces back with the same
velocity. This ensures an even distribution of Dopplers.
Evaluation Methods. We collected the state functions
produced by the agents during a simulation. We used two
evaluation criteria in our simulations: (1) target tracking
percentage and (2) average tracking time. We counted a
target as being tracked if the identified path by the agent
satisfied the following: (a) the maximum distance between
the calculated location and the real location of the target
was less than 1 meter, and (b) the maximum difference
between the calculated v(t) vector and the real v(t) vector
was less than 0.1 meter per sec. and 0.1 radians in angle.
In addition, the identified task state functions could be
divided into two categories: (1) Only a single function was
associated with a particular target and was chosen to be
part of the infoMap. Those functions were assigned a
probability of 100% corresponding to the actual task state
function. (2) Two possible task state functions based on
one viewpoint were associated with a target. Each was
assigned a 50% probability of corresponding to the actual
function. We will say that one set of agents did better than
another if they reach higher tracking percentage and lower
tracking time with respect to the 100% functions and the
total tracking percentage was at least the same.
The averages reported in the graphs below were computed
for one hour of simulated time. The target tracking
percentage time was calculated by dividing the number of
targets that the agents succeeded to track, according to the
above definitions, by the actual number of targets during
the simulated hour. In total, 670 targets passed through the
controlled area within an hour in the basic settings that
described below. The tracking time was defined as the time
that the agents needed to find the task state function of the
target from the time the target entered the simulation.
Tracking average time was calculated by dividing the sum
of tracking time of the tracked targets by the number of
tracked targets. Note that 29% of the targets in our
experiments remained in the area less than 60 seconds in
our basic settings.

 Basic Settings. In the basic setting of the environment
the area size was 1200 by 900 meters. In the experiments
we varied one of the parameters of the environment,
keeping the other values of the environment parameters as
in the basic settings. The Dopplers were mobile and moved
randomly as described above. Each Doppler stopped every
10 seconds, varied its active sensor randomly, and took 10
measurements. The maximum detection range of a Doppler
in the basic setting was 200 meters; the number of
Dopplers was 20 and the number of targets at a given time
point was 30. The DDM hierarchy consisted of only one
level. That is, there was one sampler-leader that was
responsible for the entire area.
We first compared several settings to test the hierarchy
model and the sampling agents characterizations. Each
setting was characterized by (i) whether we used a
hierarchy model (H) or a flat model (F); (ii) whether the
sampler-agents were mobile (M) or static (S); and (iii)
whether Dopplers varied their active sectors from time to
time (V) or used a constant one all the time (C). In the flat
model the sampler agents used their local capsules to
produce task state functions locally.
Mobile and dynamic vs. static Dopplers. In preliminary
simulations (not presented here for space reasons) we
experimented with all the combinations of the parameters
(i)-(iii) above. In each setting, keeping the other two
variables fixed and varying only the mobility variable, the
mobile agents did better than the static ones (with respect
to the evaluation definition above).
Hierarchy vs. flat models. We examined the
characteristics of 4 different settings: (A) FSC that involves
static Dopplers with a constant active sector using a
nonhierarchical model; (B) HSC as in (A) but using the
hierarchical model; (C) FMV with mobile Dopplers that
vary their active sectors from time to time, but with no
hierarchy; (D) HMV as in (C) but using the hierarchical
model. We tested FSC on two experimental arrangements:
a random located Dopplers and Dopplers arranged in a grid
formation to achieve a better coverage. There was no
significant difference between these two FSC formations.
Our hypothesis was that the agents in HMV would do
better than in all the other settings.
The first finding is presented in the left part of Figure 4.
This finding indicates that the setting does not affect the
overall tracking percentage (i.e., the tracking percentage of
the 50% and 100% functions). The difference between the
settings is with respect to the division of the detected target
between accurate tracking and mediocre tracking. HMV
performed significantly better than the other settings. It
found significantly more 100% functions and did it faster
than the others. This supports the hypothesis that a
hierarchical organization leads to better performance.
Further support for a hierarchical organization comes from
HSC being significantly better than FMV even though,
according to our preliminary results, HSC uses Dopplers
that are more primitive than the Dopplers FMV.
Another aspect of the performance of the models is the
average tracking time as shown in the right part of Figure 4.

Once again, one can see that the hierarchically based
settings lead to better results. We found that by considering
only targets that stayed in the controlled zone at least 60
seconds, HMV reached 87% tracking percentage, 83%
were accurately detected

Figure 4: Target tracking percentage and average time by
the settings.

We also considered a hierarchy with two levels: one zone
leader leading four sampling leaders. The area was divided
equally between the four sampling leaders, and each
obtains information from the many mobile sampling agents
located in its area. In that configuration Dopplers were able
to move from one zone to another. In that case, Dopplers
changed their sampling leader every time they moved from
one zone to another. Comparing the results of the two level
hierarchy simulations (not presented here because of space
reasons), with the one level hierarchy simulations we found
that there was no significant difference in the performance
(with respect to the evaluation definition) of the system
when there were two levels of the hierarchy of when there
is only one level in the hierarchy. However, consistent with
theorem 1, the computation time of the system was much
lower.
Communication and noise. While the performance of the
hierarchy-based models are significantly better than the
non-hierarchy ones, the agents in the hierarchy model must
communicate with one another, while no communication is
needed for the flat models. Thus, if no communication is
possible, then FMV should be used. When using
communications messages may be lost or corrupted. The
data structure exchanged in messages is the capsule. In our
simulations using a hierarchy model, each sampling agent
transmitted 168 bytes per minute. We checked the
influence of randomly corrupted capsules on the HMV’s
behavior. Figure 5 shows that as the percentage of the lost
capsules increases the number of tracked targets decreases;
however, up to a level of 10% noise, the detection
percentages decreased only from 74% to 65% and the
accurate tracking time increased from 69 seconds to only
80 seconds. Noise of 5% results in a smaller decrease to a
tracking accuracy of 70% while the tracking time is slightly
increased to 71.DDM could even mange with noise of 30%
and track 39% of targets with average tracking time of 115
seconds. In the rest of experiments we used the HMV
settings without noise.
Varying the number of Dopplers and targets. We
examined the effect of the number of Dopplers on the
performance. We found that, when the number of targets is
kept fixed, as the number of Dopplers increases the
percentage of accurate tracking increases. The significant
of the result is that it demonstrates that the system can

make good use of additional resources that it might be
given. We also found out that as the number of Doppler
sensors increases the 50% probability paths decrease. That
may be explained by the fact that 100% paths result from
taking into consideration more than one point of view of
samples. We also found that increasing the number of
targets, while keeping the number of Dopplers fixed does
not influence the system’s performance. We speculate that
this is because an active sector could distinguish more than
one target in that sector.

Figure 5: Target detection percentage and average time as
function of the communication noise.

Figure 6: Tracking percentage and average time as a
function of the number of Dopplers.

Maximum detection range comparison. We also tested
the influence of the detecting sector area on performance.
The basic setting uses Dopplers with detection range of 200
meters. We compared the basic setting to similar ones with
detection ranges of 50,100 and 150 meters. We found that
as the maximum range increases the tracking percentage
increases up to the range of covering the entire global area.
As the maximum radius of detection increased the tracking
average time decreases. This is a beneficial property, since
acquiring better equipment leads to better performance.

Conclusions and related work
 We have introduced a hierarchical approach for combining
local and partial information of large-scale task and team
environments where agents must identify the changing
states of tasks. To apply the DDM model in a different
environment, it is only necessary to define three domain
specific functions: PosS that maps measurements to
possible states, ResBy that determines whether one given
task state associated with a time point can be the
consequence of another given task state associated with an
earlier time point and pathToFunc that given a path returns
a function to represent it. Given these functions, all the
DDM algorithms implemented for the ANTS domain can
be applied, as long as the complexity of these functions is

low. Thus, we believe that the results obtained for the
ANTS simulations will carry over to any such domain. In
particular, we showed that (i) the hierarchy model
outperforms a flat one; (ii) the flat mobile dynamic sector
setting can be used in situations where communications is
not possible; (iii) increasing resources increases the
performance; (iv) under the identified constraints, it is
beneficial to add more levels to the hierarchy; and (v) the
DDM can handle situations of noisy communications.
Agent and organizational designs typically vary along a
number of dimensions. Agent architectures can vary from
very simple designs, usually deployed in large numbers and
crafted so that some set of desirable global properties might
emerge (Shehory et al. 99), to complex designs usually
based on some variation of the BDI agent model in which
agents behaviors are linked to team roles and commitments.

On the organizational side, societal structures are usually
either prescriptive in design - in the sense that a particular
structure is assigned to a team - or dynamic, adapting to
problem changes. In the latter case, organizations can be
identified as consequences of role persistence in team
interactions (.Durfee et al. 87). Prescriptive structures
might derive from task decomposition structures or
segmentations based on capabilities, commitments, spatio-
temporal divisions, or a priori authority structures.
 The benefits of hierarchical organizations have been
argued by many. So and Durfee draw on contingency
theory to examine a variety of hierarchical organizations
benefits; they portray a hierarchically organized network
monitoring system for task decomposition and also
consider organizational self-design (So and Durfee 92, 96).
DDM differs in its organization use to dynamically balance
computational load and also in its algorithms for support of
mobile agents.
 The idea of combining partial local solutions into a more
complete global solution goes back to early work on the
distributed vehicle monitoring testbed (DVMT) (Lesser et
al. 87). DVMT also operated in a domain of distributed
sensors that tracked objects. However, the algorithms for
support of mobile sensors and for the actual specifics of the
Doppler sensors themselves is novel to the DDM system.
Within the DVMT, Corkill and Lesser investigated various
team organizations in terms of interest areas which
partitioned problem solving nodes according to roles and
communication, but were not initially hierarchically
organized (Scott 92). Wagner and Lesser examined the role
that knowledge of organizational structure can play in
control decisions (Wagner and Lesser 00).
Alternative approaches to realtime distributed resource
allocation are being explored within the ANTS program
(Soh and Tsatsoulis 01). All of those approaches assume
that agents are stationary. Vincent et al use a limited team
organization, assigning agents to sector managers (Vincent
et al. 01). Each sector manager is responsible for fusing
information for tracking; a hierarchical organization serves
to limit communication among agents and to provide a
measure of fault tolerance: if a sector manager is disabled,
another can fill in.

References
ANTS Program Design Document, unpublished.
D. Corkill and V. Lesser, “The use of meta-level control
for coordination in a distributed problem solving network,”
IJCAI 1983.
Richard J. Doviak and Dusan S. Zrnic. Doppler radar and
weather observations. Orlando, Academic Press, 1984.
E. Durfee, V. Lesser, and D. Corkill, “Coherent
cooperation among communicating problem
solvers,”Readings in DAI,262-284, 1987.
R.P. Feynman. The Feynman Lectures on Physics.
Addison-Wesley Publishing Company, chapters 12-14,
Bombay, India, 1963.
Gill, Thomas P., The Doppler effect: an introduction to the
theory of the effect, London: Logos, 1965.
T. Ishida, L. Gasser, and M. Yokoo, “Organization self
design of production systems,” IEEE Transactions on
Knowledge and Data Engineering, 4(2):123-134, 1992.
Pöss, Christian Doppler in Banska Stiavnica, in The
Phenomenon of Doppler (Prague, 1992), 55-62.
R. Scott, “Organizations: Rational, Natural and Open,”
Prentice-Hall, 1992.
O.Shehory, S. Kraus and O. Yadgar, “Emergent
cooperative goal-satisfaction in large scale automated-agent
systems,” Artificial Intelligence Journal, 110(1), pages 1-
55, 1999.
Young-pa So and Edmund Durfee , “A distributed
problem-solving infrastructure for computer network
management, International Jornal of Intelligent and
Cooperative Information Systems, 1992.
So, Y., and Durfee, E.H., “Designing Tree-Structured
Organizations for Computational Agents,” Computational
and Mathematical Organization Theory, 2(3), pages 219-
246, 1996.
Leen-Kiat Soh and Costas Tsatsoulis. Reflective
Negotiation Agents for Real-Time Multisensor Target
Tracking, IJCAI-01, Vol. 2, 2001.
T. Wagner and V. Lesser, “Relating Quantified
Motivations for Organizationally Situated Agents,” ATAL
2000.
Lesser, V.R., Corkhill, D.D., and Durfee, E.H. An update
on the Distributed Vehicle Monitoring Testbed, CS
Technical Report 87-111, University of Massachusetts,
Amherst, 1987.
Proceedings of the AAAI Fall Symposium on Negotiation
Methods for Cooperative Systems, AAAI Press, 2001.
Vincent, Regis, Horling, Bryan, Lesser, Victor and
Wagner, Thomas. “Implementing Soft Real-Time Agent
Control.” In Autonomous Agent 2001, Montreal, June,
2001, AAAI.

