
Distributed Optimization for Overconstrained Problems and its Application

Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe
University of Southern California/Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292, USA
fmodi,shen,tambeg@isi.edu

Abstract

Distributed optimization requires the optimization of a global
objective function that is distributed among a set of au-
tonomous, communicating agents and is unknown by any
individual agent. One major mode of attack has been to
treat optimization as an overconstrained distributed satisfac-
tion problem and exploit existing distributed constraint sat-
isfaction techniques. These approaches require incremental
searches with periodic synchronization operations and lack
any guarantees of optimality. This paper presentsAdopt, an
asynchronous, distributed algorithm for overconstrained set-
tings. The fundamental ideas in Adopt are to represent con-
straints as discrete functions (or valuations) — instead of bi-
nary good/nogood values — and to use the evaluation of these
constraints to measure progress towards optimality. In addi-
tion, Adopt uses a sound and complete partial solution com-
bination method to allow non-sequential, asychronous com-
putation. Finally, Adopt is not only provably optimal when
given enough time, but allows solution time/quality tradeoffs
when time is limited. We apply Adopt to a real-world over-
constrained distributed resource allocation problem and we
present empirical results comparing Adopt to previous ap-
proaches.

Introduction
Distributed Optimization (DOP) is to optimize a global ob-
jective function that is intrinsically distributed among many
agents who are autonomous and physically separated in
space and/or time. DOP is different from parallel comput-
ing in the sense that the distribution of the objective function
is mandated by the nature of the problem, not artificially
imposed or manipulated for reasons of computational effi-
ciency or parallel processing.

The combination of intrinsic distribution and the desire
for optimality in DOP poses four very challenging techni-
cal questions: 1) How is distributed information represented
so that it complies with the application domain yet allows
global progress to be measured? 2) How is global progress
measured when individual agents have incomplete informa-
tion? 3) How do agents integrate partial solutions so that
they correctly judge the quality of a global solution? and 4)
How do agents manage the time-to-solution/solution-quality
tradeoff when time is limited?

Throughout the history of computer science, progress has
been made towards solving these challenging problems. For

example, scheduling techniques have been modified and ex-
tended to meet the requirement of distribution and optimal-
ity (Liu & Sycara 1995). Seminal work has been done by
Yokoo et al. in developing algorithms for distributed con-
straint satisfaction problems (DCSP)(Yokooet al. 1998).
Distributed partial constraint satisfaction problem exploit
these algorithms to approximate and solve DOP (Hirayama
& Yokoo 1997). Most recently, attempts have been made
to use constraint satisfaction techniques to search for opti-
mal solutions by incrementally altering the complexity of
the problem using thresholds and additional domain knowl-
edge (Hirayama & Yokoo 2000), but these approaches do
not guarantee optimality.

In this paper, we present a new DOP technique, called
Adopt (Asynchronous Distributed Optimization). Adopt is
based on four major ideas that address the questions pre-
sented earlier. (1) Adopt represents and measures con-
straints not by binary “good/nogood” satisfaction, but by
degrees of valuation, which is a significant generalization
of distributed constraint representation; (2) Adopt aban-
dons the idea of incremental thresholds (Hirayama & Yokoo
2000), and instead, by exploiting its generalized represen-
tation, Adopt uses the evaluation of constraints as the natu-
ral yardsticks for progress towards optimality; (3) Different
from previous approaches that have similar ideas, such as
(Hirayama & Yokoo 1997), Adopt also uses a non-sequential
asynchronous update technique for integrating partial solu-
tions and thus avoids unnecessary idle states for agents; (4)
Finally, in cases where finding the optimal solution is pro-
hibitively expensive, Adopt incorporates a local cost toler-
ance that allows tradeoffs between solution quality and time
to solution. This paper also provides a systematic map-
ping technique for representing a given application as a DOP
problem. Such a mapping is successfully applied to the do-
main of distributed resource allocation and an implemented
real-world application of distributed sensor networks.

Distributed Resource Allocation
A general distributed resource allocation problem consists of
a set of agents that can each perform some set of operations
and a set of tasks to be completed. In order to be completed,
a task requires some subset of agents to perform the neces-
sary operations. Thus, we can define tasks by the operations
that agents must perform in order to complete them. The
problem to be solved is an allocation of operations to tasks

From: AAAI Technical Report WS-02-04. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

such that all tasks are performed. More formally, a Dis-
tributed Resource Allocation Problem is a structure<Ag,
O, T , w > where
� Ag is a set of agents,Ag = fA1, A2, ...,Ang.

� O = fO1

1
; O1

2
, ...,Oi

p, ...,On
q g is a set of operations, where

operationOi
p denotes the p‘th operation of agentAi. An

agent can only perform one operation at a time.

� T is a set of tasks, where a task is a collection of sets
of operations. LetT be a task inT (T � power set of
O). tr 2 T is a set of operations called aminimal set
because it represents the minimal resources necessary to
complete the task. There may be alternative minimal sets
that can be used to complete a given task. Minimal sets
from two different tasksconflictif they contain operations
belonging to the same agent.

� w: T ! N [1 is aweight functionthat quantifies the
cost of not completing a given task.

A solution to a resource allocation problem involves
choosing minimal sets for tasks such that the chosen min-
imal sets do not conflict. However, conflict may be un-
avoidable when there are too many tasks and not enough
resources. In such cases, the agents must allocate resources
only to the most important tasks. More formally, we wish
to find aTignore � T such that

P
T2Tignore

w(T) is mini-
mized and there are enough agents to complete all tasks in
T n Tignore. We state the complexity of this problem as a
theorem.

Theorem 1: A distributed resource allocation problem
given by<Ag,O, T , w > is NP-Complete.

A concrete instantiation of the above resource allocation
problem is the following distributed sensor network domain.
It consists of multiple fixed sensors, each controlled by
an autonomous agent, and multiple targets moving through
their sensing range. Each sensor is equipped with three radar
heads, each covering 120 degrees. Resource contention may
occure because an agent may activate at most one radar head,
or sector, at a given time. Three sensors must turn on over-
lapping sectors to accurately track a target. For example in
Figure 1 (left), when agent 1 detects a target in its sector 0,
denoted asoperationO1

0
, it must coordinate with neighbor-

ing agents so that they activate their respective sectors that
overlap with agent 1’s sector 0. Targets in a particular region
aretasksthat need to be completed/tracked and a choice of
three sensors to track a target corresponds to aminimal set,
e.g.fO1

0
; O2

2
; O4

1
g is a minimal set for Target 1.

Figure 1(right) shows a configuration of 9 agents and an
example of resource contention. Since at least three neigh-
boring agents are required to track each target and no agent
can track more than one, only two of the four targets can
be tracked. The agents must find an allocation that mini-
mizes the weight of the ignored targets. In addition, when
the targets are moving quickly and time is limited, we may
be willing to give up optimality for a fast solution.

Distributed Optimization Problem
A Distributed Optimization Problem consists ofn variables
V = fx1; x2; :::xng, each assigned to an agent, where
the values of the variables are taken from finite, discrete

Sector Number

1
O

2

Agent 3

Agent 2

Agent 4

Agent 1

Target 1

Target 2

.Target 1
50 .Target 2

70

.Target 3
80 .Target 4

20

Grid Configuration:

Figure 1: Sensor sector schematic(left) and a grid layout
configuration with weighted targets (right)

domainsD1; D2; :::; Dn, respectively. Only the agent who
is assigned a variable has control of its value and knowl-
edge of its domain. The objective is to choose values for
variables such that some criterion function over all possible
assignments is at an extremum. In general optimization
problems, one can imagine any arbitrarily complex criterion
function. In this paper, we restrict ourselves to functions
that can be decomposed into the sum of a set of binary
(and/or unary) functions. Thus, for each pair of variablesxi,
xj , we are given acost functionfij : Di �Dj ! N [1.
Intuitively, one can think of the cost function as quantifing
the degree to which a particular assignment of values to a
pair of variables is “deficient”, or less than optimal. The
objective is to find a complete assignmentA� of values to
variables such that the total deficiency is minimized. (An
assignment iscompleteif all variables inV are assigned
some value.) More formally, letC = fA j A is a complete
assignment of values to variables inV g. We wish to find
A� such thatA� = argminA2C F (A), where

F (A) =
P

xi;xj2V

fij(di; dj) ; where xi = di;

xj = dj in A

This change in representation, where constraints have
continuous values, as opposed to binary (satisfied/not-
satisfied values), is a major shift from previous approaches
to addressing overconstrained problems. Indeed, ours is a
strict generalization of the standard representation of the
Distributed Constraint Satisfaction Problem from (Yokooet
al. 1998). For example, a “hard” constraint is modelled as
having infinite cost for all pairs of variable values that vio-
late the constraint and zero cost otherwise.

Solving Resource Allocation Problems
We illustrate a general methodology for mapping the re-
source allocation problems (e.g., the distributed sensor nets)
into the distributed optimization problem.

� Variables: 8Tr 2 T ;8Oi
p 2

S
tr2Tr

tr, create a DOP
variableTr;i. The value of this variable is controlled by
agentAi.

� Domain: For each variableTr;i, create a valuetr;i for
each minimal set inTr, plus a “I” value (ignore). The
I value does not conflict with any minimal set and thus
when resources are limited, it allows agents to avoid as-
signing resources to less importance tasks.

We define two constraints on variables (tasks) that specify a
valid allocation of resources. The first constraint prevents
agents from assigning conflicting minimal sets to tasks and
the second requires agents to agree on allocations.

8r; s; i : f(Tr;i; Ts;i) =

(
1 if the minimal sets

conflict;
0 otherwise

8r; i; j : f(Tr;i; Tr;j) =

(
1 if Ts; Tr have

unequal values;
0 otherwise

Finally, a third constraint requires agents to pay a cost
equal to the weight of the task whenever it is ignored:

8r; i : f(Tr;i) =

(
w(Tr) if Tr has

value 00I 00;
0 otherwise

In fact, the first two constraints alone already define a satis-
faction problem, but the third one makes it a DOP.

The Adopt Algorithm
Preliminaries
A set of variable/value pairs specifing a (possibly incom-
plete) assignment is called aview).

� Definition: A view is a set of pairs of the formf(xi,di),
(xj , dj)...g. A variable can appear in a view no more than
once. Two views arecompatibleif they do not disagree on
any variable assignment and a view islarger than another
if it contains more variables.

The deficiency of a value of a variable in a view is deter-
mined by the sum of its cost functions.

� Definition: The local deficiencyof a given viewvw wrt
variablexi is defined as

Æ(xi; vw) =
P

xj2V

fij(di; dj) ; where xi = di;

xj = dj in vw

The Adopt algorithm requires variables to have a fixed
tree structured priority ordering. Any such ordering is suf-
ficient and lexicographic ordering is the simplest method.
Figure 3.a shows an example constraint graph and an asso-
ciated priority order. Two agents with variablesxi; xj are
connectedif their cost functionfij is not a constant. The
tree ordering can be formed in a preprocessing step, or alter-
natively, can be discovered during algorithm execution. For
simplicity of description of the algorithm, we will assume
the tree is already formed in a preprocessing step. Figure
3.b shows the search tree formed from the constraint graph
in Figure 3.a.

Adopt
Adopt is a provably optimal, asynchronous distributed op-
timization algorithm based on four major ideas. First, it
operates on a generalized representation, described in the
previous section, where constraints have degrees of qual-
ity (cost) of variable assignment rather than simple bi-
nary good/nogood values. Second, Adopt uses the evalu-
ation of these constraints as a solution quality metric and

In itialize: Currentvw fg;di null;
8xl 2 Children:
c(xl; fg) 0;
V iews(xl) fg;

hill climb;
when received(VALUE , (xj ; dj))

add(xj ; dj) toCurrentvw;
hill climb;

when received(VIEW , xl, vw, cost)
addvw to V iews(xl);
c(xl; vw) cost;
hill climb;

procedure hill climb
8d 2 Di:
e(d) Æ(xi; Currentvw [f(xi; d)g);
8xl 2 Children:
vw largest view inV iews(xl) compatible

with Currentvw [f(xi; d)g);
e(d) e(d) + c(xl; vw);

choosed that minimizese(d); — (ii)
if di 6= d then
di d;
SEND (VALUE , (xi; di)) to all connected lower variables;

end if;
choosedh where(parent; dh) 2 Currentvw;
if e(di) greater than� then — (iii)

SEND (VIEW , xi, Currentvw, e(di)) to
parent;

Figure 2: Procedures from the Adopt algorithm

to measure progress towards the optimal solution. Third,
Adopt performs a distributed branch-and-bound search,
asynchronously combining partial solutions into larger solu-
tions as non-local information is received from other agents.
Finally, in cases where finding the optimal solution is pro-
hibitively expensive, Adopt incorporates a local cost toler-
ance that allows faster algorithm termination. Adopt’s four
ideas contrast with the leading approach to overconstrained
DCSP (Hirayama & Yokoo 2000). First, they continue to
rely on a satisfaction based approach to value assignment
and thus they use incremental thresholds to progress to-
wards better solutions,which does not guarantee optimal-
ity. Also in their approach, complexity is limited by using
thresholding as a global rigid cutoff, i.e. all agents elimi-
nate any constraints that are below the threshold value from
consideration before search begins. This may a priori elimi-
nate constraints that could have been easily satisfied without
backtracking. Finally, the approach in (Hirayama & Yokoo
1997) uses sequential, synchronous searches to build root to
leaf paths which fail to exploit the parallelism in distributed
computation (Hirayama & Yokoo 1997),

Procedures from the Adopt algorithm are shown in Figure
2. xi represents the agent’s local variable anddi represents
its current value. The algorithm begins by each agent in-
stantiating its variable concurrently and sending this value
to all its connected lower priority agents via a VALUE mes-

(a)

Connected

(b)

VALUE messages

VIEW Messages
A (1)

B (2) C (3)E (2)

F (3) D (4)

A (1)

C (3)

D (4)

E (2)

F (3)

B (2)

Figure 3: (a) Constraints between agents with priority order
in parentheses. (b) Flow of VALUE and VIEW messages
between agents.

sage. After this, agents asynchronously wait for and respond
to incoming messages. Lower priority agents choose val-
ues that have the least deficiency given the current values of
higher priority agents stored in theCurrentV iew variable.
This often leads to quick, possibly suboptimal solutions. In
order to escape local minima, lower priority agents report
feedback to higher priority agents. When a lower priority
agent evaluates its local cost functions and realizes the sys-
tem is incurring cost greater thantolerance level� , shown in
Line (iii) of Figure 2, it constructs a VIEW message which
contains its current view of the higher priority agents’ as-
signments and the associated amount of cost. It sends this
VIEW message only to the lowest higher priority connected
agent (its parent). As an agent receives VIEW messages,
it maintains the set of views and associated costs reported
to it from its children. Then, the agent will either abandon
its current variable value in favor of one with less total cost
(Line (ii)) or pass a VIEW message up toits lowest higher
priority agent. Figure 3.b shows the flow of VALUE and
VIEW messages between agents as the algorithm executes.
An important property of this algorithm is that an agent only
stores variable/value information about connected variables,
rather than building a complete path from root to leaf.

When time is limited, we can increase the value of the
� parameter, which in turn allows agents to ignore smaller
costs by not reporting to higher priority agents. This pre-
vents higher priority agents from switching their values, thus
allowing the system to reach a stable state more quickly. A
key property of this local tolerance is that agents still attempt
to find values that minimize costs, as long as it can be done
locally without backtracking. In general, the� parameter
would need to be engineered using domain knowledge but
our point is that Adopt is “tune-able” in this way.

Algorithm correctness
We show that if Adopt reaches a stable state (all agents are
waiting for incoming messages), then the complete assign-
ment chosen by the agents is equal to the optimal assign-
ment. We first state Lemma 1 which states that an agent
never overestimates cost, and Lemma 2 which says that in a
stable state, an agent’s estimate of cost is equal to the true
cost.

Let C(xi; vw) denote the local cost atxi plus the cost of
the optimal assignment to descendents ofxi, given thatxi

and its ancestors have values fixed to those given invw.
Lemma 1: An agents estimate of the cost of a solution is

never greater than the actual cost.8xi 2 V , 8d 2 Di,

e(d) � C(xi; Currentvw [f(xi; d)g)

Lemma 2: Assume Adopt is in a stable state.8xi 2 V , if
di is xi’s current value, then,

e(di) = C(xi; Currentvw [f(xi; di)g)

Theorem 1: Assume Adopt is in a stable state.8xi 2 V ,
if di is the value ofxi, then(xi; di) 2 A�.

proof: Lemma 2 states that an agent’s estimate of cost
for its final choice is equal to the minimum cost possible
given what it and higher priority agents have chosen, and
Lemma 1 says that its estimate for the rest of its choices are
a lower bound on the minimum cost for that choice. Each
agent chooses the value that minimizes its estimate given
what higher priority agents have chosen. Clearly, the highest
priority agent chooses optimally and thus by induction, the
entire system chooses optimally.2

Finally, we have left to show that the algorithm does in-
deed reach a stable state in which all agents are waiting for
incoming messages. We first state Lemma 3 which states
that an agents estimate of cost never decreases.

Lemma 3: For all d 2 Di, for all xl 2 Children, the
value ofc(xl; vw) is non-decreasing over time.

Theorem 2: Adopt will reach a stable state.
proof: xi sends a VALUE message only in reponse to the

receipt of a VIEW message that changes costc(xl; vw). By
Lemma 3,c(xl; vw) is non-decreasing and by Lemma 1, has
an upper bound. So, eventuallyc(xl; vw) must stop chang-
ing andxi will stop sending VALUE messages. VIEW mes-
sages are only sent to a higher priority agent, and the highest
priority agent never sends VIEW messages. So eventually,
agents will stop sending VIEW messages. Thus, the system
reaches a stable state.2.

Evaluation
In this section, we present the empirical results from five
experiments using Adopt to solve an overconstrained dis-
tributed resource allocation problem in a sensor domain.
These are not toy examples but rather real problems from
hardware sensor configurations similar to that shown in Fig-
ure 1(right). To measure progress over time in a system
that is completely asynchoronous and distributed, previous
methods of counting ”synchronous cycles” were not real-
istic and acceptable. Instead, we measure the number of
search cycles by counting the maximum number of VIEW
messages sent by an agent in the system.

Hypothesis 1: Adopt scales well with increasing num-
ber of agents but number of interacting tasks constant.
In terms of the constraint graph, adding more agents cor-
responds to adding new variables and associated new con-
straints. However, keeping the number of tasks constant
means that choosing zero-cost assignments for the new con-
straints is easy. Few cycles should be required between
agents with these types of variables. We experiment with

two configurations, chain and grid, and keep the number of
interacting tasks constant at one, two, three or four. Figure
4 plots the results with number of agents on the x-axis and
number of cycles to optimal solution on the y-axis. We see
that our hypothesis is verified. This means that the number
of agents, by itself, does not adversely affect time to solu-
tion. This is a desirable property of our approach since de-
spite a large number of agents (100s), we may sometimes
have only a few interacting tasks.

Hypothesis 2: Adopt scales exponentially as number
of interacting tasks increases.As the number of interact-
ing tasks increases, the constraint graph become harder to
optimize. Thus, a larger number of cycles are necessary to
reach the optimal solution because more search in necessary.
Figure 5 (left) shows results for two sensor configurations.
The chain configuration has 28 variables with domain size
5 and 94 constraints and the grid configuration has 36 vari-
ables with domain size 5 and 154 constraints. In both con-
figurations, the variables have a linear (total) priority order.
The graph shows that the number of cycles (y-axis) increases
exponentially as more interacting tasks (x-axis) are added.

Hypothesis 3: Time to solution decreases if priority
ordering of agents reduces the total distance from the
highest to lowest priority agent. To mitigate the exponen-
tial increase in time to solution when the number of inter-
acting tasks increases, we minimize the total distance from
the highest to lowest priority agent. We conjecture that if
feedback reaches higher priority agents quicker, perhaps the
exponential increase effect will not be as severe. Figure 5
(right) shows the same two configurations as in Experiment
2, but with a tree-structured (partial) priority order. The re-
sults show that a tree structured priority ordering is superior
to a linear ordering in terms of time to solution and thus
supports our hypothesis. How the agents can autonomously
determine the best priority ordering quickly is a potentially
valuable issue for future work.

Hypothesis 4: Increasing tolerance level� allows
agents to tradeoff time-to-solution for solution-quality.
We steadily increase� and measure the time to solution (cy-
cles) and the quality of solution obtained. Quality of solu-
tion is measured as the percentage of best solution possi-
ble, so 100% corresponds to the optimal solution. Figure 6
shows the results for four types of configurations. The left
graph shows the number of cycles required to reach a stable
state for each configuration, while the right graph denotes
the quality of the solution obtained for each configuration.
We can see that the� parameter allows agents to trade-off
computation time for solution quality. As� is increased, the
time to solution falls as the solution quality also degrades.
Only in the most severe cases where� is set very high does
Adopt begin to settle upon sub-optimal solutions, and this
drop off is abrupt. This suggests that it is possible to engi-
neer the� parameter to obtain high gains in time to solution
without losing much in solution quality. A key surprise was
the non-monotonic decrease in time to solution as� is in-
creased in the left graph. This suggests that very small cost
tolerance is actually worse than no tolerance at all.

Hypothesis 5: Adopt is more robust to variance in con-
straint valuations than incremental thresholding meth-

ods. We are interested in how the valuations of constraints
in the problem effect the performance of different constraint
optimization approaches. Approaches that rely on iterative
thresholds require the constraints to be ordered by their val-
uation and the way in which the constraints are ordered may
affect the results dramatically.

In order to compare Adopt with satisfaction approaches
that use incremental thresholds, we experiment with two it-
erative thresholding schemes. In the Removing scheme, a
search for a satisfactory solution is attempted with the entire
problem. If it is found to be unsolvable, constraints below
some threshold are iteratively removed from the problem
until a solvable subproblem is found. The Adding scheme
is the opposite approach beginning with an empty solvable
problem. A crucial point of comparison is the number and
cost of synchronizations required. In the Removing scheme,
if no solution can be found at the current thresholdt, agents
must synchronize and somehow decide to drop further con-
straints at somet + � level. Correctly determining this� is a
major difficulty of incremental thresholding methods. To be
conservative for these experiments, we assume no synchro-
nization cost and� equals one fifth of the highest weighted
constraint. If� is set higher, the problem space search be-
comes very coarse and solution quality is poor. If� is too
low, many iterations are required to find a solution and thus
time to solution is adversely affected.

We experiment with three problem classes:equal rep-
resents problems in which tasks all have the same weight,
random represents problems in which tasks are randomly
assigned weights in the range [10,100] and inbipolar prob-
lems the set of tasks have either weight 10 or 100 and fur-
thermore, if all tasks of weight 10 are ignored, the rest of
the tasks can be performed. Table 1 compares the time to
solution and quality of solution for the three different ap-
proaches. We average the results of four different prob-
lems in each problem class, so a 100% in the column%opt
means that the algorithm found the optimal solution in all
four problems in the given class, while 0% means the algo-
rithm found no solution for all four problems. The results
show that performance of the two iterative approaches de-
pends heavily on the ordering of the given constraints, while
Adopt is able to perform well over a range of different input
structures.

Finally, Adopt has been used to track actual targets in a
real hardware sensor setup. In the largest scale experiment
to date, 8 sensors/agents were set up in a 60x60 ft area with
two targets moving through the sensing range at approx 1/2
ft/sec. Each hardware sensor was driven by a Pentium PC
and agent communication was done via TCP/IP. Initial re-
sults show that agents were able to successfully produce
tracks of targets despite overconstrained situations.

Summary and Related Work
Distributed optimization arises in many domains where in-
formation and control is distributed among autonomous
communicating agents. We have presented the Adopt al-
gorithm, a provably optimal asynchronous distributed algo-
rithm for distributed optimization. Adopt represents a new
approach and a departure from previous methods in that it i)

0

50

100

150

200

250

300

4 6 8 10 12 14 16

M
ax

 N
um

 C
yc

le
s

to
 O

pt
im

al

Number of Agents

One Target,Chain
Two Target,Chain

Three Target,Chain
One Target,Grid
Two Target,Grid
Four Target,Grid

Figure 4: Number of cycles with increasing number of
agents and constant number of tasks

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

M
ax

 N
um

 C
yc

le
s

to
 O

pt
im

al

Number of Targets

Linear Priority Order

Chain
Grid

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

M
ax

 N
um

 C
yc

le
s

to
 O

pt
im

al

Number of Targets

Tree Structured Priority Order

Chain
Grid

Figure 5: Number of cycles with increasing number of in-
teracting tasks for a linear priority order (left) and tree struc-
tured priority order (right)

0

200

400

600

800

1000

1200

0 50 100 150 200

M
ax

 N
um

 C
yc

le
s

Tolerance Level (tau)

chain1
chain2

grid1
grid2

0

20

40

60

80

100

0 50 100 150 200

%
 O

pt
im

al

Tolerance Level (tau)

chain1
chain2

grid1
grid2

Figure 6: Effect of increasing tolerance level on time to so-
lution(left) and solution quality (right)

Table 1: Adopt (� = 60) vs. Iterative Search
Adopt+� Removing Adding

Prob Cycles %Opt Cycles %Opt Cycles %Opt
equal 294 87% 165 0% 37 0%
rand 70 100% 118 83% 54 83%

bipolar 31 100% 41 93% 41 93%

operates on a valued constraint representation, ii) uses con-
straint evaluation to measure progress towards the optimal
solution, iii) uses a novel procedure for asynchronously in-
tegrating partial solutions into larger solutions, iv) includes
a novel method for trading off solution quality for time to
solution. We show empirical results illustrating Adopts per-
formance on a distributed sensor network resource alloca-
tion problem.

Other approaches to distributed optimization include mar-
ket based systems (Walsh & Wellman 1998), which offer an
promising, alternative path of investigation. We view these
methods as complementary to constraint-based approaches
and hybrid approaches may yield significant advantages over
either alone. Others approaches have used a “coordinator”
agent technique, whereby a special agent collects informa-
tion about variables and domains from other agents and finds
a solution (Lemaitre & Verfaillie 1997). In many highly dis-
tributed domains, this is an infeasible solution.

References
Hirayama, K., and Yokoo, M. 1997. Distributed partial constraint
satisfaction problem. In Smolka, G., ed.,Principles and Practice
of Constraint Programming – CP97. 222–236.

Hirayama, K., and Yokoo, M. 2000. An approach to over-
constrained distributed constraint satisfaction problems: Dis-
tributed hierarchical constraint satisfaction. InProc. of the 4th
Intl. Conf. on Multi-Agent Systems(ICMAS).

Lemaitre, M., and Verfaillie, G. 1997. An incomplete method
for solving distributed valued constraint satisfaction problems. In
Proc. of the AAAI Workshop on Constraints and Agents.

Liu, J., and Sycara, K. 1995. Exploiting problem structure for
distributed constraint optimization. InProc. of the 1st Intl. Conf.
on Multi-Agent Systems(ICMAS).

Walsh, W., and Wellman, M. 1998. A market protocol for decen-
tralized task allocation. InProc. of the 3rd Intl. Conf. on Multi-
Agent Systems(ICMAS).

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K. 1998. The
distributed constraint satisfaction problem: Formalization and al-
gorithms. IEEE Transactions on Knowledge and Data Engineer-
ing 10(5):673–685.

