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Abstract
Current multi-agent coalition formation methods present

two major problems. First, some of these methods can be
applied only to cooperative multi-agent systems; second, the
algorithms proposed may fail in the formation of the
coalitions. This article proposes two methods for problems
of agent coalition formation in cooperative and non-
cooperative multi-agent systems. These methods are based
on agent preference models and on preference aggregation
using the Choquet integral.

1 Introduction
Coalition formation is one of the fundamental research issues
in distributed artificial intelligence and multi-agent systems.
Current methods present two major limitations. First, some
of these methods can be applied only to cooperative multi-
agent systems; second, the algorithms proposed do not
necessarily guarantee the formation of coalitions in all
coordination situations [Aknine 00]. This article presents two
methods for the coalition formation problem in cooperative
and non- cooperative multi-agent systems in which agents
need to come together in order to complete their tasks. We
consider that in a cooperative multi-agent system the agents
exchange information. The agents can also agree to cart3, out
the tasks of the other agents without asking for
compensation. In a competitive multi-agent system,
information is not exchanged among agents or exchange is
limited. Here agents maximize their own preference function,
not of the multi-agent system. In order to take into account
the interactions betaveen criteria and the dependencies
between agents, we have chosen the Choquet integral for
preference aggregation. One of the methods based on the
ESD (Evolutionat 3’ System Design) methodology for
restructuring the multi-agent problem [Shakun 96] is
suggested for competitive multi-agent systems. The other
method is suggested for cooperative multi-agent systems.

This article is structured as follows. In section 2, previous
work is analyzed in detail and the principal limitations of the
existing solutions are examined. Section 3 formalizes the
problem of coalition formation following our approach.
Section 4 presents our methods for soRTing this problem, and
gives the results of the experiments done using these
methods. Section 5 Briefly summarizes the research.

2 Different approaches for solving the problem

of coalition formation
Much research work has been done on multi-agent coalition
formation (Ketchpel 94; Sandholm and Lesser 97; Shehory et
al. 97, 98; Zlotkin and Rosenschein 96). Sandholm and
Lesser define the process of coalition formation by a
distribution of the agents in exhaustive and disjoined
coalitions [Sandholm et al. 97]. Shehory and Kraus have
extended this definition by allox~ng the formation of
overlapping coalitions (i.e. an agent can belong to several
coalitions at the same time) [Shehory et al. 98]. The analysis
of the algorithms (Ketchpel 94; Klusch and Shehory 96;
Sandholm et al. 97, 99; Shehory et al. 97) shows that these
approaches do not necessarily guarantee the formation of the
coalitions in all cases. All these methods have been discussed
in (,~nine 99; Aknine 00).

In his work, Ketchpel has proposed two algorithms for
coalition formation. Ketchpel’s first algorithm [Ketchpel 94]
is centralized. As for his second one, it does not solve the
problem of coalition formation in all the cases. Zlotkin and
Rosenschein have proposed a mechanism for coalition
formation that uses ctTptography techniques for sub-additive
task-oriented domains. This mechanism is based on a
Shapley value which is the expected utility that each agent
x~ll have from such a random process [Zlotkin et al. 96].
However this mechanism can only be applied to small sized
multi-agent systems because of its combinatorial complexity
due to the calculation of all possible coalitions.

The coalition formation method proposed by Shehot3T
and Kraus [Shehot3, et al. 98] can only be applied for
cooperative multi-agent systems in which the agents are able
to exchange their information. In order to reduce the
complexit3, of their algorithm, Shehory and Kxaus authorized
the agents to carry out certain collective and shared
processing by exchanging information. This model cannot be
applied to non-cooperative multi-agent systems in which the
agents cannot exchange their information. The algorithm of
Sandholm et al. [Sandholm et al. 99] extends that one.
However, the principal problem of the multi-agent approach,
i.e. distribution of centralized algorithm control on several
autonomous agents, has not been addressed in this method.
It is worth noting that the work of [Derk et al. 92] on game
theory was the first to propose coalition formation methods
based on building a lattice of coalition structures. Even if this
work does not focus on algorithmic aspects, it provides an
analysis and a thorough formalization of the coalition
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formation problem. The authors were mainly concerned with
the properties of the structures of coalitions, the evolution of
these structures, the stability of the coalitions and the utility
of the agents in these coalitions.
In more recent work, [Tsvetovat et al. 00] proposed an
algorithm based on the principle of electing a leader for
coalition formation. This algorithm has been applied to
electronic commerce processes. This approach is similar to
the one proposed in [Aknine 99]. Lerman et al. have
proposed an alternative, physics-motivated mechanism for
coalition formation that treats agents as randomly moving,
locally interacting entities [Lerman et al. 00]. They consider
that a new coalition may form when two agents meet
randomly, and it may grow when a single agent randomly
meets the coalition. The aim of this work was to define a
mathematical model, formalized as a series of differential
equations. These equations have steady state solutions that
describe the equilibrium distribution of coalitions. But the
authors have not given any details of the autonomous agent
behaviors and how they concretely use this mathematical
model. The algorithmic specifications have not been
proposed and the convergence of this model has not been
addressed.

3 Formal Description of our approach for
multi-agent coalition formation
3.1Mo~vadons

All the existing coalition formation models for multi-
agent systems are based on the assumption that the agents
seek to maximize a global utility function which is directly
defined in the agents [Shehory et al. 98]. They will then
distribute to each other the profits generated by the
execution of their collective tasks. This involves both strong
complexity of the algorithms, coordination and negotiation
problems around the social utility functions and final
distribution of the profits. Our decentralized approach for
solving the problem of coalition formation is motivated by
the decentralized behaviors of agents and by economic
reality: usually the problem involves too many agents.

Our approach considers the preferences of the agents
and not a global utility function. We do not try to satisfy a
global utility function, which is difficult to build, but we
consider the individual points of view of the agents
represented by their preference models. We have chosen the
preference model for several reasons: (1) a preference model
is easier to build than a global utility function; (2) the
preferences can be calculated according to various criteria;
(3) when a coalition is formed, the agents can consider the
aggregated preferences of the coalition.

We propose two types of protocols and coalition
formation methods according to whether or not there is
sharing of agent preferences. Sharing the preferences allows a
more effective solution in a cooperative situation. On the
contrary, not sharing the preferences makes it possible to
solve non-cooperative situations. The algorithms that we
propose can form coalitions in all cases.

To illustrate our approach and the set of concepts that

will be defined in this article, let us consider the example of
collector agents in a computer manufacturing center. This
type of agent intervenes in the tasks of loading and storing
hardware material resulting from a manufacturing process.
On each computer is an indication of its weight. Some
computers cannot be carried out by a single agent, given its
limited physical capacity, which means that several agents
must necessarily join to complete this task, hence the
necessity of a dynamic agent coalition formation. We
suppose that there is no hierarchy among the agents, i.e.
there is no central coordinator of the agent society.

3.2 Formalizing the muld-agent coah’tion
formadon problem

In this section, we present some notations and definitions
of the concepts in order to help understand our methods.
They underly the distributed process of coalition formation
detailed in section 4.
Let S be a multi-agent system, A = {al, a2 .... a,} I- ~ ..x be the

set of agents, T= {tl, t2, .., tp} Ip~N be the set of tasks in S.

3.Z 1 Defll, ition of agel, t prefereltces
We consider that a necessary condition for the integration of
an agent in a coalition is that it is accepted by the members
of the coalition and that it wishes to join the coalition. We
formalize this desire by the preferences of the agent for the
members of the coalition. The agent preference model may
be mono-dimensional or multi-dimensional (Roubens et al.
85 ; Chandon et al. 81).

In some cases, using one criterion to build an agent
preference model is not sufficient to assign the agent to a
coalition. Our algorithm automatically restructures the
problem so as to use other criteria [Shakun, 96].
Consequently, an agent can transform its mono-dimensional
preference model defined with one criterion into a multi-
dimensional preference model.
Definition 1.1 (Multi-dimemiot, al age**/ preflreltce modeO. A multi-
dimensional preference model of an agent ai on a set A is a

matrix denoted fi whose elements are the preferences of
oi

agent ai for each agent ai ~ A regarding criteria Dklk=l.. p (also

called dimensions), and whose a’ cohtmn corresponding t o
agent ai is equal to zero.
Each line of this matrix concerns a specific criterion defined
by the designer.
To build the aggregated preference model of an agent based
on its multi-dimensional preference model, the weighted sum
is often used as an aggregation operator of the preferences
but it has several limitations [Grabisch 95]. To overcome
these limitations, we propose another aggregation operator:
the Choquet integral. It was defined by Grabisch [Grabisch
95]. The Choquet integral is used to:

aggregate the preferences of a single agent for another
agent regarding several criteria;
aggregate the preferences of a single agent for several
agents and to obtain its preference for a coalition;
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- aggregate the preferences of several agents for one
agent.

Using the Choquet integral as a preference aggregation

operator, an agent computes its preference vector I-I = (xii)
ai

as follows:

xii = ~ O’tii-)’i÷"i)o(EO=C-*O’lii ..... yl’,i)
I<_k<_p

P

W,.~A, Vy[e,j II 6, i=1 ...... )~= l,..., p) with yp+t ii = 0, yt i,i=0

oi

Ek is a combination of criteria, Ek C_ D, such that ] El I = 1,
..., ]EpJ = p. ~(Ek) is the weight of a subset of criteria 
given by the designer. It can be computed with a utility

function IX which respects to the constraints specified by the
Choquet integral [Grabisch 95].

This definition means that while computing the
aggregated preference model of an agent according to a set
of criteria, the formula progressively takes into account these
criteria and their dependence relation. It starts with one
criterion, then takes two criteria, etc. until all the criteria have
been considered.

D represents the set of criteria 0Di)i=l..p, ~1(O) = 0 and la(D1,

.... Do) = 1 means that applying I.t on all the criteria gives 1.
In order to understand the rest of our method, it is

important to distinguish between the following concepts: the
preference of an agent, the collective weight of a set of
agents and the individual weight of an agent. The individual
weight of an agent is a general value that the designer of the
multi-agent system grants to each agent, i.e. independently of
the application on which the agent is working or will work. It
is a value which is computed according to the features of the
agent and the features of the other agents sharing its
em, ironment. In our application, for instance, the weights of
the agents are defined according to their size, physical
weight, etc, without taking into account the execution state
of the application. A collective weight is given by the
designer for a set of agents. This value is computed
according to the features of the set of agents. The fact that
two agents al and % taken collectively, can perform tasks that
the)’ would not be able to perform separately for some
reason such as the physical constraints of the agent, implies
that the designer defines a higher collective weight for the
two agents than their respective individual weights. The only
preference aggregation operator which is able to take into
account these collective and individual weights is the
Choquet integral. This is why we have used it in order to
compute the different parameters of the coalitions.

3.2.4 Definitions of some coah?ion formation concepts
2dl agents in a coalition are represented by a global
preference model. This model aggregates the individual
preference models of each agent of the coalition according to

their respective weights.

Definition 3.1 (Coalition preference modeO. Let H be the
i

preference model of coalition Ca composed of m agents. The

preference of Ca for agent ah denoted H, is such that:
/k

II(Ai) is either an individual weight of agent i or acollective

weight of a subset of agents Ai c_c_ Ca.

To compute the preference of a coalition Ci for an agent
ak, the agents of this coalition order their preferences for ak
and build a decreasing sequence. This formula indicates that
the preference of the coalition for an agent ak is equal to the
Choquet integral of the individual preferences of each agent
in this coalition for agent ak.

To formalize the desire of an agent to join a coalition if it
is not a member of it and its desire to remain in the coalition
if it is a member, we define the preference of an agent for a
coalition

Definition 3.2 (An agent preforence for a coalition). An agent
preference for a coalition is a global evaluation made by the
agent of all the members of this coalition using the individual
preferences associated with each agent of this coalition.
Formally:

Let H be the preference model of an agent ak. The
ak

preference of ak for a coalition Ca composed of m agents,

denoted ~(ak, Ca), is such that:

(ak, C0= E (x~i- x~i*0 la(Ai)=G(~H,.-.,)’k=)91
l_<j<_m

~t(Ai) represents the individual weight of agent i or t he

collective weight of a subset of agents in Ai _ Ci. To
compute the preference of agent ak for a coalition C<, at
orders its preferences for each member of the coalition Ca
and builds a decreasing sequence. This formula indicates that
the preference of agent ak for a coalition Ci is computed
using the Choquet integral on its individual preferences for
each agent in this coalition Ci.

When agents try to form coalitions, each agent looks in
the subset of possible parmers for those which it prefers and
but also which prefer it. In our approach, this concept is
called bilateral attraction of the agents and is described in detail
below. In order to start the coalition formation process, we
have introduced the concept of unilateral preference
attraction to identif3~ the preferred agent from among the
other agents. This unilateral preference attraction can be used
to solve the coalition formation problem and is defined
below.
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Definilion 3.3 (Agent unilateral preference attraction). The

unilateral preference attraction defines the force which

enables an agent to convince the agents which are not yet in

coalitions to choose it as a partner. Formally:
Let ai be an agent of S. The unilateral preference attraction of
at, defined on the set S of n agents, denoted U-Attraction (ai),
is such that:

U-Attraction (ai) = ~ (xi.i- x i+l. i) II(Ai) = C.~ (xl i,..., x~ i)

j=l(jok)

B(AO represents an individual weight of agent aj or 
collective weight of a subset of agents in Aj c {al, ..., a,}.

The process used to form coalitions also considers the
desire of an agent to join the coalition which attracts it. This
is explained in the following definition of agent bilateral
preference attraction.

Definition 3.4 (Agent bilateralpreference attraction). Let ai be an
agent of S. The bilateral preference attraction of ai for a
coalition Ck, denoted B-Attraction (ai, Ck), is such that:

B-Attraction (m, Ck) = 1--I X ~R (al, 0
ki

Having presented some fundamental definitions, we can now
present our methods for agent coalition formation.

4 Our coalition formation methods
In this section we present two methods of coalition

formation. The first method, based on ESD (Evolutionary
System Design) methodology defined by M. Shakun [Shakun
96], is useful for competitive multi-agent systems (where the
agents cannot exchange their knowledge), whereas our
second method is powerful for cooperative multi-agent
systems (where the agents can exchange their knowledge).

4.1 Presentation of two coalition formation
methods

4.1.1 ESD coalition formation method for competitive multi-agent
~’stems

\Vhen experimenting the well-known coalition formation
methods, we have observed that these methods do not
guarantee the formation of coalitions in all cases (cf. section
2). We have therefore a new method based on the
Evolutionary System Design methodology, ESD [Shakun
96]. ESD is a general formal modeling/design framework for
multi-agent problem solving and negotiation that can be
applied to define and solve specific problems (see [Shakun
96] for more details). When negotiation solutions are not
forthcoming, problem restructuring is a key approach. ESD
considers that to enable the agents to reach an agreement
during a negotiation process when the), fail, we must allow
them to restructure the problem by defining new negotiation

criteria for the agents. If the agents conclude that it is
impossible to form coalitions with the agent preference
models based on only one criterion (for example, the time of
arrival of the agents at the site of task execution), they
rebuild their preference models by gradually introducing new
negotiation criteria. In our approach, we assume that the
designer of a multi-agent system defines a priori several
negotiation criteria as well as their weights. The dimensions
are introduced lexicographically. In our application, the first
criterion is the arrival time on the site where the task should
be executed. The second one is the remaining energy (batter).
life) available in an agent (robot) before it goes fiat. The 
agent preference model built on these two criteria is obtained
by aggregating the two mono-dimensional models, i.e. the
time model and the energy model according to formula given
in sections 3.2.1 and 3.2.2. Additional criteria can be used.

The algorithm of the behavior of an agent in the coalition
formation process uses communication primitives and
operators whose semantics are presented in [Aknine 00]. It is
based on the principle of exchanging offers with the other
agents. When the coalition formation algorithm is activated,
if an agent has not yet obtained the result it is expecting, the
problem is restructured. To do so, the agents use all the
criteria defined for the problem to be solved. Each time a
new preference model is computed, the agent reactivates the
algorithm with the new preference values.
The advantage of this method is that an agent does not need
to know the preferences of the other agents in the system in
order to form coalitions. This is better because it saves time
and it guarantees the confidentiality of the knowledge.

4.1.2 Coalition formation method for cooperative multi-agent O,stems
\Vu’e have defined a second method for cooperative multi-

agent systems in which the agents can exchange their
information, the Coalition Formation ~Mgorithm xvith Shared
Preference Models, that guarantees the formation of
coalitions in all situations. It is based on the principle of
circulating the coalition formation procedure among the
different agents of the system. The agents coordinate their
activities so that only one agent may form its coalition at a
time. For each agent, we have defined a unilateral preference
attraction which evaluates the preference of all the other
agents for this agent (cf. definition 3.3). By choosing the
most preferred agent to start its coalition, we guarantee that
the preferences of all the agents will be respected. An agent
starts the coalition formation process if it has the greatest
unilateral preference attraction. The process of coalition
formation passes from the most preferred agent to the less
preferred ones as long as there are agents that are not yet in
coalitions.

The algorithm that we propose is made up of two phases.
During the first phase, each agent ai builds its preference
model as defined in section 3.2. It sends its model
successively to all the agents of the system and waits to
receive their preference models. Each agent compares its
preference model with the models of the other agents. If it
has the greatest ,nilnteral preference attraction, it forms a
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coalition with the agents whose preference models are
equivalent (cf. definition 3.3) or so as to maximize the
bilateral preference attraction of the agents in the coalition.
This is measured by the product of preferences (cf. definition
3.4). Then, the agent waits for the first phase of the process
to be over and the agent with the next highest unilateral
preference attraction can begin forming its coalition. If it has
been chosen in a coalition, the agent accepts and finishes the
coalition formation process. If the agent has formed its
coalition, it waits for confirmation from al of its partners in
order to release the coalition formation process.

The analysis of this algorithm shows that its
computational complexity is less than the complexity of the
other algorithms, in particular, [Shehory et al. 98]. There are
at most [n2/k] necessary rounds for building coalitions of ’k’
cardinality with ’n’ agents in the system.

4,2 Implementation results
To evaluate the performance of our two methods, we have
implemented a multi-agent system. At each run, we have
tested it on various sets of agents by increasing the cardinality
of the formed coalitions. Several tasks were performed by the
agents at each run, each task needing the same number of
agents in order to be performed. Therefore, in all
experiments all the coalitions have the same cardinality or
size at a given time. The results obtained are summarized in
figures 1 and 2.
Several experiments have been carried out with a number of
agents varying from 20 to 200. The coalitions formed by the
agents have cardinalities which vary from 2 to 100. For each
set of agents and each coalition cardinality, we have carried
out several series of experiments with different preference
values at each time. The results presented in the following
figures are obtained by calculating the average of the results
of all tests.
In contrast with the results using the Shehory and Kraus
method, the ESD coalition formation methodolo~, forms
coalitions not only whenever the Shehory and Kraus method
does, but also in many cases in which the Shehory and Kraus
method fails (cf. figure 1). However, the ESD methodolo~T

fails to solve some cases, but the number of failures using the
ESD methodology is defin.itely lower than the number of
failures using the Shehory and Kraus method. In figure 1, we
plot the time for coalition formation in milliseconds (ms) vs.
coalition size (cardinality). The absence of a plotted point at 
given cardinality indicates a coalition formation failure. We
can observe the discontinuity of the curves describing the
evolution of coalition formation time according to the
number of agents in the system and the cardinal.it), of the
coalitions.

For example, using the ESD methodology, the agents start
with one criterion. If a coalition of cardinality k (k=2, 3, 4 ....
100) does not form, the agents try to use two criteria. If it
still fails, they tr), successively 3, 4, 5, 6 and 7 criteria and stop
introducing criteria when coalitions are formed. For
efficiency reasons, we have limited the maximum number of
criteria used by the agents to seven. If seven criteria are not

enough, the agents consider this coalition formation case as a
failure.

Time for coalition formation (ms)

i! i" ’i/!!

Cardinality

Figure 1. Experimental results of our first distributed
coalition formation method using the evolutionary system
design (ESD) methodology.

With our second method (Coalition Formation
Algorithm with Shared Preference Models), we have
observed that the multi-agent system forms coalitions in al
cases including the cases in which the other methods fail.
The results of this second method (cf. figure 2) show that the
time necessary for coalition formation depends on the
preference models of the agents. The time is proportional to
the number of agents in the system, i.e. higher the number of
agents, the higher the negotiation time. As for the cardinality
of the coalitions, it influences the time of coalition
formation. For instance, in a multi-agent system composed
of 200 agent (cf. figure 2, n=200) the agents need 28500ms
to form coalitions of cardinality k=20 and 17650ms to form
coalitions of cardinality k=80. In our second method, the
coalition formation time is less than the time required in both
ESD and Shehory and Kraus methods.

kWe have observed that the time for coalition formation
decreases. This result is due to the principle of circulating the
coalition formation procedure in this method. It is clear that
the higher the cardinality of the coalitions, the more slowly
the coalition formation process circulates. Consequently, the
length of the coalition formation process of the agents will
decrease with cardiuality.

As far as the experimental results obtained using the
ESD methodology are concerned, the curves do not have the
same shape because this methodology is based on the
principle of restructuring the negotiation problem. The
length of the coalition formation process is proportional to
the time that the agents spend to reach a consensus each
time the), restructure the problem. This explains the
independence relation between the cardinality of the
coalitions and the global time for coalition formation.

Our second method has the advantage of forming
coalitions in all cases. However, as noted before, in this
method agents need to know the preference models of the
other agents. Thus, our second method is limited to
situations where the sharing of agent preference models is
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acceptable, which is the case in cooperative multi-agent
systems. On the contrary, the ESD methodology, which does
not require preference sharing, can be appLied to non-
cooperative multi-agent systems as well as to cooperative
multi-agent systems.

2S0~

Sg,8*

"- ’ ~ "- " = ~..L,o:...L..~, ~ .....
Figure 2. Experimental results of our second method,
CoaLition Formation Algorithm with Shared Preference
Models.

5 S-mmary
In this article we have developed two new coalition

formation methods for multi-agent systems. First, we have
shown the existence of several limitations in the existing
work. To overcome these practical and theoretical
limitations, we have proposed two solutions to the coaLition
formation problem. Our first method (ESD Coalition
Formation) methodology solves the cases in which the well-
known existing method [Shehory et al. 98] succeeds in
coalition formation; but ESD also solves man), other cases
where the Shehot3" and Kraus method fails. Our second
method (CoaLition Formation ~Mgorithm with Shared
Preference Models) solves all coaLition formation cases with 
shorter coalition formation time than that using the Shehory
and Kraus or ESD methods. Each of our two methods
offers advantages and limitations. The ESD methodology
works for both cooperative and non-cooperative multi-agent
systems but does not, however, guarantee the formation of
coalitions in all cases. Our second method requires that
agents share their preference models. It is powerful for
cooperative multi-agent systems and performance is good
thanks to the exchanged preference models.
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