
Planning with Nondeterministic Actions and Sensing

Eyal Amir
Computer Science Division

University of California at Berkeley
eyal@cs.berkeley.edu

Abstract

Many planning problems involve nondeterministic actions -
actions whose effects are not completely determined by the
state of the world before the action is executed. In this pa-
per we consider the computational complexity of planning in
domains where such actions are available. We give a for-
mal model of nondeterministic actions and sensing, together
with an action language for specifying planning domains.
Then, we examine the cases of complete observability, par-
tial observability and no observability, assuming that sensing
is done automatically or needs to be done explicitly. We re-
strict our attention to plans of tractable plan-size or depth.

We show that planning with nondeterministic actions for
polynomially represented plans has computational complex-
ity equivalent to that of planning with deterministic actions
under incomplete knowledge about the initial state, if we the
domains include no observability or full observability, and
consider an assumption on executability of actions. If the
latter takes polynomial time, then our complexity class for
all these problems is

����
-complete. If the problem of check-

ing executability of actions is NP-complete (the general case),
or we allow partial observability or sensing actions, then our
complexity class is

� �� -complete. For plans of polynomial
depth, we find that planning in nondeterministic systems with
no observations is in

����
-complete, contrary to previous con-

jectures of PSPACE-completeness (Haslum & Jonsson 1999).
We also find that planning in nondeterministic systems with
full observability or partial observability (with and without
sensing actions) is PSPACE-complete for polynomial-depth
plans. These results point out cases where it may be useful
to use encodings in boolean formulae to perform planning,
and they carefully draw the distinctions between the different
scenarios involved.

1 Introduction
Planning with nondeterministic actions is an increasingly
important branch of reasoning about dynamic systems. Sys-
tems that have been developed include (Giunchiglia 2000;
Ferraris & Giunchiglia 2000; Cimatti, Roveri, & Traverso
1998; Bertoli, Cimatti, & Roveri 2001; Bertoli et al. 2001).
They constitute an important counter-part to probabilistic AI
planning in MDPs and POMDPs (e.g., (Dean & Kanazawa

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1988; Doucet et al. 2000)). However, there is only little un-
derstanding of the semantics of nondeterministic planning
with sensing (however, see (Reiter 2001)) or the difficulty of
the problem, given different assumptions.

In this paper we present a formal transition model for
nondeterministic actions with sensing and an action spec-
ification language for specifying planning problems in a
natural way. Our transition model and action specifica-
tion language are important for understanding and develop-
ing such systems. We do not know of a transition model
and action specification language (besides the situation cal-
culus theories in the style of (McCarthy & Hayes 1969;
Reiter 2001)) that can handle both nondeterministic actions
and observations in the scenarios that we explore. The tran-
sition model generalizes one given by (Bertoli et al. 2001)
for fully observable domains.

We use this semantics to provide computational complex-
ity results for planning with nondeterministic actions and
sensing, with different assumptions about the planning sce-
nario. Our results are summarized in Table 1 at the end of the
paper. There, we compare them to results obtained for de-
terministic actions and for actions with probabilistic effects.
Our results point out cases where it may be useful to use
encodings in boolean formulae to perform planning (e.g.,
(Cimatti, Roveri, & Traverso 1998; Ferraris & Giunchiglia
2000)). Our results complement earlier results achieved
by (Eiter et al. 2000; Baral, Kreinovich, & Trejo 2000;
Turner 2001). Some proofs are omitted here for lack of
space. They are available from the author.

2 Sensing and Nondeterministic Actions
In this section we define the transition model and action
description language that we use for nondeterministic ac-
tions, sensing actions, and automatic sensing of some fea-
tures. Our model supports sequences of actions, and is
not intended for concurrent actions or ramifications of ac-
tions. We take elements from different action languages,
particularly �	� (Giunchiglia, Kartha, & Lifschitz 1997)
(which includes nondeterministic actions) and ��
 (Son &
Baral 2001) (which includes sensing actions) and the for-
mal model of (Bertoli et al. 2001) (includes some automatic
sensing and nondeterministic actions). At the same time,
our language lacks some of the expressivity that is available
today in some action languages, such as � (Giunchiglia &

From: AAAI Technical Report WS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Lifschitz 1998). Nonetheless, it is expressive enough for
our purpose in this paper, and it may be extended to include
those missing elements. Regardless, the following descrip-
tion is self contained and the reader is not required to know
these systems or their details.

In what follows, for a set of propositional formulae, � ,��� ��� is the signature of � , i.e., the set of propositional sym-
bols that appear in � . � � ��� is the language of � , i.e., the
set of formulae built with

��� ��� .
2.1 Transition Model
A transition system is a tuple �
	����� ��� ��� , where
� 	 is a finite set of propositional fluents;
� ��������� � 	�� is the set of world states;
� � is a finite set of actions;
� ������� ����� is the transition relation.

The intuition for this transition system description is that
	 is the set of features that are available for us in the world,
every element in � is a world state (i.e., a subset of 	 , con-
taining propositions that are true in this world state), � is the
set of actions in the system (these may be actions that change
the state of the world, sensing actions, or a combination of
both) and � � ��� �"!#�$�&%'�(� means that state �&% is a possible result
of action ! in state � .

For a transition system �
	����� ��� ��� we can define obser-
vations and transitions between belief states. A belief state
is a set of states we cannot distinguish between, given the
actions performed and the observations collected so far.
� �*)+�,����� � �-� is a set of belief states.
� �)/. �) � �10324�) is a transition function for belief

states.

The intuition is that �/) �65 �&��� �7!3�$�8%'�(� is the resulting belief
state after executing ! in world state � with the consequence
� % , starting from belief state

5
. The resulting belief state,

5 % ,
includes the effects of observations that we make about the
situations involved, if there are any. This allows us to model
fully observable, partially observable and unobservable do-
mains, possibly with sensing actions and automatically ob-
served fluents.

In general, a transition system may have � of size 9#: ;*: ,
belief states of size 9<: ;=: , and belief-state space of size 9 >@? A3? .
Also, � may be of size 9 >$B8: ;*: CD: E=: . This poses a difficulty
for representation and reasoning with general large transi-
tion systems. Nonetheless, compact representations exist
for restricted cases of such systems. The best example is
deterministic systems with a fully known initial state, where
belief states are only single states,

5GFIH �KJ . No observa-
tions are needed to find the actual world state because we
start from a fully known state and advance deterministically.
In such systems �) �LH �KJM�8�6� �"!#�$� % �7� F�H � % J , for a unique � %
such that �N� �7!3�"�&%O�-P � .

2.2 Action Description Language
The transition model and belief state update function given
above can represent a rich set of dynamic systems. In this

section we describe a specification language that defines
some of those dynamic systems and that we will use in the
rest of this paper. In this language we allow actions that
change the world in nondeterministic ways, sensing actions,
declarations about the initial state and declarations about au-
tomatically observed features.

A logical nondeterministic domain description Q is a fi-
nite set of statements of the following kinds: value propo-
sitions of the form “initially R ” describe the initial state;
effect propositions of the form “ ! causes R if S ” describe
the effects of actions; sensing propositions of the form “ !
determines R if S ” say that in states where S holds, action
! results in the value of R being known; and automatic ob-
servation propositions “observed R ” say that R is known in
every state, for R and S being state formulae (propositional
combinations of fluent names). We say that R is the head
and S is the tail of those rules.

For a domain description Q we define 	UT , �VT to be the
set of propositional fluents and actions mentioned in Q , re-
spectively. The following semantics describes the way a
state changes after an action:
� If, before the execution of an action ! , the state formula
S is true, and the domain description contains a rule “ !
causes R if S ”, then this rule is activated, and after the
execution of action ! , R becomes true.

� If for some fluent W no activated effect rule includes the
fluent W in its head, this means that the execution of action
! does not influence the truth value of this fluent. There-
fore, W is true in the resulting state if and only if it was
true in the old state.

� If an action ! has a set of rules with a combined inconsis-
tent effect R (e.g., R F R�X �=Y[Z) and that set of rules is
activated in � , then there is no state that is the result of !
in � (we take this to mean that ! is not executable in �).

� The result of applying an action ! for which no rule is
activated in � is the state � (we consider the action as pos-
sible in this state, but having no impact).

The last two principles ensure that the conditions of the rules
act as conditions for the action’s effects (if no conditions
are met, then there are no effects), and an action is not exe-
cutable iff it leads to contradictory effects (e.g., if we include
a rule saying that “ ! causes FALSE if S ”). In the latter case
for � and ! , there is no transition tuple ���\�"!3�"��%'� in � .

Formally, for a domain description Q we define a transi-
tion relation � T � � �7!3�"�&%'� as follows.
� A fluent W]P^	+T is possibly affected by action ! in state
� , if there is a rule “ ! causes R if S ” in Q such that S is
true in � and W_P ��� RV� .

� Let ` � !#�$�&� denote the set of fluents in 	UT that are not
possibly affected by action ! in state � .

� Let R � !#�$��� be a set of all the heads of activated effect
rules in � (i.e., if “ ! causes R if S ” is activated in � , then
RaPbR � !3�"���). We consider the case of R � !3�$�&� Fdc

(no
activated effect rules) as R � !3�"���De�f�gVh Z

.

� Define (recalling that world states are sets of fluents)

��T F�� ��� �7!3�"� % ������
� �&%���` � !3�"���(� F � ���/` � !3�"���(�
and R � !3�"��� is true in �&% �

(1)
We explain this definition. First, inertia is applied to all

fluents that do not appear in an activated rule (regardless of
whether they are positive or negative in the current state).

EXAMPLE Let R F	��
�
, and assume that the rule

“ ! causes R if S ” is the only rule activated in state � for
action ! . Then, all of ���\�"!3�"��� � �8� � �"!#�$� > � �&� � �7!3�$���&� � are in
our transition relation � , for � � �$� > �"� � such that

� P � � ,� P � > and
� � � P � � (i.e., we allow nondeterminism to not

only choose between the effects
� � � but also possibly affect

both
� � �).

This example may seem unintuitive at first because if
� � �

are both true in � , then one of our resulting states is � > in
which

�
is not true. This is sanctioned by our effect rule

for ! , which explicitly allow this effect. If we want to state
inertia so that this does not happen (e.g., that this state is pos-
sible only if we started from a state in which

�
was already

FALSE), then we need to provide explicit rules that say so.
We regard this as the responsibility of the knowledge engi-
neer or an automated process that may generate those rules
for us (as in (Lin & Reiter 1994) and others).

Our choice of this semantics for nondeterminism is
mainly for its simplicity, and its natural properties. It re-
sembles the specification of a situation calculus theory after
a solution to the frame problem has already been applied
(Reiter 2001). There are other semantics that are used for
specifying nondeterministic dynamic systems; we relate our
system to those semantics in Section 4.

EXAMPLE Another example is when we have an effect
rule for ! with no preconditions and no effects (i.e., both
S F R F f g�h Z

). If this is the only rule active in state � ,
then the result of � is � . In comparison, if we have an effect
rule for ! that has S F f�gVh Z

and R F���
����
, then there

are two possible resulting states, one in which
�

holds and
another in which

���
holds.

We define the belief state update function
��)T � 5 �8�N�\�"!3�"�&%O�7� for Q as follows.� If, before the execution of an action ! , the state formula

S is true, and the domain description contains a rule “ !
determines R if S ”, then this rule is activated, and af-
ter the execution of action ! , the truth value of R in the
resulting world state becomes known.� Let RV) � !3�"��� be a set of all the heads of activated sensing
rules of ! in � (i.e., if “ ! determines R if S ” is activated
in � , then R�P RV) � !3�$�&�) together with all heads of auto-
matic observation statements (i.e., if “observed R ” is in
Q , then R P R) � !3�"���).� For a set of propositional formulae � and a state � , let��� �/�"��� F H R P����&R is true in �\J .� For belief state

5
, and � � �7!3�$�&%'�-P � , define

��)T �65 �8�L� �7!3�$�8%'�(� F� � � P/� ����
����P 5 �-� ���M�7!3�"��� �-P � T � and��� RV) � !3�$�&� �"� � � F���� RV) � !3�"��� �$�&%'� �

��)T defines the belief state resulting from applying an ac-
tion ! to world state � , resulting in world state � % , and ini-
tially not knowing in which of the world states in

5
we are.

If ! includes sensing a fluent W in the resulting situation, then
the resulting belief state will include only world states that
agree with �&% about the truth value of W .

2.3 Projection and Planning
In partially observable domains, plans need to branch on
conditions that we can determine from the belief state. A
plan in a transition system is the empty plan , an action
! P � , the concatenation !"�$#%! > of two plans !"�K�&! > , or the
conditional plan R(')! ��. ! > (read “if R then ! � , else ! > ”),
with R a propositional formula in � � 	�� .

The following definition of projection assumes that we
are given a set of pairs of the form � world state, belief state � .
The intuition is that, depending on the world state we may
actually be in, we may be in a different belief state. Thus,
in general, there may be several different belief states asso-
ciated with a single world state, depending on the way we
arrived at that world state (the initial state and the sequence
of actions that we took). We use our transition operators �
and ��) to define the resulting belief state from each action.
When there is no transition in � for � �"! , we end up in a
distinguished state

Y+*-,/.
and an empty belief state (no state

is possible). When our plan includes a condition (step 4),
we decide on our action according to our knowledge. If we
know the value of R , we follow the directive of the plan.
Otherwise, we stay put (perform neither of the branches).

Definition 2.1 (Projection) Let 0�� � �21 H�Y3*4,/. J�� � �-) be
a nonempty set of pairs in which the first element is a possi-
ble world state or

Y+*-,/.
and the second is a belief state that

we hold in this state. The projection of a plan ! is defined as
follows:

1. �65 �87�9 %: � 0�� F 0 ;

2. �65 �87�9 !�: � 0�� F � � � % � 5 % � ����
� � � 5 �-P�0�� � � ��� �"!#�$�&%O�7� �
��) �65 �&��� �7!3�$�8%'�(� F 5 % �; H � Y+*-,/. � c ��� ��� � 5 �*P�0��=< �&% � � � �N� �7!3�"�&%'�(� J ;

3. �65 �87�9 !"��#%! > : � 0�� F �65 �87>9 ! > : � �65 �87�9 !"�?: � 0 �(� ;
4. �65 �87�9 R�'@!"� . ! > : � 0 � F

�65 �87�9 ! � : �H �N�\� 5 �*P�0A�8< �&% P 5 R is true in �&%6J��%1
�65 �87�9 ! > : �H � � � 5 �*P�0��8< �&% P 5 R is false in ��%
J �&1H �6� � 5 �-P�0	�$B �&% �"�&% % P 5 R is true in �&% and false in �&% %6J .

This definition of projection allows us to accumulate
knowledge (encoded in the belief state associated with the
world state we are in) and predict the state of our knowledge
as a result of any sequence of actions, including sensing,
whether the sequence of actions resulted from a conditional
plan or not. The use of a

Y+*-,/.
state is similar to the distinc-

tion between legal states and illegal ones as in (Reiter 1995)
(other form of this is the accessibility of a situation from

Y3C
as in (Lin & Reiter 1994)).

Definition 2.2 (Planning Problem and Solution) A plan-
ning problem is a tuple �6`#�7S �"Q�� in which Q is a domain
description, `���� is a non-empty initial set of world states
and S �I� is a set of goal world states. A solution for
�6`#�7S �7Q�� is a plan ! such that �65 �87>9 !D: � ` � H `<J��=�bSb� �-) .

Thus, we assume that we start in a world state in ` , but
we do not know which world in ` it is. The definition of the
solution of a planning problem asserts that we wish to arrive
at one of the goal states, regardless of the belief state we may
be in at the end. When it is more convenient, we represent `
using a set of value propositions (“initially R ”) and S using
a propositional formula over 	 T . Notice that � Y+*-,/. � c ���P
�65 �87�9 !D: � `/� H `<J�� if �65 �87�9 !D: � `�� H ` J �-��S��/�*) becauseY+*-,/. �P�� and S �]� .

EXAMPLE Assume that we are given a blocks world
domain in which we do not know if X is on 0 or vice
versa, and XV� 0 are the only blocks. Let � ,D� XV�%0 � be the
fluent that says that X is on 0 and � ,D� 0��7X � the fluent
saying that 0 is on X . ` F H\H � ,D� X �%0�� J � H � ,D� 0��7X �$J\J .
Now, assume that our goal is to make sure that 0 is
on X , and we have full observability once the plan
is executed (e.g., we have a rule “observed � ,D� X �%0�� ”
and a rule “observed � ,D� 0��7X � ”). Then, we can
form the plan � ,������ X��
	 * � , #_� ,D� 0��"X � ' ,������ X�
	 * � , .� ��� 	�� , f !�� ��� � X �?# ��� 	�� ,D� 0��7X �7�(� . Executing the first step
in this plan from the state of knowledge ` results in one of
the states of knowledge

H\H � ,D� XV� 0�� J\J (in the world state
in which � ,D� X �%0 � holds) and

H\H � ,D� 0��7X � J\J (in the world
state in which � ,D� 0��"X � holds). The condition can then be
evaluated and the proper set of actions taken.

We choose to require an action before observations can be
made because this seems more natural to us (the robot wakes
up to find itself in this state).

3 Complexity of Nondeterministic Planning
In the following, the poly-plan-size planning problem is the
problem of finding plans that can be represented in poly-
nomial space, and the poly-depth planning problem is the
problem of finding plans that execute in polynomial time.
When we talk about the planning problem, we refer to both.
For lack of space, we refrain from discussing computational
complexity theory, and the reader is referred to (Papadim-
itriou 1994). However, we remind the reader that the fol-
lowing relationships hold between complexity classes:

��� � � �� � � ��� �� � � ��� �� �����������! "��#$� � � �
PSPACE

where NP= %'& � , coNP= (�& � , the characteristic %)&* prob-
lem is B�+ * <�+ *-, � B�./.0. 1 and the characteristic (�&* problem is<�+ * B�+ *-, � <2./.0. 1 , with 1 a propositional formula with vari-
ables +D� �3.0./.O��+ * (for example, the characteristic NP problem
is B�+�1). Also, �54 F ; *�6 � %'&* .

3.1 Conformant Planning (no Observations)
In conformant planning with nondeterministic actions (e.g.,
(Bertoli, Cimatti, & Roveri 2001)) there is an incom-
pletely known initial state, and no observability. Conse-
quently, planning includes no sensing actions, no automati-
cally sensed conditions, and no branching on conditions.

Our model of projection (Definition 2.1) can be simpli-
fied for this scenario. In particular, all the belief states
associated with world states in our definition of projec-
tion and planning are identical. To see this, notice that

RV) � !#�$��� F c
for world state � Pb� and action ! P � be-

cause there are no sensing actions or observations. Thus,
��)T �65 �8�N� �7!3�"�&%'�(� F ��)T �65 �&�7	 �7!3��	%'�(� for every � �8	 �"�&% ��	% P
� such that � � �"!#�$�&%'� �8��	 �7!3�8	%O� P � . As a result, for a plan-
ning problem, we can represent the state after projection as
a single belief state, which may be compactly representable
using a set of propositional formulae on the state fluents.
This allows us to prove the following.

Theorem 3.1 For planning problems with incomplete infor-
mation about the initial state, nondeterministic actions, and
no sensing, the planning problem is %!&> -complete. If decid-
ing whether an action ! is executable in � is NP-complete,
then then the problem is %)&� -complete.

A similar theorem has been established for a different
nondeterministic action language in (Eiter et al. 2000) for
a different action language. Examples of actions for which
executability can be checked in polynomial-time in a given
state are actions with no nondeterministic effects, or effects
that are a disjunction of at most two literals. In those cases,
satisfiability of R � !#�$��� can be checked in linear time.

PROOF SKETCH The proof is similar to that of Theo-
rem 3.4, and we omit it for lack of space. The main differ-
ence is that we use the assumption of no observability when
we check how much time it takes us to decide executability
of an action ! in the plan ! in state � that resulted from a
partial execution of ! from

�
. Since � is fully given by + ,

checking executability of ! can be done in polynomial time.
The execution of ![�8+ is a simple deterministic projection
operation. Thus, checking B !�< � �8+�� � ![� � �8+ �(� � is in %!&> .

A related interesting result in this context is the complex-
ity of answering a query about the result of projection.

Theorem 3.2 Let Q be a planning domain with nondeter-
ministic actions and no sensing. The problem of answering
whether all the states in �65 �87>9 !D: � ` � H ` J � satisfy 9 , for a
plan ! and a query, 9 , is coNP-complete.

The proof is similar to that given in (Baral, Kreinovich, &
Trejo 2000) for the deterministic case.

3.2 Planning and Full (Automatic) Observability
In planning under full automatic observability (e.g.,
(Cimatti, Roveri, & Traverso 1998)) we assume nondeter-
ministic actions and incompletely specified initial state, and
we allow conditioned branches in the plan. No action needs
to be performed to retrieve the information, and the sensing
is done consistently for every time step.

Under full automatic observability, the belief state asso-
ciated with every world state in our projection �65 �87 (Def-
inition 2.1) includes only that world state. Thus, when we
execute a condition step in a conditional plan (part 4 of Def-
inition 2.1), we decide on the subsequent sub-plan only ac-
cording to the current state of the world.

Theorem 3.3 For planning problems with incomplete infor-
mation about the initial state, with nondeterministic action,
and with full automatic observability, the poly-depth plan-
ning problem is PSPACE-complete.

PROOF SKETCH The proof is very similar to the one
given in (Littman 1997) for probabilistic planning with
full observability, and proceeds by reduction from quanti-
fied boolean formulae (QBF) (validity of formulae of the
form B + � < � � B�+ > < .0./. B�+���< � ���). Briefly, every existentially-
quantified variable is a plan step, and every universally-
quantified variable is a nondeterministic choice made by the
world. The result of this nondeterministic choice is At the
end, we put an action evaluate-formula, which leads to the
successful goal (SAT) iff the conditions (the clauses of �)
are satisfied by the selected actions.

Theorem 3.4 For planning problems with incomplete in-
formation about the initial state, nondeterministic actions,
and full automatic observability, the poly-plan-size planning
problem is %'&> -complete.

PROOF First, we show that our problem is in %!&> , as-
suming that either we do not check executability of the plan,
or that checking executability can be done in polynomial
time. The existence of a successful plan means the exis-
tence of a plan ! such that for every set of values

�
for the

fluents in the initial state, if
�

satisfies the conditions known
for the initial state, then any execution of the plan leads to a
goal state. To check that the plan is a legal/executable one
(the actions sanctioned by the plan are executable when we
execute them) we need to verify that there is a state in the
result of every plan action to every branch of the plan. If
this involves an NP-hard computation, then our problem is
in %'&� . First, we assume every action is executable in every
state (e.g., having no effect if it is not executable).

Mathematically, the existence of a plan can be written
as a formula B !�< � ��+ � � ![� � ��+ �7� � , where the predicate
� � ![� � �8+ �7� � describes the fact that for the planning prob-
lem � and for the values

�
of the initial fluents, the execution+ of plan ! leads to a goal state, if

�
satisfies the conditions

of the initial state and + chooses the nondeterministic results
of actions according to the effect propositions. Put differ-
ently, + is an encoding of � !�� -many steps (the states (fluent
values) in the chosen execution sequence), and � verifies
that if + is a valid sequence of steps of ! , starting from state�

(and
�

is a valid initial state), then the execution of ! sat-
isfies the goal.

To prove that this problem belongs to %!&> , we must show
that the quantifiers run over variables of tractable length, and
that � � ![� � �8+ �(� � is computable in polynomial time.

The variable ! runs over plans and is, therefore, tractable:
The number of variables in the vector ! is bounded by the
size of the plans that we consider. Since we consider only
polynomially-long plans, there are only polynomially-many
variables in this vector (where each variable takes � � � val-
ues). The variable

�
runs over sets of values of fluents for

the initial state. Viewed as a vector of propositional vari-
ables this is a vector of size

,
, where

,
is the number of

propositional fluents in 	 . Thus,
�

is of tractable length.
The variable + runs over the set of nondeterministic choice
points in ! . For each nondeterministic choice of a world, the
choice is specified by a nondeterministic choice of values for
the fluents in 	 . Thus, since ! is of polynomial length, + is
of polynomial length as well.

If we know the values of ![� � ��+ �7� , then � � ![� � ��+ �7� �
needs to check that

�
satisfies the initial conditions (linear

time in the encoding of the sentences “initially F”), that for
every point in executing ! , + satisfies the conditions of the
applicable effect propositions (+ is an encoding of � !�� -many
states, so the computation, for every state, that the chosen
resulting state satisfies the effect propositions takes poly-
nomial time in the encoding of the sentences “ ! causes R
if S ”), and that the execution of ![�8+ satisfies � (linear time
in the encoding of the propositional goal sentence/s).

Full observability comes in when we need to evaluate
a condition in our plan to decide on the action that will
be taken in our current state. Given full observability, our
knowledge state at each step of the execution (possibly be-
sides the initial knowledge state) includes exactly one state.
Since this is at most one more condition to be checked in
every step, and this check is done in polynomial time given
a state, full observability leaves � polynomial-time check-
able. The problem involved with checking a condition in the
initial state can be sidesteped by requiring the first action to
be a null action (leaving us in the same state).

The execution of ![��+ is a simple deterministic projection
operation. Thus, checking B !�< � �8+�� � ![� � �8+ �(� � is in %!&> ,
if we can check that ! is executable in polynomial time.

Now we show that this problem is %)&> -hard. Let R
be any quantified boolean formula (QBF) of the formB�+D� �3.0./.O��+�� < � ���3.0./.O� �	� � , where � consists of 	 clauses. We
construct a problem instance � and show that R is true iff
� has a solution. Define � F � `<�"S �7Q�� where S F H �8! 	$J ,
and

` F�� initially
� +D��
�./.0.�
 � +� �

initially ����
 � ����
 � � >
�.0./.�
 � ��� C > �
Q F

����������� ����������

! causes � *
 + *
 � � *�, � if � *�, �
! - causes � *
 � + *
 � � *-, � if � *-, � � *�� ,
! causes

� � �
�� � �@��
�./.0.�
 � ���
�� �	� ��

��� C ��
 � ��� if ���

! causes �&! 	�
 � � C >
 � � � C � if ��
�� � C �
observed + * � *�� , �
observed � * � *���� �
observed � * � *�� ,�� 9 �

 ���������!
���������"

This planning problem has a solution iffB�+ � �3.0./.O��+ � < � � �3.0./.O� � � � is a valid formula. Also, ev-
ery successful plan is of length at most

,#� 9 , because we
keep advancing the time counter (� � �3.0./.O�"� � C >) with every
action performed, and there is no way to make �&! 	 true after
the

,$� 9 -th step. Thus, our planning problem is at least as
hard as B�< QBFs, meaning that it is %!&> -hard.

Finally, if checking that an action ! is executable in a state
� is NP-complete (depending on our effect propositions, it
may involve checking that there is a state that satisfies the
consequences of our effect propositions), then the problem
is in %'&� by the same argument as before, having the com-
putation of � � ![� � ��+ �(� � NP-complete.

For the general case of checking that actions are
executable, we need to show that every B�<"B QBF,B�+ � �3.0./.O��+ � < � � �3.0./.O� � � B&% � � ./.0.O��%�'(� can be reduced to such a

planning problem. The construction is as above:

` F � initially
� +"��
�.0./.�
 � +��
 � %��
�.0./.�
$% '

initially � �
 � � �
 � � >
�./.0.�
 � � � C ' C > �

Q F

���������������� ���������������

! causes � *
 + *
 � � *�, � if � *�, �
! - causes � *
 � + *
 � � *�, � if � *�, � � *���,
! causes

� � �
�� � � ��
�.0./.�
 � �	�
�� �	� �

� � C �
 � � � if � �

! causes � � C * C �
$% *
 � � � C * if � � C *! - causes � � C * C �
 � % *
 � � � C * if � � C * � *�� �
! causes �&! 	
 � � C ' C >
 � � � C ' C � if ��
/� � C ' C �
observed + * � *�� , �
observed � * � *�� � �
observed % * � *�� � �
observed � * � *�� ,���� � 9 �

 ��������������!
��������������"

It follows that our problem is then % &� -complete.

3.3 Planning and Partial Observability
For planning with partial automatic observability (e.g.,
(Bertoli et al. 2001)) we assume that there are propositional
properties of the current state that are always observed and
that these are the only observations made. We allow con-
ditional branches in the plan, nondeterministic actions and
incomplete knowledge about the initial state.

We consider two cases. In the first, we assume that
conditions for branching of the plan can be made only on
one of the observable propositional formulae R declared
“observed R ” (this is the approach taken by (Bertoli et al.
2001)). In the second, we assume that conditions for branch-
ing of the plan can be made on any formula on 	 .

In the first case, our model of projection (Definition 2.1)
can be simplified in a fashion similar to the one we used for
planning with full observability (Section 3.2). The key ob-
servation is that in this case there is no need to memorize or
deduce the value of R because our plan can branch on the
observation as it occurs. Thus, it is not necessary to include
a separate belief state for every possible trajectory of our
plan. Instead, we treat the world as if it is fully observable (it
is, as far as branching on conditions is concerned). Conse-
quently, we get identical results to those for full observabil-
ity (%'&> -completeness for poly-plan-size planning without
executability checking, %)&� -completeness if checking exe-
cutability is NP-complete, and PSPACE-completeness for
poly-depth planning).

For general partially observable planning, we prove the
following result.

Theorem 3.5 Let Q be a planning domain with nondeter-
ministic actions and partial observability. Let ! be a plan
and 9 a query. The problem of answering whether all the
states in �65 �87�9 !D: � `�� H ` J � , that result from the actual exe-
cution � � �3.0./.O�"� � of ! , satisfy 9 , is (�&> -complete.

PROOF Assume first that the decision of whether ! is
executable in a state � can be done in polynomial time. To
see that the problem is in coNP, notice first that there is only
one belief state (a set of world states) that results from the
actual execution of ! that yields a sequence � � � ./.0.O�"� � . Let

us call this belief state
5

. In this form, the problem we need
to answer is

5 � F 9 (“ � F ” is the logical entailment relation).
Instead of trying to compute

5
, we can write the prob-

lem in QBF format as < � ��+�� � ![�"� � � ./.0. �$� � � � ��+ �7� � , with
�

being any possible initial state (� includes the initial condi-
tions, `), + any possible execution of the nondeterministic
plan ! that follows the update rule of �/)T for ����� ./.0. �$��� , and
� checking that this hypothetical execution + starting from
hypothetical initial state

�
arrives at a state that satisfies 9 .

At every step of the execution, � needs to check if the
relationship between the current belief state and a possible
condition in the plan, deciding on the action accordingly.
Given the actions decided on so far, the belief state is the
set of states that may result from this execution and that are
consistent with the observations. Thus, the decision in step*

by � � ![�$����� ./.0. �$��� � � ��+ �7� � can be written as
� < �=g * � ![�"� � �3.0./.O�"� * �$��� ��� � ,�� * � �&�7� �

g � � ��� 	 *-,��	� � ![� * �$� * �$� * C �@�
� < �8% � g * C � � � � �3.0.0. �$� * �"� * C � �$�&%'��
B �*g * � � � �3.0./.O�"� * �"���

g � � ��� 	 *-,�� � � ![� * �$� �"�&%O��
��� RV) � ![� *��� �"� � �3.0.0. �$� * � �$�&%O� F��� RV) � ![� *��� �"���&�3.0.0. �$� * � �$� * C �@�(�

when
��� 1*�"��� is defined as in Section 2.2 and R � ![� * �� �"���&� ./.0.O�"� * � is R � !3�"� * � (as defined in Section 2.2) for ! be-

ing the action taken in step
*����

of ! after the sequence of
states � � �3.0./.O�"� * , and g * corresponds to the accessibility rela-
tion in step

*
of the plan execution (g * � ![�"��� �3.0./.O�"� * �"��� means

that � is a state in our belief state at step
*
).

Informally, this formula says that if every state that is in
our belief state at state � * satisfies the condition posed in step* ���

, then � * C � is a possible state resulting from applying
the next action in ! (otherwise we would choose a different
action and this state may not be in the result of that action),
and a state is in the belief state at that resulting point iff it
is the result of the same action from one of the previously
possible states and it agrees with the sensory information
found in state � * C � .

As is, this formula is in (&> because it is of the
form < �&% � 1 � �&% ��
 B ��� � �&%6�$�&�7� , which is equivalent to< �&% < �$�8B � > �7� 1 � �&%
�
 � � � �8%��$�$�@�(�
 � � 1 � �8%
�
 � � �&% �$� > �(� .
Thus, our problem is in (&> in this case (not checking exe-
cutability of actions) because � is equivalent a polynomial-
length formula of this form (duplicating this formula for all
the steps of the plan).

To see that the general problem is also (&> -complete
(the general problem includes that of checking there
is a state in the result of applying an action) no-
tice that for checking executability we need to add
the condition

� < � g * � ![�$� � � ./.0. �$� * �"��� � � � ,�� * � ���(� �B � * C � g � � ��� 	 *-,��	�[� ![� * �"� * �$� * C �8� . This condition is in (&> .
Thus, letting � be the combination of the two rules for all
the steps of the plan leads to � being in (&> .

The proof of completeness for (�&> for the restricted and
general problems, respectively, follows from the similar
completeness results for nondeterministic actions without
observations (Theorem 3.2).

As a consequence, we can prove the following.

Theorem 3.6 For planning problems with incomplete infor-
mation about the initial state, with nondeterministic actions,
and with partial automatic observability, the poly-plan-size
planning problem is %)&� -complete.

PROOF SKETCH The proof is similar to the proof of
Theorem 3.4, using the proof of Theorem 3.5 as a skeleton
for showing that the problem is in %!&� . Then, completeness
follows from Theorem 3.4.

Theorem 3.7 For planning problems with incomplete infor-
mation about the initial state, with nondeterministic actions,
and with partial automatic observability, the poly-time plan-
ning problem is PSPACE-complete.

The proof is similar to that of Theorem 3.3.

3.4 Planning and Sensing Actions
Planning with sensing actions is very closely related to plan-
ning in partially-observable domains with automatic sens-
ing. The presumed difficulty with sensing actions is that now
we need to maneuver the executing agent to a state where it
can sense features of the state that it needs. Despite this ad-
ditional difficulty, the problem has similar complexity to its
automatic-sensing version.

Theorem 3.8 For planning problems with incomplete infor-
mation about the initial state, with nondeterministic actions,
and with sensing actions, the poly-plan-size planning prob-
lem is % &� -complete.

Theorem 3.9 For planning problems with incomplete infor-
mation about the initial state, with nondeterministic actions,
and with sensing actions, the poly-depth planning problem
is PSPACE-complete.

The proofs of both theorems are similar to those of Theo-
rems 3.6, 3.3, respectively.

4 Results for Other Specification Languages
and Semantics

There are several other semantics that have been used for
specifying the effects of nondeterministic actions. Some
of the prominent ones are: (1) GOLOG (Reiter 2001) in-
cludes a nondeterministic choice between deterministic ac-
tions (and nondeterministic choice between arguments that
specify deterministic actions); (2) (Haslum & Jonsson 1999)
specify a language that allows nondeterministic choice be-
tween actions, similar to that used for GOLOG; (3) �	�
(Giunchiglia, Kartha, & Lifschitz 1997) specifies nonde-
terministic actions with the same language as we do, but
uses a minimal-change semantics for all fluents; and (4) �
(Giunchiglia & Lifschitz 1998; Ferraris & Giunchiglia 2000)
includes control over inertia for different fluents, given ac-
tions and state conditions. This allows it to specify nonde-
terminism of the kind we present and of the kind of �	� .

Generally speaking, our proofs apply to these semantics
as well, with some modification. The clearest connection
is with the nondeterministic choice of actions as given in

GOLOG and (Haslum & Jonsson 1999). Those can be re-
duced to our semantics with only polynomial growth in size,
providing identical results for those systems.

The minimization of change policies, applied by �	� and
� , are typical of (�&> -complete problems (Eiter & Gottlob
1993). This suggests an increase in the complexity of plan-
ning by one complexity class in the polynomial hierarchy.
We hope to report on this in the final version of this paper.

5 Related Work

It is interesting to portray our work in the context of other
results achieved for deterministic actions with incomplete
knowledge about the initial state, and compared to results
obtained for probabilistic systems. We display those in Table
1. For probabilistic planning we assume that we wish to
find a finite-horizon policy that is time dependent (this is the
closest problem to classical AI planning).

It is interesting to contrast these results with the re-
sults for the unbounded-plan-size problems. Those are
PSPACE-complete for deterministic planning (Bylander
1994), EXPSPACE-complete for unobservable, incomplete-
initial-state, deterministic planning (Haslum & Jonsson
1999), EXPTIME-completeness for MDP planning (fully
observable) (Littman 1997).

6 Conclusions

We have provided a formal model of reasoning and plan-
ning in the presence of nondeterministic actions, incomplete
knowledge about the initial state and different scenarios of
observability. We also presented a language and semantics
for specifying such planning domains. Using this model
we presented a set of computational complexity results that
are surprising in their closeness to planning with determin-
istic actions. These results suggest that it may be worth-
while to try to approximate probabilistic planning tasks us-
ing planning with nondeterministic effects. It also shows
that some of the problems that we analyzed are well-suited
for encoding in propositional representations, and may al-
low relatively-efficient solutions, along the lines already ex-
plored for planning with deterministic actions and some
nondeterministic planning domains.

There are several places where the language and results
should be extended. In particular, the action language should
be extended to allow concurrent actions, ramifications or
qualification constraints. Also, the observation model is de-
terministic (we know the actual answer to our query R), and
the language should be extended to allow observations of
one of R or S (which is different from observing R
 S).
We hope to do these in the near future.

7 Acknowledgments

I wish to thank Mark Paskin for comments on a draft of this
paper. This research was supported by a National Science
Foundation grant ECS-9873474.

Planning Scenario (polynomial plan-size) Deterministic Effects Nondeterministic Effects Probabilistic Effects

No observations; Complete initial state NP-complete [a],[b] % &� / %'&> -complete (� 3.1) NPPP-complete [f]

No observations; Incomplete initial state %!&> -complete [a] %)&� / %'&> -complete (� 3.1) NPPP-complete [f]

Full observability; Incomplete initial state in � &> [a]+[d](*) %)&� / %'&> -complete (� 3.2) NPPP-complete [c]
Partial observability; Incomp. initial state in %!&� [a]+(� 3.3) %)&� -complete (� 3.3) ??
Sensing actions; Incomplete initial state in %!&� [a]+(� 3.4) %)&� -complete (� 3.4) ??

Planning Scenario (polynomial depth) Deterministic Effects Nondeterministic Effects Probabilistic Effects

No observations; Complete initial state NP-complete [a],[b] % &� / %'&> -complete (� 3.1) NPPP-complete [f]

No observations; Incomplete initial state %!&> -complete [a] %)&� / %'&> -complete (� 3.1) NPPP-complete [f]
Full observability; Incomplete initial state (&> -complete [a],[d] PSPACE-complete (� 3.2) PSPACE-complete [e]
Partial observability; Incomp. initial state PSPACE-complete [a] PSPACE-complete (� 3.3) ??
Sensing actions; Incomplete initial state PSPACE-complete [a] PSPACE-complete (� 3.4) ??

Table 1: Complexity classes for sequential planning problems (input encoded using state propositions). [a]=(Baral, Kreinovich,
& Trejo 2000); [b]=(Bylander 1994; Kutluhan Erol & Subrahmanian 1995); [c]=(Littman 1997); [d]=(Rintanen 1999);
[e]=(Littman, Goldsmith, & Mundhenk 1998); [f]=(Mundhenk, Goldsmith, & Allender 1997). (*) [d] showed inclusion in%'&> , and [a] showed inclusion in (&> for planning with polynomial depth. We write %!&� / %'&> to indicate the two cases of
checking executability of actions (corresponding to improper and proper planning domains, respectively, in (Eiter et al. 2000)).

References
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computational
complexity of planning and approximate planning in the presence
of incompleteness. Artificial Intelligence 122(1-2):241–267.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001. Plan-
ning in nondeterministic domains under partial observability via
symbolic model checking. In IJCAI ’01, 473–478. MK.
Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuristic search
+ symbolic model checking = efficient conformant planning. In
IJCAI ’01, 467–472. MK.
Bylander, T. 1994. The computational complexity of proposi-
tional STRIPS planning. Artificial Intelligence 69(1–2):165–204.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Automatic
OBDD-based generation of universal plans in non-deterministic
domains. In Proc. AAAI ’98, 875–881.
Dean, T., and Kanazawa, K. 1988. Probabilistic temporal reason-
ing. In Proc. AAAI ’88, 524–528.
Doucet, A.; de Freitas, N.; Murphy, K.; and Russell, S. 2000.
Rao-Blackwellised particle filtering for dynamic bayesian net-
works. In Proc. UAI ’00, 176–183. MK.
Eiter, T., and Gottlob, G. 1993. Propositional circumscription and
extended closed-world reasoning are pi /sub 2//sup P/-complete.
Theoretical Computer Science 114(2):231–245.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A. 2000.
Planning under incomplete knowledge. In Proceedings of Com-
putational Logic.
Ferraris, P., and Giunchiglia, E. 2000. Planning as satisfiability
in nondeterministic domains. In Proc. AAAI ’00, 748–753.
Giunchiglia, E., and Lifschitz, V. 1998. An action language based
on causal explanation: preliminary report. In Proc. AAAI ’98,
623–630.
Giunchiglia, E.; Kartha, G. N.; and Lifschitz, V. 1997. Repre-
senting Action: Indeterminacy and Ramifications. Artificial In-
telligence. to appear.
Giunchiglia, E. 2000. Planning as satisfiability with expressive
action languages: concurrency, constraints and nondeterminism.
In Proc. KR ’2000, 657–666. MK.

Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In European
Conference on Planning (ECP-99), 308–318. Springer-Verlag.

Kutluhan Erol, D. S. N., and Subrahmanian, V. 1995. Complexity,
decidability and undecidability results for domain-independent
planning. Artificial Intelligence 76(1–2):75–88.

Lin, F., and Reiter, R. 1994. State constraints revisited. Journal
of Logic and Computation 4(5):655–678.

Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The
computational complexity of probabilistic planning. Journal of
AI Research 9:1–36.

Littman, M. L. 1997. Probabilistic propositional planning: Rep-
resentations and complexity. In Proc. AAAI ’97, 748–761.

McCarthy, J., and Hayes, P. J. 1969. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. In Meltzer,
B., and Michie, D., eds., Machine Intelligence 4. Edinburgh Uni-
versity Press. 463–502.

Mundhenk, M.; Goldsmith, J.; and Allender, E. 1997. The com-
plexity of policy evaluation for finite-horizon partially-observable
Markov decision processes. In 22nd Int’l Symboposium on Math-
ematical Foundations of Computer Science (MFCS’97).

Papadimitriou, C. H. 1994. Computational Complexity. Addison-
Wesley.

Reiter, R. 1995. On specifying database updates. Journal of Logic
Programming 25(1):53–91.

Reiter, R. 2001. Knowledge In Action: Logical Foundations for
Describing and Implementing Dynamical Systems. MIT Press.

Rintanen, J. 1999. Constructing confitional plans by a theorem-
prover. Journal of AI Research 10:323–352.

Son, T. C., and Baral, C. 2001. Formalizing sensing actions a
transition function based approach. Artificial Intelligence 125(1–
2):19–91.

Turner, H. 2001. Polynomial-length planning spans the polyno-
mial hierarchy. Unpublished note.

