
Adventure Games: A Challenge for Cognitive Robotics

Eyal Amir
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720-1776

eyal@cs.berkeley.edu

Patrick Doyle
Computer Science Department

Stanford University
Stanford, CA 94305-9020
pdoyle@cs.stanford.edu

Abstract

This paper presents a set of challenges for cognitive robotics
in the context of a text-based adventure game. Games in this
class have many challenging properties for cognitive robotics,
including incompletely specified goals, an environment re-
vealed only through exploration, actions whose preconditions
and effects are not known a priori, and the need of common-
sense knowledge for determining what actions are likely to
be available or effective. These qualities require an agent that
is able to use commonsense knowledge, make assumptions
about unavailable knowledge, revise its beliefs, and learn
what actions are appropriate. At the same time, more tradi-
tional robotics problems arise, including sensing, object clas-
sification, focusing on relevant features on a situation, rea-
soning within context, and decision-making, all within a large
state space. In this paper we introduce the game and its envi-
ronment, elaborate upon the properties of both as they pertain
to cognitive robotics, and argue that this is a highly advanta-
geous venue for exploring cognitive robotics issues.

Introduction
Researchers in cognitive robotics are interested in building
control systems for robots (physical or virtual) that use high-
level commonsense knowledge, yet are able to act and react
in a complex environment. Work in this field varies from
the development of high-level control languages (Levesque
et al. 1997; Boutilier, Reiter, & Price 2001; Andre & Russell
2000), to controlling robots using implemented reasoners
based on formal languages (Baral & Tran 1998; Shanahan
1998; 2000; Amir & Maynard-Reid II 1999; 2001), plan-
ners (Finzi, Pirri, & Reiter 2000; Bacchus & Kabanza 2000;
Doherty & Kvarnström 2001) and the formalization of rea-
soning about action and events (Shanahan 1997; Gustafsson
& Doherty 1996; Giunchiglia, Kartha, & Lifschitz 1997;
McCain & Turner 1997; Bacchus, Halpern, & Levesque
1999; Reiter 2001).

This paper uses a concrete problem to examine a set of
core issues facing cognitive robotics. These issues include

� Specifying the goal/utility/value/reward,
� Acting in a domain with incomplete knowledge of the

possible situations, objects in the world, actions available,
their preconditions, or their effects,

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

� Avoiding uselessly repetitive behaviors,
� Coping with domains that require representing large state

spaces and reasoning with them,
� Reasoning in situations that require commonsense knowl-

edge (either learned or provided),
� Accumulating knowledge about the environment and

available actions, and integrating it with existing knowl-
edge,

� Revising knowledge efficiently and in a semantically cor-
rect way,

� Embodying solutions to these problems in a sound and
semantically clear agent architecture.

As (Laird & van Lent 2001) have argued, computer games
provide a natural and challenging platform for artificial in-
telligence research. In order for an agent to perform effec-
tively in a computer game, it must provide all of the ma-
jor components of an intelligent system, namely intelligent
behavior, robustness, real-time responsivity, commonsense
reasoning, planning, learning, and communication abilities.

In this paper we present a particular game, a text-based
adventure called CRAG (Cognitive Robotics Adventure
Game) built within a MUD environment (Multi-User Dun-
geon or Dimension; for more on MUDs see (Curtis 1992;
Curtis & Nichols 1994; Carroll et al. 2001)). In its task, it is
similar to many other adventure games such as Zork (Blank
& Lebling 1980) and Rogue (Mauldin et al. 1984). The
agent must complete a game whose ultimate goal is incom-
pletely specified at the outset, and must act in an environ-
ment whose properties are only gradually revealed as it ad-
vances through the game. Exploration, experimentation, and
timely, flexible reasoning are emphasized over protracted ra-
tiocination relying upon access to all relevant knowledge.

In the next section we will describe the game and its un-
derlying environment in more detail to make clear why it is
a suitable testbed for cognitive robotics research. We then
look at how this list of problems might be addressed in our
game, and where the challenges lie.

Properties of an Adventure Game
A traditional adventure game allows a single player to ex-
plore a fantastic environment filled with opponents and trea-
sures. Progress is made by exploring and manipulating the

From: AAAI Technical Report WS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



environment in order to defeat enemies and solve complex
puzzles. Often, but not always, the player has a general idea
of an ultimate task to be completed (such as defeating the
evil wizard, saving the space station from destruction, find-
ing the cure for a terrible disease, etc.). For our purposes,
the salient properties of a traditional adventure game envi-
ronment are1:

1. The environment is relatively static. The player is the
principal actor and the majority of effects are the results of
his actions. If the player drops an object and departs, the
object can be expected to remain until the player returns.

2. Effects of actions are local. Effects are also ordinarily
also immediate, so a player pushing a button may expect
to perceive the consequences directly.

3. The environment is discrete. The environment is com-
posed of objects (caves, coins, swords, trolls, levers,
doors, etc.) distinct from one another.

4. Actions are discrete. A player may turn a knob, open a
door, climb a staircase, light a lantern, but actions do not
overlap in time and are atomic.

5. There is no noise. Unless the designer explicitly intro-
duces it, there is no uncertainty either in sensing or in ac-
tion. Items do not slip from the player’s grasp, the player
does not have difficulty moving through the door, hearing
what another character says, etc.

6. Communication is symbolic. Both perception and action
occur through a symbolic text-based interface, so low-
level sensory issues don’t have to be dealt with. While
they form an interesting line of research, these issues are
not in the core of cognitive robotics. This property al-
lows us to place an agent within a complex and dynamic
environment without also forcing us to deal with all the
sensory issues involved in the real world.

7. The player does not initially have enough information to
solve the game. The player does not know the disposition
of objects or their uses, the proper solutions to puzzles, the
ways to defeat opponents, etc. These can only be learned
through observation and experimentation.

8. From any given state, it is always possible to solve the
game. Some early adventure games permitted players to
act in such a way as to make the game unsolvable (throw-
ing the sword into a pit made the dragon unkillable) but
current philosophy holds that the game should prevent the
player from taking such actions. Thus there are no actions
that should never be attempted.

9. Commonsense knowledge is required. In most cases it
is not made explicit what action will achieve an effect,
and the player must guess at likely actions. That bottles
contain liquids, a light source is needed to see in a dark
area, and even that a dragon’s breath can melt ice are facts
the game assumes the player will know.

1We may relax those or add to them in any particular implemen-
tation, as detailed in the description that comes after the following
list.

While we have implemented a traditional adventure game,
we have chosen to do it in an environment that permits much
more sophisticated qualities (Doyle 2002). MUDs were in-
spired by, and are superficially similar to, text-based adven-
ture game worlds, but have several other critical qualities:

1. MUDs are programmable. The MUD platform2 we use
contains its own object-oriented variant of C, giving us
the flexibility of a general programming language, but one
that is tailored to the creation of these environments.

2. MUDs are server-based, persistent worlds that allow mul-
tiple simultaneous connections. Thus we can experiment
with a single agent or with collections of agents operating
independently, cooperatively, etc.

3. We can simplify any of the above game conditions. Thus
we can assist an agent by providing additional informa-
tion in circumstances where commonsense knowledge
would ordinarily be required; we can introduce explicit
goals to guide its behavior; we can make the environment
entirely static except for the direct results of an agent’s
behavior, and so forth.

4. We can relax any of the above constraints, making the
problem more challenging. Thus we can make the envi-
ronment very dynamic, with objects and properties regu-
larly changing; we can add noise, so that actions do not al-
ways succeed or perception is not entirely reliable; we can
have actions with temporally- or spatially-distant effects
or with nondeterministic effects; we can model action in
continuous spaces, if we are concerned about subtle vari-
ations in the agent’s actions.

5. Elements of the environment are running code rather than
database objects; they can perform arbitrary computations
autonomously or when the agent interacts with them. For
example, when an agent examines a door, the door may
provide different sensory data depending on its state, the
agent’s properties, the environment’s properties, etc.

The Problems Presented by Adventure Games
We believe that the adventure game setting is well-suited
to experimental work in cognitive robotics, as it introduces
all of the problems a general cognitive robotic architecture
would need to deal with, while allowing us considerable
control over the environment. Here we consider our list of
core issues in the context of such an environment.

Goal, Reward, Value, Utility
The goal in CRAG is to find a mountain fortress where a
fabulous treasure is rumored to be hidden. The game begins
at the home of an eccentric magician who may know how to
reach the fortress. Initially, the agent has no knowledge of
the environment beyond basic topological relationships, no
knowledge of available actions other basic movement and
item manipulation (such as go north or get lantern)
that we would regard as commonsense actions, and no goal

2There are many MUD servers freely available; we are using
the MudOS platform with the Lima MUD libraries.



other than the ultimate goal of finding the treasure. Explo-
ration and experimentation are necessary to gain the knowl-
edge needed to form subgoals, determine the proper actions,
and complete the game.

Problem: Goal specification The first problem is how to
specify a goal in an adventure game. Traditionally (e.g., (Re-
iter 2001)), goals are specified as conditions that specify a
set of goal situations3. However, at any point prior to com-
pleting the game, the agent is not aware of all the actions,
fluents, and states in the space. As a result, traditional plan-
ning techniques do not apply; until the game is solved, no set
of known actions will provably lead to a goal state. The exis-
tence of such a set is a traditional assumption (e.g. (Lifschitz
1986; Boddy & Dean 1989; Pednault 1989; Latombe 1991;
Levesque 1996; Blum & Furst 1997; Finzi, Pirri, & Reiter
2000)).

If we wish to use a goal to guide the actions of the agent,
we must allow more sophisticated ways of specifying goals
or using them. We can also allow the agent to form more
goals to drive its inference and actions (e.g., (Laird, Newell,
& Rosenbloom 1987)). There are several scenarios in which
goals may be applied.

In the first scenario, the agent possesses both a goal and
all of the knowledge about the environment and its actions
required to produce a plan. In this case the agent may exe-
cute the plan and achieve its goal with certainty. This is the
simplest and least likely case.

Secondly, the agent may have some goal when it encoun-
ters a situation that resembles a situation in which it achieved
a comparable goal in the past. In this case the agent may
form a plan by adapting its previous solution to the new
circumstance. Of course, the plan may be rendered invalid
by changes in the environment or by the dissimilarities be-
tween the situations, but this may be a useful approach when
the situations are closely related, such as when an agent has
learned to fetch a repair manual from the library to repair a
broken machine and then encounters a second machine. A
similar case is one in which we choose to find a plan that
will possibly succeed, but not requiring certainty.

A third scenario arises when an agent’s commonsense
leads it to believe it can achieve a goal through some ac-
tions that should exist, although it does not yet know that
all these actions actually do exist. For example, an agent
encountering a fearsome dragon, and having commonsense
knowledge that dragons are evil creatures and evil creatures
exist to be defeated (at least in adventure games), will form
a goal to defeat the dragon. It does not know what action
will defeat the dragon, but it determines that there should be
such an action, and forms its goal accordingly.

The agent can also use a goal to form subgoals. An agent
exploring the environment may, upon seeing a closed door,
form a goal to open the door by turning the knob. If the door
is locked, the agent might use its commonsense knowledge
to infer that there is a key somewhere to unlock the door, and

3Our discussion is not limited to goal situations, and it carries
over to other types of goals, such as maintenance goals, periodic
goals, and others.

add new goals to acquire any key it sees and try all keys it
possesses in the lock. The agent cannot prove that it can ac-
complish these goals; they are in some sense opportunistic
and depend upon the results of its exploration and experi-
ments. However, it can use default rules (e.g., (McCarthy
1980; Reiter 1980)) to record such hypotheses, absorb such
information from the environment or hold such background
knowledge.

Lastly, the agent can form information goals, in which it
seeks to visit any unexplored area, examine any unfamiliar
object, observe the effects of trying an unfamiliar action, and
so forth. In an environment in which the agent knows very
little, these kinds of goals lead the agent to the knowledge it
needs in order to solve the other goals listed above.

As in the SOAR paradigm (Laird, Newell, & Rosenbloom
1987), the agent may form many goals that are never sat-
isfied, either because they are unnecessary (the agent may
have a goal to try a key it has previously seen on the door,
but discovers a second key that works first) or because they
are impossible (because the agent’s assumptions about the
world are invalid; in the case of the door, perhaps there is no
key and it must be opened in another way). This requires that
a goal-directed agent be able to entertain multiple simulta-
neous goals and be able to switch focus among them, rather
than considering how to solve a single goal to the exclusion
of any others it might consider.

One advantage of the game world is that the agent can as-
sume the game is intended to be solvable; therefore, any lack
of knowledge about the environment that prevents it from
acting to solve the game can be corrected. Moreover, at any
time there are one or more actions or action sequences that
the agent can perform to increase its knowledge or to satisfy
one of its other goals.

Problem: Reward/utility specification and learning
The notion of reward functions appears in several contexts in
AI related to problem solving. In the context of Markov De-
cision Processes (MDPs) (Boutilier, Reiter, & Price 2001),
the reward ���������
	 refers to the instantaneous reward that the
agent receives by performing action � in state � . The utility
of choosing an action in a situation, ���������	 typically re-
flects risk, choice, preference and likelihood (see e.g., (Cha-
jewska 2002)). Formally, utility functions are directly deriv-
able from state value functions or reward functions and vice
versa. In the MDP and reinforcement learning literature this
is the optimal � function, given a reward function ���������
	 .

The problem of playing CRAG can be modeled as a de-
layed reinforcement learning problem (Kaelbling, Littman,
& Moore 1996), though not as one in which the reinforce-
ment is delayed until the game is complete, because any
feedback after the game is solved will not be useful to the
agent. Instead, the agent’s progress through the game could
be interpreted as a sequence of episodes (each correspond-
ing, perhaps, to a puzzle in the game) and reinforcements
provided at the end of every episode. However, this suffers
the disadvantage of coupling the credit assignment problem
with a paucity of data, and is unlikely to enable the agent to
improve its performance in any game of reasonable length.



An alternative may be to use the agent’s commonsense
knowledge about the domain to develop a reward function.
For example, it may not be advantageous to perform a dan-
gerous action such as opening a lion’s cage. If a room is
locked, then there is probably some interest in finding a
way to open it, if there is nothing else that makes sense.
Picking up an object and adding it to our belongings is
many times advantageous. Hierarchical decomposition of
the problem into abstract sub-problems may lead to more
readily-available rewards that can be used as a substitute in
the absence of an overall reward function.

The literature on utility functions distinguishes several
classes of utility functions and utility descriptions of inter-
est in our context. Additive utility functions, multiplicative
utility functions and multilinear utility are all decomposable
utility functions that are relatively easy to reason about and
construct from simple utilities given to state features in a
domain. Conditional independence and context-based inde-
pendence play important roles in combining utility functions
from smaller fragments (Bacchus & Grove 1995). Also,
learning the utility function of a human could provide our
agent with a suitable utility function for this game. Similar
techniques are used in decomposing reward and value func-
tions (e.g., (Guestrin, Koller, & Parr 2002)).

Problem: Value specification and learning The notion
of a value function for states, � ����	 , arises in the context of
decision problems in which the value of a state is the sum of
the reward the agent receives for being in this state and the
cumulative reward that the agent will receive in the future
if it follows an optimal policy. Instead of specifying a re-
ward, as discussed above, we can specify a value for a state,
or a heuristic function that approximates this value. For ex-
ample, the value of a state may be composed of the num-
ber of items in the agent’s belongings, the number of rooms
already visited, or in some number of “significant” actions
that have been performed4. Such a heuristic function could
be derived from the agent’s knowledge and be updated with
new knowledge it accumulates over the course of the game.

A good value function seems to be more valuable than an
accurate reward function in our game. The former is a direct
influence on the actions that the agent needs to perform at
any moment, while the latter can serve to define this value
function, but not in any easy way.

Situations in the World
Problem: The state space is revealed gradually In
CRAG, as in the real world, most knowledge is acquired
through exploration. Prior to interacting with the environ-
ment, the agent does not know its structure (the locations,
their relationships, the routes between locations) or its con-
tents. There is no way to know where a corridor leads with-
out walking to its far end; there is no way to know what is in
a cupboard without opening it and looking inside.

4A distinction might easily be drawn between insignificant ac-
tivities, such as ordinary movement, picking up and dropping ob-
jects, sensing, etc., and significant activities, such as the use of an
object that alters the environment in some way.

The nature of the game, however, does permit the agent
to make some general assumptions about its structure. The
environment is discrete, so there is a fixed and finite num-
ber of distinct locations, and there is a well-defined network
of connections among the locations. There is a standard
(though not necessarily complete) set of actions for navi-
gating among locations. Objects are likewise discrete and
finite and there are standard operators for performing basic
manipulations (such as picking them up, putting them down,
examining them, etc.).

Actions Available in a Situation
Problem: Actions are revealed gradually The actions in
CRAG vary with the situation the agent is in. We do not
know what actions are available to us in a situation before
we arrive at that situation. For example, before entering a
room we do not know what objects are inside or what actions
are available on those objects. In one room we may find a
chest that can be opened, while in another room we might
find a candle which we can light if we have matches.

The effect of this problem is that the agent cannot ordinar-
ily produce a plan to achieve an arbitrary goal, since it may
well be the case that achieving that goal requires actions un-
known to the agent. Worse, the goal may not even be achiev-
able. All the agent can know is that its present knowledge,
properly applied, will ultimately enable it to perform any
actions necessary to achieve the ultimate goal of completing
the game, whether or not it already knows those actions.

Note that the agent’s lack of knowledge about available
actions also creates the problem of finding out what those
actions are. An ordinary human in an adventure game lit-
erally guesses at actions based upon assumptions about the
properties of the world. Seeing a large weed, and possess-
ing a spray can of weed killer, a human player will gen-
erally think to spray weed with weed killer and
will try syntactic variations on that theme until successful or
until the game clearly indicates that the idea won’t work. An
agent must either have sufficient commonsense knowledge
to make a similar conclusion (“sufficient” being ”human-
level” in the general case, although we suppose that an ex-
perimental agent might only be encoded with “pertinent”
knowledge when attempting to solve any of a class of ad-
venture games), or the agent must be informed in some way
by the environment what actions are permissible, even if the
environment does not clearly indicate what their precondi-
tions and their effects are. A principled way of exploring
this second approach is discussed in (Doyle 2002).

Action Preconditions, Direct Effects and
Ramifications
Problem: Inferring and learning preconditions and ef-
fects of actions Besides not knowing what actions are
available to us before getting to the situation in which we
need to apply them, our agent may not be aware of the pre-
conditions or effects of the available actions. Some of the
effects are revealed to the agent upon acting, but the precon-
ditions remain to be determined, and other effects may have
occurred that the agent may not have perceived. For exam-
ple, pushing a button found in an attic may turn off the light



(an effect we perceive), but it may also cut all electric power
to the house. If the power was out before pushing the button
it would instead turn the power back on.

Our agent is required to act before knowing all of the pre-
conditions and effects of it actions. Since the goal is to solve
the game, rather than to provide an explanation of how the
game may be solved, we could say that it is not entirely nec-
essary for the agent to understand the effects of its actions;
merely by blundering around it might reach the goal. More
realistically, since there may be important actions the agent
can undo (pulling and pushing levers, turning dials back and
forth), it is likely to need to learn to associate its actions
with changes to the state of the world. For example, when it
learns that the power is out for the entire house after press-
ing the button in the attic, if it assumes that the world is
deterministic, it can conclude that this is an effect of press-
ing the button when the power is on for the house. It may
also generalize this to preconditions and effects for pressing
the button when the power is off. This last conclusion is
required for the agent to try pressing the button in order to
return the power back on.

Very Large State Space
Problem: Scaling Most AI knowledge representation,
planning, and reasoning techniques scale poorly. CRAG
currently includes over a hundred locations and dozens of
objects, each with its own location, properties, and possi-
bly internal state information. A simple enumeration of the
state space would be exponentially large in the number of lo-
cations and objects. This search space is too large for brute-
force exploration and trial-and-error. Even if it were fully
known, planning or finding an optimal (or approximate) ac-
tion policy is neither simple nor fast using traditional plan-
ning and MDP solution techniques. The additional lack of
knowledge makes this problem even more intractable.

Need Commonsense, Learned or Inserted
Problem: Determining what commonsense knowledge
is needed Many of these problems are simpler if differ-
ent sorts of commonsense knowledge are available to the
agent. Some of the simplest examples of such common-
sense knowledge being put to use are (Levesque et al. 1997;
Bacchus & Kabanza 2000; Boutilier, Reiter, & Price 2001).
This type of commonsense knowledge restricts the search
space of planners, but can be applied to other goal-driven or
utility-drive reasoning tasks.

Different facts about general domains can be used or
learned during the game. We know that doors can typically
be opened and closed, that keys unlock them and that items
can be picked up and dropped off. We can classify objects
into an object-oriented hierarchy, registering common prop-
erties for doors, windows, chests, cups, tables, walls, etc.

There is also dramatic use for default assumptions here.
We can assume that actions have only their observed effects,
and that their effects are typically local. We may also assume
that actions’ preconditions are local. Typically, we can act
upon an object only when it is present, and some actions’ ef-
fects are reversible by performing those actions again. Such
knowledge is not always correct, and the agent should be

able to disregard it if needed, but without it there is little
chance of inferring much about the world.

Problem: Deciding how to use commonsense knowledge
If we classify objects into an object-oriented hierarchy, we
can conclude that what we learn about one chest is typically
true of other chests (similarly for doors, keys, buttons, etc).
This allows us to learn the effect of classes of actions much
faster than with no commonsense knowledge.

Inferring the effects of actions and their preconditions is
also a problem where commonsense knowledge should play
an important role. Some work on abduction (Ayeb, Marquis,
& Rusinowitch 1993; Baral 2000), explanation (Minton
et al. 1989; Poole 1989; McIlraith 1998), and diagnosis
(Reiter 1987; de Kleer & Williams 1987; McIlraith 1997;
Thielscher 1997; Darwiche 1998) are examples. There is
also some work on inferring actions’ properties (Schmill,
Oates, & Cohen 2000), and on model-free reinforcement
learning (Watkins 1989; Watkins & Dayan 1992) that are
very relevant in this context.

Finally, using default information is crucial in decid-
ing on the actions that are likely to be useful and avoid-
ing actions that are harmful. The principle question of
how to specify this knowledge in a consistent and use-
ful manner is a research topics that have been addressed
extensively by many researchers. However, the practical
and technical questions that are associated with specifying
such default knowledge in contexts similar to ours has re-
ceived little attention (Poole 1989; Pinto & Reiter 1993;
Nirkhe, Perlis, & Kraus 1993).

Memory and Accumulation of Knowledge
Problem: The organization of knowledge An applica-
tion that needs to include commonsense knowledge in large
quantities needs a disciplined way of organizing this knowl-
edge. Some of the work on knowledge representation,
including frame systems (Fikes, Farquhar, & Rice 1997;
Koller & Pfeffer 1998) and object-oriented knowledge rep-
resentations (Koller & Pfeffer 1997; Amir 1999) can be used
for this. Learning into such object-oriented representations
(e.g., (Friedman et al. 1999)) is required to maintain and de-
velop this knowledge as the game proceeds. However, learn-
ing probabilistic object-oriented representations is not appli-
cable as-is to our problem, and there has been no learning
approach that can learn logical object-oriented knowledge
(Inductive Logic Programming (ILP) (Lavrač & Džeroski
1994) focuses on other problems (however, see the work of
(Gil 1994; Benson & Nilsson 1995)).

Several architectural approaches are also relevant. Ap-
proaches such as blackboard architectures (Nii 1986; Hayes-
Roth 1985) may be useful in combining knowledge sources.
The context-based CYC (Lenat 1995) and similar ap-
proaches can serve as a basis for the design of a smaller
knowledge base that can be used for our agent. The rein-
forcement learning paradigm for agent design (e.g., (Sutton
1990)) can serve as a base upon which to build, but the tech-
nical problems involved in the straightforward application
of reinforcement learning to our domain need to be resolved



(e.g., including commonsense knowledge in reinforcement
learning agents is still an open problem, and the sparsity of
the space (we rarely arrive at the same world state more than
once) prevents the straightforward application of reinforce-
ment learning techniques).

Problem: Learning and revision of knowledge For any
architecture for knowledge organization and action we need
to specify how knowledge is revised. In the logical AI liter-
ature this has been discussed extensively from philosophical
points of view (e.g., (Gärdenfors 1992; Goldszmidt & Pearl
1992; Baral et al. 1992; Boutilier 1994; Lehmann 1995))
and some practical methods (e.g., (Eiter & Gottlob 1992;
Val 1992; Liberatore & Schaerf 1997)) and applications (and
revised philosophical assumptions) have emerged (Williams
1997; 1998). In the probabilistic AI literature belief revi-
sion is related to statistical machine learning (Duda, Hart,
& Stork 2001; Jordan 1998) and to inference given ob-
servations (Pearl 1988; Cowell et al. 1999). Approaches
for ILP have worked on the similar problem of classify-
ing concepts by learning Horn rules (Gabbay et al. 1992;
Lavrač & Džeroski 1994; Bratko & Muggleton 1995).

Current approaches to learning and revising knowledge
virtually disregard the problem of revising first-order knowl-
edge. For example, there is little attention to the discovery of
new objects, actions or relationships in the world. There is
little work on learning the properties of actions and models
of the world in partially observable domains. The princi-
pal reason may be that the problems involved are too diffi-
cult and that straightforward approaches do not scale well
for reasoning in such domains and with such knowledge.
Nonetheless, our CRAG game may pose some of those prob-
lems in ways that are easier to attack. Because it is a con-
crete problem whose complexity we can control, we can fo-
cus our attention on those features we can address with so-
lutions that are both formally and practically reasonable.

Solution in a Semantically Sound Way

The problems listed above are not specific to the CRAG ad-
venture game, nor are they new for the cognitive robotics
community or the AI community at large. They are funda-
mental for any truly autonomous agent capable of acting in
a complex and dynamic world. The advantage of CRAG is
that it allows us to examine them in a controlled environment
in which we can easily change the problems to be solvable,
and then gradually increase the difficulty step by step. We
can also transcend some of the sensory elicitation problems
that are typically encountered in physical agents (robots).

The challenge in this game is threefold. First, to build
an agent that can play it with a performance that is close to
that of humans. Second, to construct a formal theory (be
it logical or probabilistic) that accounts for the way an au-
tonomous agent should play this game, including the knowl-
edge involved, the assumptions made and the architecture
used. The final challenge is to combine a successful agent
and a satisfactory theory into a single framework.

Conclusions
This paper shows that through examining a specific adven-
ture game we can isolate many problems that have not been
addressed or have been only partially addressed in the cog-
nitive robotics literature and the AI literature in general. We
described the problems that we observed in this game and
outlined possible approaches for dealing with several. Ex-
amining those problems within the structure of our adven-
ture game system allows us to move from addressing them
in an ad hoc manner and toward discovering well-founded
approaches for their solution.

We are in the process of implementing the logical inter-
face and a simple agent that will play CRAG in a reac-
tive way. We have already examined several architectures
that may be suitable for a more intelligent agent, includ-
ing GOLOG, reinforcement learning, subsumption architec-
tures, blackboard architectures, and others. These analyses
are omitted here for lack of space, but they are available in
an extended version of this manuscript (Amir 2002). We are
currently extending two of those architectures to begin to
address the problems we have described in this paper.

Acknowledgements
The first author wishes to thank Stuart Russell, Greg
Lawrence, David Andre, Kamin Whitehouse, Barbara En-
gelhardt and the other members of the AI-Agents reading
group in UC Berkeley, and also Mike Genesereth, Aarati
Parmar, Scott Rixner and other members of the FRG/MUGS
groups for discussions on related topics.

References
Amir, E., and Maynard-Reid II, P. 1999. Logic-based
subsumption architecture. In Proc. Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI ’99),
147–152.

Amir, E., and Maynard-Reid II, P. 2001. LiSA: A robot
driven by logical subsumption. In working notes of the
CommonSense’01 symposium.

Amir, E. 1999. Object-Oriented First-Order Logic. Elec-
tronic Transactions on Artificial Intelligence 3, Section
C:63–84. http://www.ep.liu.se/ej/etai/1999/008/.
Amir, E. 2002. Adventure games: A challenge for cogni-
tive robotics (full version). Available at the author’s web-
site (http://www.cs.berkeley.edu/˜eyal/papers).

Andre, D., and Russell, S. J. 2000. Programmable re-
inforcement learning agents. In Proceedings of the 13th
Conference on Neural Information Processing Systems
(NIPS’00), 1019–1025. MIT Press.

Ayeb, B. E.; Marquis, P.; and Rusinowitch, M. 1993.
Preferring diagnoses by abduction. IEEE Transactions on
SMC 23(3):792–808.

Bacchus, F., and Grove, A. 1995. Graphical models for
preference and utility. In Proc. UAI ’95, 3–10. MK.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.



Bacchus, F.; Halpern, J. Y.; and Levesque, H. J. 1999.
Reasoning about noisy sensors and effectors in the situation
calculus. Artificial Intelligence 111(1–2):171–208.

Baral, C., and Tran, S. C. 1998. Relating theories of actions
and reactive control. Electronic Transactions on Artificial
Intelligence 2(3-4):211–271.

Baral, C.; Kraus, S.; Minker, J.; and Subrahmanian, V. S.
1992. Combining knowledge bases consisting of first-order
theories. Computational Intelligence 8(1):45–71.

Baral, C. 2000. Abductive reasoning through filtering.
Artificial Intelligence 120(1):1–28.

Benson, S., and Nilsson, N. 1995. Reacting, planning,
and learning in an autonomous agent. Machine Intelligence
14:29–64.

Blank, M., and Lebling, D. 1980. Zork. Infocom.

Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelligence
90(1–2):279–298.

Boddy, M., and Dean, T. 1989. Solving time-dependent
planning problems. Proc. International Joint Conference
on Artificial Intelligence (IJCAI) 2:979–984.

Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for first-order MDPs. In IJCAI ’01,
690–697. MK.

Boutilier, C. 1994. Unifying default reasoning and be-
lief revision in a modal framework. Artificial Intelligence
68:33–85.

Bratko, I., and Muggleton, S. 1995. Applications of in-
ductive logic programming. Communications of the ACM
38(11):65–70.

Carroll, J. M.; Rosson, M. B.; Isenhour, P.; Ganoe, C.;
Dunlap, D.; Fogarty, J.; Schafer, W.; and Metre, C. V. 2001.
Designing out town: MOOsburg. International Journal of
Human-Computer Studies 54:725–751. Available online at
http://www.idealibrary.com.

Chajewska, U. 2002. Acting Rationally with Incomplete
Utility Information. Ph.D. Dissertation, Stanford Univer-
sity.

Cowell, R. G.; Dawid, A. P.; Lauritzen, S. L.; and Spiegel-
halter, D. J. 1999. Probabilistic networks and expert sys-
tems. Springer-Verlag.

Curtis, P., and Nichols, D. A. 1994. MUDs grow up: Social
virtual reality in the real world. In COMPCON, 193–200.

Curtis, P. 1992. Mudding: Social phenomena in text-based
virtual realities. In Proceedings of the 1992 Conference on
the Directions and Implications of Advanced Computing.

Darwiche, A. 1998. Model-based diagnosis using struc-
tured system descriptions. Journal of AI Research 8:165–
222.

de Kleer, J., and Williams, B. C. 1987. Diagnosing multi-
ple faults. Artificial Intelligence 32:97–130.

Doherty, P., and Kvarnström, J. 2001. Talplanner: A tem-
poral logic based planner. AI Magazine. Accepted for pub-
lication.

Doyle, P. 2002. Believability through context: Using
”knowledge in the world” to create intelligent characters.
In Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems. ACM
Press. To appear.

Duda, R. O.; Hart, P. E.; and Stork, D. G. 2001. Pattern
classification. Wiley, 2nd edition.
Eiter, T., and Gottlob, G. 1992. On the complexity of
propositional knowledge base revision, updates, and coun-
terfactuals. Artificial Intelligence 57(2-3):227–270.

Fikes, R.; Farquhar, A.; and Rice, J. 1997. Tools for as-
sembling modular ontologies in ontolingua. In Proc. AAAI
’97, 436–441. AAAI Press.

Finzi, A.; Pirri, F.; and Reiter, R. 2000. Open world plan-
ning in the situation calculus. In Proc. AAAI ’00, 754–760.
Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. In Proc. Sixteenth
International Joint Conference on Artificial Intelligence
(IJCAI ’99), 1300–1307. MK.

Gabbay, D.; Gillies, D.; Hunter, A.; Muggleton, S.; Ng, Y.;
and Richards, B. 1992. The rule-based systems project:
Using confirmation theory and non-monotonic logics for
incremental learning. In Muggleton, S., ed., Inductive
Logic Programming. Academic Press. 213–230.
Gärdenfors, P., ed. 1992. Belief Revision. New York: Cam-
bridge University Press.
Gil, Y. 1994. Learning by experimentation: Incremental re-
finement of incomplete planning domains. In Proceedings
of the 11th International Conference on Machine Learning
(ICML-94), 10–13.

Giunchiglia, E.; Kartha, G. N.; and Lifschitz, V. 1997.
Representing Action: Indeterminacy and Ramifications.
Artificial Intelligence. to appear.

Goldszmidt, M., and Pearl, J. 1992. Rank-based systems:
A simple approach to belief revision, belief update, and
reasoning about evidence and actions. In Nebel, Bernhard;
Rich, Charles; Swartout, W., ed., Proc. KR ’92, 661–672.
Cambridge, MA: Morgan Kaufmann.
Guestrin, C.; Koller, D.; and Parr, R. 2002. Multiagent
planning with factored mdps. In Proceedings of 14th NIPS.
MIT Press.
Gustafsson, J., and Doherty, P. 1996. Embracing occlusion
in specifying the indirect effects of actions. In Proc. 5th Intl
Conf. on Knowledge Representation and Reasoning (KR
’96), 87–98.

Hayes-Roth, B. 1985. A blackboard architecture for con-
trol. Artificial Intelligence 26:251–321.

Jordan, M., ed. 1998. Learning in graphical models. MIT
Press.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: a survey. Journal of AI Research
4:237–285.
Koller, D., and Pfeffer, A. 1997. Object-oriented Bayesian
networks. In Proc. of the 13th Conf. on Uncertainty in Arti-
ficial Intelligence (UAI-97), 302–313. Morgan Kaufmann.



Koller, D., and Pfeffer, A. 1998. Probabilistic frame-based
systems. In Proc. AAAI ’98, 580–587.

Laird, J., and van Lent, M. 2001. Human-level ai’s killer
application: Interactive computer games. AI Magazine
22(2):15–26.

Laird, J.; Newell, A.; and Rosenbloom, P. 1987. SOAR: An
architecture for general intelligence. Artificial Intelligence
33(1):1–64.

Latombe, J.-C. 1991. Robot Motion Planning. Kluwer
Academic Publishers.

Lavrač, N., and Džeroski, S. 1994. Inductive Logic Pro-
gramming: Techniques and Applications. Ellis Horwood.

Lehmann, D. 1995. Belief revision, revised. In IJCAI-95,
1534–1540.

Lenat, D. B. 1995. Cyc: A large-scale investment in
knowledge infrastructure. Communications of the ACM
38(11):33–38.

Levesque, H.; Reiter, R.; Lesprance, Y.; Lin, F.; and Scherl,
R. 1997. Golog: A logic programming language for dy-
namic domains. Journal of Logic Programming 31:59–84.

Levesque, H. 1996. What is planning in the presence of
sensing. In Proc. AAAI ’96, 1139–1146.

Liberatore, P., and Schaerf, M. 1997. Reducing belief re-
vision to circumscription (and vice versa). Artificial Intel-
ligence 93(1-2):261–296.

Lifschitz, V. 1986. On the semantics of STRIPS. In
Georgeff, M. P., and Lansky, A., eds., Reasoning About
Actions and Plans. Los Altos, California: MK. 1–9.

Mauldin, M. L.; Jacobson, G. J.; Appel, A. W.; and Hamey,
L. G. C. 1984. Rogomatic: A belligerent expert system.
In Proc. Fifth Nat. Conf. Canadian Soc. for Computational
Studies of Intelligence.

McCain, N., and Turner, H. 1997. Causal theories of action
and change. In Proc. AAAI ’97.

McCarthy, J. 1980. Circumscription—A Form of Non-
Monotonic Reasoning. Artificial Intelligence 13:27–39.

McIlraith, S. 1997. Representing action and state con-
straints in model-based diagnosis. In Senator, T., and
Buchanan, B., eds., Proc. AAAI ’97, 43–49. Menlo Park,
California: American Association for Artificial Intelli-
gence.

McIlraith, S. 1998. Explanatory diagnosis: Conjecturing
actions to explain observations. In Cohn, A. G.; Schubert,
L.; and Shapiro, S. C., eds., Proc. KR ’98. San Francisco,
California: MK. 167–177.

Minton, S.; Carbonell, J. G.; Knoblock, C. A.; Kuokka,
D. R.; Etzioni, O.; and Gil, Y. 1989. Explanation-based
learning: A problem solving perspective. Artificial Intelli-
gence 40:63–118.

Nii, P. 1986. Blackboard systems. AI Magazine 7(2).

Nirkhe, M.; Perlis, D.; and Kraus, S. 1993. Reason-
ing about change in a changing world. In Proceedings of
FLAIRS’93.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems : Networks of Plausible Inference. Morgan Kauf-
mann.
Pednault, E. P. D. 1989. ADL: exploring the middle ground
between STRIPS and the situation calculus. In Proc. KR
’89, 324–332.
Pinto, J., and Reiter, R. 1993. Temporal reasoning in logic
programming: A case for the situation calculus. In Pro-
ceedings of the Tenth International Conference on Logic
Programming, 203–221.
Poole, D. 1989. Explanation and prediction: An architec-
ture for default and abductive reasoning. Computational
Intelligence 5(2):97–110.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13 (1–2):81–132.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32:57–95.
Reiter, R. 2001. Knowledge In Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. MIT Press.
Schmill, M. D.; Oates, T.; and Cohen, P. R. 2000. Learn-
ing planning operators in real-world, partially observable
environments. In Proceedings of the 5th Int’l Conf. on AI
Planning and Scheduling (AIPS’00), 246–253.
Shanahan, M. 1997. Solving the Frame Problem, a math-
ematical investigation of the common sense law of inertia.
Cambridge, MA: MIT press.
Shanahan, M. 1998. A logical account of the common
sense informatic situation for a mobile robot. Electronic
Transactions on Artificial Intelligence 2:69–104.
Shanahan, M. 2000. Reinventing shakey. In Minker, J.,
ed., Logic-Based Artificial Intelligence. Kluwer.
Sutton, R. S. 1990. Integrated architecture for learning,
planning and reacting based on approximating dynamic
programming. In th Int’l conference on machine learning
(ICML’90), 216–224. MK.
Thielscher, M. 1997. A theory of dynamic diagnosis. Elec-
tronic Transactions on Artificial Intelligence 1(4):73–104.
Val, A. D. 1992. Computing knowledge base updates. In
Nebel, B.; Rich, C.; and Swartout, W., eds., Proc. KR ’92.
San Mateo, California: Morgan Kaufmann. 740–750.
Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning.
Machine Learning Journal 8(3/4). Special Issue on Rein-
forcement Learning.
Watkins, C. J. C. H. 1989. Learning from Delayed Re-
wards. Ph.D. Dissertation, King’s College, Oxford. (To be
reprinted by MIT Press.).
Williams, M.-A. 1997. Anytime belief revision. In
Proc. Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI ’97), 74–80. MK.
Williams, M.-A. 1998. Applications of belief revision. In
Transactions and Change in Logic Databases, 287–316.


