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Abstract 
The RObot Self-Explains whY (ROSEY) project is an 
attempt to extend behavior-based robots by supporting 
verbalization of causal explanations of the robot’s own 
behavior. It extends parallel-reactive architectures to 
support higher-level functions, in this case self-inspection 
and explanation. In this paper, we discuss work in progress 
on generating explanations of locomotive behaviors and 
describe our initial implementation on an indoor mobile 
robot. 

Introduction   
The RObot Self-Explains whY (ROSEY) project attempts 
to demonstrate how a behavior-based robot can verbalize 
causal explanations of its own behavior. More generally, it 
attempts to show how a behavior-based system can carry 
out a higher-level task such as explanation.  
 Traditional behavior-based systems demonstrate limited 
high-level reasoning. Since they are implemented as a 
fixed network of wires, they cannot handle variable 
binding and are forced to use simple representations that 
are effectively limited to propositional logic. Exhibiting 
higher-level functions such as meta-level reasoning is 
therefore more difficult on behavior-based systems than on 
symbolic systems. 
 However, we believe behavior-based design need not 
preclude these abilities. ROSEY shows how a behavior-
based system can obtain reflective knowledge of itself by 
inspecting and reasoning about its own internal processes 
and state in order to generate an explanation. 
 We begin by sketching a design for the explanation task. 
We describe an explanation process that is based on 
examining the structure of the robot’s program rather than 
based on accessing a runtime diagnostic system. We then 
describe the mechanisms required for supporting 
explanation. Finally, we describe work-in-progress on the 
initial implementation and close with preliminary results. 
 Our initial goal is to build a minimalist system. It is 
neither to advocate a specific cognitive theory nor to 
evaluate self-explanation as a human-robot interface 
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paradigm. Although we plan on pursuing the latter, we 
presently ignore issues such as the need to tailor a robot’s 
explanations to the target user; instead, we currently 
assume that the robot’s target user is its programmer.  

A process for explaining behavior 
Most behavior-based systems can be described as circuits: 
signals flow from sensors through wires and processing 
elements to the control inputs of effectors. We want 
ROSEY to answer questions about its own behavior, for 
example “Why are you turning?” Since behavior-
based systems are circuit-like, explanation can be reduced 
to tracing signal flow: start at the signal controlling the 
motors, and trace backwards through the circuit, discussing 
the active elements that drive it. This approach presumes 
that the explanation component can inspect the relevant 
circuit structure at runtime.  
 
Tracing causality 
The problem however, is that the circuit tends to be 
complicated. Others have raised similar issues related to 
the automatic explanation of detailed process models 
(Williams 1991; Nayak 1992; Mallory, Porter, and Kuipers 
1996). If every traced element is discussed, then 
explanations will become overly detailed and more 
difficult to grasp. To avoid this problem, we generate 
descriptions in terms of an abstract circuit in which whole 
sub-circuits are collapsed to single, idealized nodes.  In the 
case of ROSEY, we abstractly describe the circuit in terms 
of propositions (e.g. behavioral states such as “I am 
turning”) and operators (e.g. behaviors, plans).  
 This simplified representation retains properties of the 
complete circuit that an explanation system can still use to 
answer the following questions: 
 

• What behaviors must be concurrently executing 
in order to yield the observed actuator behavior? 
We define operators as both the internal and 
external behaviors that the robot may execute 
during any single execution cycle. Thus, we want 
to include behaviors that control the robot’s 
actuators, as well as the cascade of internal 
behaviors that drive the activation of the current 
behavior. 
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• What set of conditions must hold true in order to 
yield the observed actuator behavior? We treat 
propositions as corresponding to internal 
conditions that the robot may have during any 
single execution cycle. Propositions encompass 
sensory-motor conditions as well as the Boolean 
conditions under which an operator will be 
activated. 

 
 Figure 1 illustrates how propositions and operators are 
causally related: propositions affect operators that then 
effect other propositions. In other words, operators can 
change the truth-values of propositions, whereas 
propositions may directly turn operators on or off. Tracing 
causality can be reduced to a process of walking this 
circuit (which we call the abstract causal circuit) and 
finding the path of activated propositions and operators. 
We currently assume only one active path exists through 
this circuit. 

  However, we still need to formulate how to actually 
generate this structure given the original robot circuit. In 
particular, how do we identify a sufficient set of 
propositions and operators to encode? What is the process 
for mapping the elements of a behavior-based system to 
this set? We are currently investigating possible answers to 
these questions. For the moment, we are manually 
constructing the abstract causal circuit. 
 
Self-inspection mechanisms 
The robot will require some runtime mechanisms to 
operate over the abstract causal circuit. One is the means to 
look up and tag an arbitrary node, given its lexical 
equivalent. For example, the word “turning” should 
correspond to a particular node in the circuit.  
 Another set of needed mechanisms involves the 
extraction of both static and dynamic information 
pertaining to the node. Required information includes: 
 

• Name 
• Type (proposition or operator) 
• Current state 

o If node is a proposition, is it currently 
true? 

o If node is an operator, is it currently 
running? 

• Possible causes 
o If node is a proposition, what operators 

are known to cause it to be true? 
o If node is an operator, what propositions 

are known to activate it? 
• The active cause 

o If node is a proposition, which operator 
is actually causing it to become true? 

o If node is an operator, which proposition 
is actually activating it? 

 
These requirements directly translate into a corresponding 
set of operations and a simple interface for retrieving this 
information from the self-inspection (SI) system: 
 

• get-name 
• get-type 
• get-current-state 
• get-known-causes 
• compute-active-cause 

 
A simplified explanation process 
Given these mechanisms, we can now sketch a process for 
generating explanations. Figure 2 illustrates a schematic 
overview of this process. To initiate an explanation, the 
user asks a “why” question resembling any of the 
following forms: 
 

• “Why are you <symptom>?” 
• “Why are you in the state of 

<symptom>?” 
 
Here, <symptom> is a word describing a particular robot 
state (e.g. “turning” or “moving”) and corresponding to a 
proposition node.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Schematic overview of the explanation process.  

Proposition

Operator

Operator

Proposition

Proposition

Proposition

Proposition

Figure 1. Abstract causal circuit. A robot circuit is
simplified to nodes consisting of either propositions or
operators. 

self-inspection
system

explanation
systemUser

abstract causal circuit

symptomactive-cause

query
explanation

why are you <symptom>?

node information



 The explanation system parses the user’s question. Upon 
recognizing a why question, the explanation system tags 
the word representing the symptom so that the SI system 
may look up the corresponding node; the SI system 
references this node as the “symptom.” 
 At this point, the SI system tests whether the symptom 
node is even active, in other words, whether the symptom 
is even true. By testing the truth-value of the symptom, the 
explanation system can comment on the applicability of 
the user’s question. If the symptom turns out to be false, 
then the explanation system can respond with an utterance 
such as  
 

“Well I don’t believe I’m in the 
state of <symptom>.” 

 
 On the other hand, if the symptom is true, then the SI 
system proceeds to identify the active cause. First it looks 
up the set of possible causes of this symptom (these are 
identified a priori). It then iterates through each possible 
cause, testing whether each is true. Upon knowing the 
actual cause, the explanation system can then respond with 
an utterance such as 
 

“I am in the state of <symptom> 
because I am trying to execute 
<active-cause>.” 

 
where <active-cause> is the name of the identified cause 
and in this case, corresponds to an operator node. 
 With this process, we assume only one node can be 
active among the possible causes, which means we also 
assume only one active path can be traced through the 
circuit. We hope to relax this restriction as we develop 
methods for constructing the abstract causal circuit. 
 
Follow up questions 
Thus far, we have described a process that generates 
explanations delving only one level deep in the circuit. 
However, the user may seek further detail in a follow up 
question such as “Why?” This follow up question becomes 
a contextual one, equivalent to saying 
 
  “Why are you doing <symptom>?”  
 
where <symptom> is now the name of the previously 
identified cause. 
 In order to repeat the explanation process, the SI system 
re-references the previously identified active cause node as 
the new “symptom.” The SI system now repeats the same 
process for testing the possible causes. A subsequent 
explanation can then be  
 

“I am executing <symptom> because I 
believe <active-cause> is true.” 

 
 As the user asks additional follow up questions, the 
node type of each subsequent active cause will flip-flop 
between proposition and operator; this reflects the nature 

of the abstract causal circuit. Eventually, we will explore 
different ways we may vary the depth—and degree of 
detail—to which a single explanation response is 
generated. 

Initial implementation 
Current status 
We have implemented a very preliminary version of 
ROSEY on an indoor 2-wheel differential-drive robot 
(Figure 3) that attempts to explains its current locomotive 
behavior. ROSEY currently responds to the following 
queries: 
 

• Why are you turning? 
• Why are you stopped? 
• Why are you reversing? 
• Why are you moving? 

 
 A natural language parser separate from ROSEY 
handles word recognition and serves as the interface 
between the user and ROSEY. We borrow this parser from 
another system called Cerebus (Horswill, Zubek, et. al. 
2000). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Indoor mobile robot platform 
 
 At the moment, ROSEY generates a one-level-deep 
explanation, for example: 
 
   > why are you turning ? 

Because ROSEY is trying to get 
unstuck. 

 
where turning is a locomotive symptom corresponding 
to a proposition node. To minimize the mechanical quality 
of the responses, we are forgoing the use of fill-in-the-
blank templates (e.g. “I am executing 
<symptom>”, where we substitute a node name for 
<symptom>). Instead, every node in the abstract causal 
circuit has a fixed—but unique—utterance stored as an 



additional property. When explaining an active cause node, 
the explanation system retrieves the canned response 
associated with this node. For instance, in the above 
example, the response “Because ROSEY is trying 
to get unstuck.” has been taken from the node 
representing the unwedger motor behavior, which is the 
operator currently causing turning to be true. 
 
Current issues 
The four propositions—turning, stopped, 
reversing, and moving—attempt to be descriptive of 
the locomotive qualities that a user may observe and 
ascribe to the robot as it is moving around in the world. 
Consequently, ROSEY recognize these words as 
symptoms. We want to continue to expand the set of 
recognizable symptoms.  
 To grow this set, we plan to introduce a second class of 
queries that ROSEY understands. So far, we have 
described ROSEY handling queries that pertain to its 
instantaneous locomotive state. We call these queries 
instantaneous queries. However, ROSEY does not handle 
queries that require it to maintain history or a knowledge 
of its past execution cycles. We call such queries history-
based queries. This current limitation explains why 
ROSEY can handle an instantaneous query like “Why 
are you turning?”, while failing to recognize a 
query like “Why are you oscillating?” We 
acknowledge that maintaining a history of states and 
actions will be a valuable part of a robot explanation 
system.  
 As mentioned earlier, a central issue we are facing is 
figuring out how to generate the abstract causal circuits. 
Two questions persist. First, how do we identify a 
sufficient set of propositions and operators? Second, what 
is a process for mapping circuit elements to this set? 
Answering the first question will be partially answered by 
the kinds of symptoms we see users will want to ascribe to 
the robot’s behavior.  
 In addressing the second question, we are currently 
defining macros that permit the robot programmer to 
annotate the set of propositions and operators that should 
be reified for the explanation system. However, we plan to 
move towards automated techniques. In particular, we are 
exploring how we may leverage robot programming 
languages that support circuit semantics representations 
(Nilsson 1994). With such languages, we hope to more 
easily map circuit-semantic robot programs to the abstract 
causal circuits. 
 
Tagged behavior-based architecture approach 
To support the required runtime mechanisms, we are 
building ROSEY using a tagged behavior-based 
architecture called role-passing (Horswill 2001; Horswill 
1998). In role-passing, tags are linguistic roles such as 
“cause” and “symptom”. By using a tagged behavior-based 
architecture like role-passing, we gain two advantages. 
First, we are able to implement variable-binding, allowing 
us to construct higher-ordered behaviors such as the self-
inspection tests. Because tags can be reassigned, the SI 

system is able to redirect the same computational 
mechanisms to different nodes in the circuit.  
 For instance, the SI system references the symptom node 
through the symptom tag. It then tests whether the node 
referenced by symptom is active or not. Later on, the SI 
system can quickly rebind the symptom tag to a different 
node and repeat the very same test. 
 Second, we are using role-passing in order to reuse 
some pre-existing infrastructure; this includes the 
mechanism for looking up arbitrary nodes in the circuit as 
well as the “active” tests performed on an individual 
proposition or operator.  

Related systems 
ROSEY is an extension of the Cerebus project (Horswill 
2001; Horswill, Zubek, et. al. 2000), a system that is able 
to discuss its capabilities and internal structures. This work 
attempts to extend this ability by enabling the robot to 
explain how its processes and state dictate its current 
behavior.  
 ROSEY is part of a larger category of question-and-
answer robots. One of those robots includes (Torrance 
1994), who describes a robot that can answer questions 
about navigational plans and about the spatial relationships 
that hold between known places. KAMRO is a two-armed 
mobile assembly robot that can explain its own error 
recovery methods to a human supervisor (Längle, Lüth, 
Stopp, and Herzog 1996).  
 ROSEY is also part of a category of work that involves 
explanation of physical systems. A variety of work has 
been done, many in the context of diagnosis, instruction, 
and engineering design. Self-explanatory simulators 
(Forbus and Falkenhainer 1990) represent one large class 
of software that permits the user to seek causal 
explanations of physical processes being modeled. One 
system that shares similar purposes as ROSEY is described 
in (Gautier and Gruber 1993). Their task is to respond to 
behavior-related queries about a physical device by 
automatically generating causal explanations from a 
model. They attempt to avoid overly detailed explanations 
by applying a few heuristics for selecting salient details. 
We will consider similar heuristics for constructing our 
circuit. 

Conclusion 
First, ROSEY is an attempt to demonstrate how a 
behavior-based robot can verbalize explanations of its own 
behaviors. More generally, it attempts to show how a 
parallel-reactive architecture can support a higher-level 
task such as explanation. Although this work is still 
preliminary, we believe a behavior-based system can be 
just as capable as a symbolic system at accomplishing such 
a task. In particular, we show that behavior-based robots 
can obtain reflective knowledge through self-inspection.  



 We also view ROSEY as representative of an emerging 
category of self-explanatory robots. We are interested in 
increasing the reliability and cooperativeness of behavior-
based robots. Although this issue has been beyond the 
scope of this paper, we feel that self-explanatory robots 
will demonstrate an important trait. By revealing their 
internal states and processes, such robots will be better 
understood and accepted by human users, whether the 
person is an expert robot programmer or a novice user. 
Eventually, as mobile robots become more commonplace, 
even greater interest will be placed on robots that are easy 
to use, easy to diagnose, and easy to maintain. Self-
explanatory robots will be in service of those goals. 
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