
Programming the Deliberation Cycle of Cognitive Robots
Mehdi Dastani∗ and Frank de Boer and Frank Dignum and

Wiebe van der Hoek and Meindert Kroese and John-Jules Meyer

Institute of Information and Computing Sciences
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

Abstract

This paper presents an overview of ongoing research that
aims to develop a programming language for high level con-
trol of cognitive robots and software agents. The language is
called 3APL and its formal specification is already presented
in (Hindriks et al. 1999). We explain 3APL programming
constructs and its existing interpreter. We argue that a part
of the deliberation cycle, which is fixed in the interpreter,
should be programmable. We discuss a set of programming
constructs that can be used to program some aspects of the
deliberation cycle.

Introduction
For many realistic applications, a cognitive robot should
have both reactive and deliberative behavior (Fischer,
Müller, & Pischel 1994; Konolige 1997; Shanahan 1999;
Giacomo, Lesṕerance, & Levesque 2000). The first type of
behavior concerns the recognition of emergency situations in
time and provides rapid responses whereas the second type
of behavior concerns the planning of actions to achieve its
long term goals. In order to implement a robot’s deliberative
behavior, its mental attitudes such as goals and beliefs as
well as the interaction between these attitudes should be im-
plemented. Issues related to the implementation of robots’
mental attitudes can be considered as object-level concerns
while issues related to the implementation of the interaction
between mental attitudes form meta-level concerns.

To illustrate these levels, consider a cognitive mobile
robot at rest. The goal of this robot is to transport boxes from
asource position to a different position, whenever there are
boxes at thesource position. Another goal of the robot is
to clean a room whenever it is not clean. The robot can
achieve these goals in several ways. For example, the robot
can transport boxes before cleaning the room, or vice versa,
or transport one box and clean the room for a certain amount
of time and repeat it again. The beliefs and goals of the robot
form the object-level concerns while the strategy of how to
achieve these goals is a meta-level concern. Of course, a
robot strategy can be considered as an issue that should be

∗Contact author is Mehdi Dastani: email:mehdi@cs.uu.nl .
More information on 3APL can be found at:
http://www.cs.uu.nl/3apl/
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

incorporated in the robot’s goals. But, we believe that doing
so violates the basic programming principle calledsepara-
tion of concerns. Therefore, we aim to distinguish these two
levels explicitly and develop programming constructs to im-
plement these levels separately.

In this paper, we present our ongoing research on develop-
ing a programming language for cognitive robots. The pro-
gramming language is called 3APL (Hindrikset al. 1999)
and it is designed to implement the deliberative behavior of
cognitive robots. At this stage, the 3APL programming lan-
guage provides a set of programming constructs to imple-
ment robots’ mental attitudes such as its beliefs, goals, basic
actions, and revision rules. The interaction between these
entities are not programmable yet and is fixed by the 3APL
interpreter. This interpreter determines the flow of control
through a so-called deliberation cycle. In each cycle, a sub-
set of goals is revised, selected and executed. As the delib-
eration cycle is fixed by the interpreter, the meta-level con-
cerns can only be implemented to the extent that they are
implementable indirectly by the set of object-level program-
ming constructs and given that the programmers know how
the flow of control is implemented in the 3APL interpreter.
The aim of our research is to extend the 3APL language with
a second set of programming constructs by means of which
the deliberation cycle becomes programmable. This exten-
sion should make 3APL a programming language for cogni-
tive robots that respects the separation of concerns principle.

This paper is organized as follows. First, we present the
architecture of cognitive robots that can be programmed by
3APL. The syntax and semantics of the 3APL program-
ming language is explained. An example of a 3APL pro-
gram is proposed to implement the above mobile robot sce-
nario. Subsequently, we explain the deliberation cycle of
the 3APL interpreter and discuss the needs for programming
constructs to implement the deliberation cycle. Finally, we
indicate some future research directions and conclude the
paper.

An Architecture for Cognitive Robots
The cognitive robot or software agent that we consider has
a mental state consisting of beliefs, goals, basic actions, a
set of practical reasoning rules for revising goals, and an
interpreter. The beliefs represent the robot’s general world
knowledge as well as its knowledge about the surrounding

From: AAAI Technical Report WS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



environment. In contrast to the BDI tradition (Cohen &
Levesque 1990; Rao & Georgeff 1991), where goals are
considered as states to be reached by the robot, and like
ConGolog (Giacomo, Lespérance, & Levesque 2000), the
goals are considered here to be the robot’s control program
that specifies its activities. The basic actions are the actions
that the robot can perform. These actions may be cogni-
tive actions such as belief updates or external actions such
as moving in a certain direction. In general, a basic action
can be considered as a wrapper that provides a parameter-
ized interface to other processes. The set of practical rea-
soning rules contains rules that can be applied to revise ac-
tions that are blocked, goals that are not achievable, to op-
timize goals, or to generate some sort of reactive behavior.
Finally, the interpreter determines the flow of control among
the abovementioned ingredients. The interpreter is usually
specified by a deliberation cycle (Georgeff & Lansky 1987;
Giacomo, Lesṕerance, & Levesque 2000). This cognitive
architecture, which we call the 3APL architecture, is illus-
trated in Figure 1.

Beliefs

Goals BasicActions

PR-rules

Sense Action
Interpreter

Figure 1:The 3APL architecture.

Although the 3APL architecture has many similarities
with other cognitive architectures such as PRS, proposed for
the BDI agents (Rao & Georgeff 1995; Georgeff & Lansky
1987), they differ from each other in many ways. For exam-
ple, the PRS architecture is designed to plan agents’ goals
(desires) while the 3APL architecture is designed to con-
trol and revise robots’ control program. In fact, a goal in
the 3APL architecture is a control program which can be
compared to plans in the PRS architecture. Moreover, there
is no ingredient in the PRS architecture that corresponds to
the practical reasoning rules which is a powerful mechanism
to revise mental attitudes. Finally, the deliberation cycle in
3APL will become a programmable component while the
deliberation cycle in PRS is integrated in the interpreter.

3APL Programming Language
3APL (Hindriks et al. 1999) consists of languages for
beliefs, basic actions, goals, and practical reasoning rules.
A set of programming constructs has been introduced
for each of these languages. A 3APL program consists
of four modules identified by the following key words:
BELIEF BASE, BASIC ACTIONS, GOAL BASE,

PRACTICAL REASONING RULES. Each of these mod-
ules consists of its corresponding programming constructs.
Below is an overview of the programming constructs for
each module.

Definition 1 (Programming Constructs for Beliefs)
Given a set of domain variables and functions, the set of
domain terms is defined as usual. Lett1, . . . , tn be terms
referring to domain elements andPred be a set of domain
predicates, then the set of programming constructs for belief
formula,BF , is defined as follows:

• p(t1, . . . , tn) ∈ BF .
• if φ, ψ ∈ BF , then¬φ, φ ∧ ψ ∈ BF .

All variables in theBF formula are universally quantified
with maximum scope. The belief base module of a cognitive
robot is the following programming construct:
BELIEF BASE= {φ | φ ∈ BF}.

The set of basic actions is a set of (parameterized) actions
that can be executed if certain preconditions hold. After ex-
ecution of an action certain postconditions must hold. These
actions can be, for example, motor actions or belief update
operations.

Definition 2 (Programming Constructs for Basic Actions)
Let α(X) be an action name with parametersX and
φ, ψ ∈ BF . Then, programming constructs for basic
actions have the form:{φ} α(X) {ψ}
The basic action module of a cognitive robot is the following
programming construct:
BASIC ACTIONS={ C | C is a basic action}.

The set of goal programming constructs that we use here
differs from its specification (Hindrikset al. 1999) in some
aspects. At this stage, we do not propose programming con-
structs for the choice and parallel operators. The absence
of the choice operator implies that 3APL goals are deter-
ministic programs and the absence of the parallel operator
implies that no two activities can take place simultaneously.
However, two new programming constructs are specified,
i.e. IF-THEN-ELSE andWHILE-DO. Note that these pro-
gramming constructs are specific uses of the choice operator
and recursion, respectively.

Definition 3 (Goal Programming constructs) Let BA be
a set of basic actions,BF be a set of belief sentences,
π, π1, . . . , πm ∈ GOAL and φ ∈ BF . Then, the set of
programming constructs for 3APL goals (GOAL) can be
defined as follows:

• BactionGoal:BA ⊆ GOAL

• PredGoal:BF ⊆ GOAL

• TestGoal: ifφ ∈ BF , thenφ? ∈ GOAL

• SkipGoal:skip ∈ GOAL

• SequenceGoal: ifπ1, . . . , πn ∈ GOAL,
thenπ1 ; . . .; πn ∈ GOAL

• IfGoal: IF φ THENπ1 ELSEπ2 ∈ GOAL

• WhileGoal:WHILEφ DOπ ∈ GOAL.

The goal base module of a cognitive robot is then the follow-
ing programming construct:
GOAL BASE ={ πi | πi ∈ GOAL }.



Practical reasoning rules are defined for various reasons.
They can be applied to revise robots’ goals that are not
achievable, to actions that are blocked, to optimize robots’
goals, or to generate some sort of reactive behavior. Before
we define programming constructs for practical reasoning
rules, a set of goal variables,GV AR, is introduced. First
we extend the setGOAL to includes goals which contain
goal variables. The resulting setV GOAL is defined by ex-
tending the definition ofGOAL with the following clause:
if X ∈ GV AR, thenX ∈ V GOAL.

Definition 4 (Practical Reasoning Programming constructs)
Let πh, πb ∈ V GOAL andφ ∈ BF , then a practical rea-
soning rule is defined as follows:πh ← φ | πb.
This practical reasoning rule can be read as follows: if the
robot’s goal isπh and the robot believesφ, thenπh can be
replaced byπb.
The practical reasoning module of a cognitive robot is then
the following programming construct:
PRACTICAL REASONING RULES={ P | P is a
practical reasoning rule}.
For example, the following practical reasoning rule gener-
ates reactive behavior since it generates therepair() goal
whenever it believes that an error has occurred.
← event(error) | repair()

Example of a 3APL Robot Program
The example of the mobile robot, mentioned in the introduc-
tion, can be implemented in 3APL as follows. The beliefs
of the robot are determined by the following statements:

pos(x) : current position isx ∈ {source, room}.
box(source) : there are boxes at thesource position.
clean(room) : theroom is clean.
busy(self) : the robot is performing a task.

The goal of the robot consists of two goals statements
(i.e. transport() and cleanroom()) and the following
basic action statements:

Goto(x) : go to the positionx ∈ {source, room}.
DoTransport() : transport box.
DoClean() : clean room.

Given these statements of the belief and goal languages, the
following program implements the mobile robot.

BELIEF BASE= { ¬busy(self) }

BASIC ACTIONS={
{¬busy(self)}

Goto(source)
{busy(self) ∧ pos(source)},

{¬busy(self)}
Goto(room)

{busy(self) ∧ pos(room)},

{pos(source)}
DoTransport()

{¬busy(self)},

{pos(room)}
DoClean()
{¬busy(self)}

}

GOAL BASE={
transport(), cleanroom()

}

PRACTICAL REASONING RULES={
transport() ← box(source) |

Goto(source); DoTransport(); transport(),

cleanroom() ← ¬clean(room) |
Goto(room); DoClean(); cleanroom(),

}

The statement in the belief base module states that the
robot is initially not busy with a task. The first statement in
the basic action module states that the robot can only go to
the source position if it is not busy with a task and that af-
ter going to the source position, it will be busy at the source
position. The other statements in the basic actions module
should be read in the same way. The statement in the goal
base module states that the robot has two goals: transport
boxes and clean the room. Finally, the first statement in the
practical reasoning module states that if the robot’s goal is to
transport boxes and if it believes that there are boxes at the
source position, then its goal should be revised into going
to the source position, transporting a box and maintain the
transport goal. The other statements in the practical reason-
ing rule module should be read in the same way.

3APL Semantics
In (Hindriks et al. 1999) an operational semantics for the
3APL language is proposed which is defined by means of
a transition system. This semantics specifies transitions be-
tween the agent’s states by means of transition rules. The
state of an agent is defined as follows:

Definition 5 The state of a 3APL agent is defined as a 4-
tuple< Π, σ,Γ, θ >, whereΠ is the set of the agent’s goals,
σ is the agent’s beliefs,Γ is the set of practical reasoning
rules, andθ is a substitution consisting of binding of vari-
ables that occur in the agent’s beliefs and goals. (In the
sequel we leave outΓ from the agent’s states since this part
does not change by transitions.)

The binding of variablesθ is generated and updated by
transitions such as those responsible for the execution of test
goals and the application of practical reasoning rules. The
variable bindingθ is passed through to other transitions. For
the application of practical reasoning rules the guard of the
rules that contain domain variables should be unified with a
belief formula. Also, the heads of the rules containing both
domain variables and goal variables should be unified with



the goal-base. Both of these unifications result in substitu-
tions which need to be passed to the next states. The setΠ
is a set of goals from which one goal can be executed. The
transition rule on the agent level specifies the execution of a
goal fromΠ.

Definition 6 Let Π = {π0, . . . , πi, . . . πn} ⊆ G, andθ and
θ′ be ground substitutions. Then,

< {πi}, σ, θ >→< {π′i}, σ′, θ′ >

< {π0, . . . , πi, . . . πn}, σ, θ >→< {π0, . . . , π′i, . . . πn}, σ′, θ′ >

The above transition rule states that transitions of sets of
goals can be accomplished by transitions on each goal sep-
arately. Thus, the agent develops by transitions and revision
of each goal in its goal-base. The application of practical
reasoning rules to the goal-base may introduce new occur-
rences of existing variables in the goal-base and therefore
may cause implicit unwanted bindings between variables.
These bindings can be prevented by assuming fresh variable
names which replace all variables that occur in a practical
reasoning rules before they are applied to the goal-base. For
more details on variable bindings see (Hindrikset al. 1999).
Additional transition rules are given for the application of
practical reasoning rules on a goal or the execution of a goal
when it consists of a basic action. The transition rule for
basic actions is formulated as follows.

Definition 7 Let A(−→t ) be a basic action with a list of pa-
rameters−→t and τ be an update function that specifies the
effect of the basic action on beliefs. The semantics of basic
actions is captured by the following transition rule.

τ(A(−→t )θ, σ) = σ′

< {A(−→t )}, σ, θ >→< ∅, σ′, θ >

The complete set of transition rules can be found in (Hin-
drikset al. 1999).

The 3APL Interpreter
In order to execute a 3APL program an interpreter is pro-
vided that specifies the flow of control among different mod-
ules of the program. The interpreter implements a delibera-
tion cycle through which practical reasoning rule statements
and goal statements are selected and subsequently applied
and executed. This deliberation cycle is illustrated in Figure
2.

This deliberation cycle consists of two phases: a goal re-
vision and a goal execution phase. In the goal revision phase
(the upper part of the deliberation cycle in Figure 2), a subset
of practical reasoning rules is selected on the basis of their
applicability to goals and beliefs. Then, from this subset a
practical reasoning rule is chosen and applied to the goal to
which it is applicable. This application revises one of the
robot’s goals. In the goal execution phase (the lower part of
the deliberation cycle in Figure 2), a subset of goals that can
be executed is selected and from this subset a goal is chosen
and executed.

The fact that this deliberation cycle is implemented in the
interpreter implies that many deliberation choices are made

F
in

d 
R

ul
es

M
at

ch
in

g 
G

oa
ls

E
m

pt
y

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

F
in

is
h

S
ta

rt

F
in

d 
R

ul
es

M
ac

hi
ng

 B
el

ie
fs

S
el

ec
t R

ul
e

to
 F

ire
F

ire
 R

ul
e

on
 G

oa
l

E
xe

cu
te

 G
oa

l
S

el
ec

t G
oa

l
to

 E
xe

cu
te

to
 E

xe
cu

teR
ul

es
F

ou
nd

?
R

ul
es

F
ou

nd
?

S
el

ec
te

d?
R

ul
e

S
el

ec
te

d?
G

oa
l

F
ou

nd
?

G
oa

ls

G
oa

lb
as

e?

N
o

G
oa

l r
ev

is
io

n

O
pt

io
na

l G
oa

ls

G
oa

l e
xe

cu
tio

n
N

o
N

o

Figure 2:The deliberation cycle of the 3APL interpreter.



statically. For example, practical reasoning rules are cho-
sen on the basis of their applicability to goals and beliefs.
This implies that a programmer should design the practical
reasoning rules in such a way as to ensure the selection of in-
tended practical reasoning rules. In the example presented in
the previous section and in situations where there are boxes
at the source position and the room is not clean, the first
two rules can be chosen. However, in a situation where the
transportation of boxes is thought to be more important than
the cleaning of the room, one may want to select the first
practical reasoning rule repeatedly.

Of course, these types of strategies can implicitly be im-
plemented by, for example, adding extra conditions to prac-
tical reasoning rules. For our robot, if we add¬box(source)
to the conditions of the second practical reasoning rule, then
the interpreter is forced to choose the first practical reason-
ing rule whenever there are boxes at the source position re-
gardless of whether the room is clean or not. The draw-
back of such a solution is that additional conditions should
be introduced and added to the practical reasoning rules.
In addition to complexities, which are introduced by extra
conditions to practical reasoning rules, the programmer is
also forced to implement such strategies in an implicit way
instead of programming them by explicit statements. This
type of solution does not respect the programming principle
called separation of concerns. The reader should note that
similar problems exist for the selection of goals as well. In
order to enforce the choice of a certain goal, the programmer
should know the specific selection mechanism implemented
in the interpreter.

Programming Module for the Deliberation
Cycle

The specification of 3APL includes a (meta) language for
programming some parts of the deliberation cycle. However,
there are no programming constructs yet to implement those
parts of the deliberation cycle. The aim of our research is
to extend 3APL and introduce programming constructs to
make the deliberation cycle a programmable module. The
existing meta language for the deliberation cycle includes
terms that refer to the set of goals and the set of practical
reasoning rules that occur in their corresponding modules.
These terms will then be used as arguments of programming
constructs that implement the deliberation cycle.

Definition 8 Let Π be a term that refers to the set of goals,
andΓ be a term that refers to the set of practical reasoning
rules. The set of terms that refer to goalsTg and practical
reasoning rulesTr are defined as follows.

• ∅, Π ∈ Tg and∅,Γ ∈ Tr.
• if g0, g1 ∈ Tg andr0, r1 ∈ Γ, then

intersection(g0, g1), union(g0, g1), diff(g0, g1) ∈ Tg

and
intersection(r0, r1), union(r0, r1), diff(r0, r1) ∈ Tr.

• if gi ∈ Tg and ri ∈ Tr, then maxg(gi) ∈ Tg and
maxr(ri) ∈ Tr.

This definition assumes an ordering among goals and
practical reasoning rules. Themaxg andmaxr functions

select respectively the goals and the practical reasoning rules
that are highest in the ordering. In the sequel, we extend the
set of functions that can select particular types of goals and
practical reasoning rules.

A possible extension is based on the assumption that there
are dependencies among goals in the sense that the selection
of one goal gives rise to the selection of other goals. For
example, suppose our robot has a third goal to clean another
room close to the first room and far from the box positions.
The selection of a cleaning goal gives rise to the selection
of the second cleaning goal. For this type of extension, var-
ious relations between goals need to be represented and ad-
ditional operations need to be defined. For example, for our
robot one may define the dependency relation between goals
(a set of goal pairs) and define an operator, e.g.depend(g),
which selects the set of possible goals that depend ong. An-
other useful function is one which identifies non-conflicting
goals for a given goal. This function can be used to imple-
ment a strategy that selects and executes non-conflicting and
coherent goals consecutively.

Similar extensions can be introduced for the practical rea-
soning rules. In general, practical reasoning rules can be
classified according to the purpose of their use. They can, for
example, be used to revise goals that are not achievable, to
actions that are blocked, to plan goals, or to optimize goals.
The types of practical reasoning rules can be used to select
rules based on a certain strategy. For example, a strategy is
to select rules that generate reactive behavior preferably, i.e.
if more than one rule can be applied, select first the reactive
rule. This makes a robot behave more reactively. Similarly,
a preference on selecting rules that generate plans makes a
robot more deliberative. Of course, a more refined classi-
fication of practical reasoning rules results in a variety of
agent types. A different classification of rules can be defined
based on their structural properties such as having a head,
a body, or a condition. For example, a preference to apply
rules without body makes the robot drop its goals preferably.
To select certain types of practical reasoning rules we need
to introduce additional function names to refer to various
types of rules.

Definition 9 Let Fg and Fr be sets of function names de-
fined on goal terms and rule terms, respectively. The last
clause of definition 8 can be generalized with the following
two clauses:

• if gi ∈ Tg andfg ∈ Fg, thenfg(gi) ∈ Tg.
• if ri ∈ Tr andfr ∈ Fr, thenfr(ri) ∈ Tr.

Given the terms denoting sets of goals and practical rea-
soning rules, the programming constructs for implementing
the deliberation cycle are defined as follows:
Definition 10 The set of meta statementsS is defined as fol-
lows:

1. if G ∈ V arg andg ∈ Tg, thenG := g ∈ S

2. if R ∈ V arr andr ∈ Tr, thenR := r ∈ S

3. if g ∈ Tg, G ∈ V arg, thenselex(g, G) ∈ S

4. if G,G′ ∈ V arg, thenex(G, G′) ∈ S

5. if r ∈ Tr, g ∈ Tg, R ∈ V arr, G ∈ V arg, then
selap(r, g,R, G) ∈ S



6. if R ∈ V arr andG,G′ ∈ V arg, thenapply(R, G, G′) ∈
S

7. if g, g′ ∈ Tg, r, r
′ ∈ Tr, α, β ∈ S andφ ∈ BF ∪ {g =

g′, r = r′, g 6= g′, r 6= r′}, thenα; β , IF φ THENα
ELSEβ , WHILEφ DOα ∈ S

The first two meta statements are designed to assign goals
and rules to goal and rule variables, respectively. The state-
mentselex(g,G) (third clause) selects an executable goal
from the set of goalsg and assign it toG. The statement
selap(r, g, R, G) (fifth clause) selects a goal fromg and a
rule fromr and assigns them toG andR, respectively. The
choice to select a goal and a rule is based on a given ordering
on goals and rules. Moreover, the selected rule should be ap-
plicable to the selected goal. The fourth statement executes
goalsG and the result is then assigned toG′. The sixth state-
ments applies rulesR to goalsG and the result is assigned
to G′. The seventh statement indicates the formation rules
for composite statements.

The meta statements are in fact macros that can be used
to implement some parts of the 3APL interpreter. For ex-
ample, the first three boxes of the goal revision part of the
3APL deliberation cycle, illustrated in Figure 2, can be pro-
grammed by the actionselap(Γ,Π, R, G) and the fourth box
can be programmed by theapply(R, G, G′) action. More-
over, the first two boxes of the the goal execution part of
the 3APL deliberation cycle can be programmed by the ac-
tion selex(Π, G) and the last box can be programmed by
theex(G,G′) action. The reason to introduce these macros
is a design issue and the result of a tradeoff between sim-
plicity and expressiveness. On the one hand the macros
should make deliberation cycles easy to program and, on the
other hand, they should enable the programmer to imple-
ment interesting choices. Note that these macros can be im-
plemented using other programming constructs such as as-
signment statement to variables. For example,selex(g, G)
can be implemented asG := fselect(g), for a given selection
functionfselect.

Let Π be the set of goals of a 3APL agent andΓ its set
of practical reasoning rules. The deliberation cycle of the
3APL interpreter, illustrated in Figure 2, can thus be pro-
grammed by the following meta-program.

WHILE Π 6= ∅ DO
BEGIN

selap(Γ, Π) ;
IF R 6= ∅ THEN

apply(R, G, G′) ;
selex(Π, G) ;
IF G 6= ∅ THEN

BEGIN
ex(G,G′) ;
Π := union(diff(Π, {G}), {G′})

END
END

The selection of goals and rules can be conditional-
ized on robots’ beliefs or on comparison between terms
that refer to sets of goals or sets of rules. For example,
it is possible to program a strategy for our mobile robot
which makes sure that the robot selects the transport goal

as long as there are boxes at the source position. Let
Π = {transport(); cleanroom()} and ftrans be a func-
tion name that selects transport goals. Then, the following
meta program implements the above strategy.

WHILE box(source) DO
BEGIN

selex(f trans(Π), G);
ex(G,G′)
Π := union(diff(Π, {G}), {G′})

END

Note that the same type of strategies can be used to enable
our robot to select certain types of goals or rules whenever it
believes it is in an emergency situation. For example, when-
ever there is an overload of boxes at the source position, the
robot should not select the cleaning goal but keep transport-
ing the boxes.

Conclusion
In this paper, we presented the ongoing research on extend-
ing 3APL with programming constructs by which the delib-
eration cycle of the interpreter can be implemented. 3APL is
a programming language for implementing high level con-
trol of cognitive robots and software agents. This language
is a combination of imperative and logic programming. The
logic programming part is designed to implement the beliefs
while the imperative programming part is designed to im-
plement the control program of the robot. Moreover, addi-
tional programming constructs are provided to design prac-
tical reasoning rules and basic actions.

In contrast to other programming languages designed to
implement high level control of cognitive robots, such as
ConGolog, the 3APL goals are deterministic programs and
does not allow the choice and parallel operator. Instead, de-
terministic goals can be revised by applying practical rea-
soning rules to those goals. The application of practical rea-
soning rules to deterministic goals is equivalent to allowing
the choice operator in goals and using backtracking mech-
anism to meet the choices. Note that elsewhere (Hindriks,
Lesṕerance, & Levesque 2000) it is proven that ConGolog
can be embedded in 3APL.

At this moment there exists a partial implementation of
the 3APL interpreter. We are now implementing 3APL as
a JAVA class. This class has private attributes for each of
the 3APL modules such as belief base, goal base, etc. This
class has at least two methods, one method for creation of
the 3APL object through which the private attributes are set,
and one method for running the object. The latter method
corresponds to the deliberation cycle of 3APL.

References
Cohen, P., and Levesque, H. 1990. Intention is choice with
commitment.Artificial Intelligence42:213–261.
Fischer, K.; M̈uller, J. P.; and Pischel, M. 1994. Uni-
fying control in a layered agent architecture. Techni-
cal Report TM-94-05, Deutsches Forschungszentrum für
Künstliche Intelligenz GmbH Erwin-Schrödinger Strasse
Postfach 2080, 67608 Kaiserslautern Germany.



Georgeff, M., and Lansky, A. 1987. Reactive reasoning
and planning. InIn Proceedings of the Sixth National Con-
ference on Artificial Intelligence (AAAI-87), 677–682.
Giacomo, G. D.; Lesṕerance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus.Artificial Intelligence121(1–2):109–
169.
Hindriks, K. V.; Boer, F. S. D.; der Hoek, W. V.; and Meyer,
J.-J. C. 1999. Agent programming in 3apl.Autonomous
Agents and Multi-Agent Systems2(4):357–401.
Hindriks, K.; Lesṕerance, Y.; and Levesque, H. 2000. An
embedding of congolog in 3APL. Technical Report UU-
CS-2000-13, Department of Computer Science, University
Utrecht.
Konolige, K. 1997. COLBERT: A language for reactive
control in sapphira. InKI - Kunstliche Intelligenz, 31–52.
Rao, A., and Georgeff, M. 1991. Modeling rational agents
within a BDI architecture. InProceedings of the KR91.
Rao, A., and Georgeff, M. 1995. BDI agents: From theory
to practice. InProceedings of the First International Con-
ference on Multi-Agent Systems (ICMAS’95), 312–319.
Shanahan, M. 1999. Reinventing shakey. In Minker, J., ed.,
Workshop on Logic-Based Artificial Intelligence. College
Park, Maryland: Computer Science Department, Univer-
sity of Maryland.


